Geometría diferencial de curvas y superficies - Taller 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Geometría diferencial de curvas y superficies - Taller 1"

Transcripción

1 Geometrí diferencil de curvs y superficies - Tller 1 G Pdill Ofic Deprtmento de Mtemátics Fcultd de Ciencis Universidd Ncionl de Colombi gipdilll@unleduco Ls pregunts de los prciles se bsn tnto en los ejercicios de los tlleres como en l bibliogrfí recomendd pr el curso [Operciones entre vectores] (1 Muestr que el producto punto en R n ddo por u v = i u i v i stisfce ( Definido positivo: u u = u 2 0 (b Simétrico: u v = v u (c Bilinel: (u + λu v = u v + λ(u v y u (v + λv = u v + λ(u v (d Incidenci: u v = u v cos(θ donde θ es el ángulo que sepr u, v (e Distnci: d(u, v = (u v (u v (f Ortogonlidd: u v si y sólo si u v = 0 (2 Complet un bse ortonorml en R 4 que conteng l vector v = ( 1, 3, 2, (3 Se V R 4 el subespcio fín ddo por ls soluciones de ls ecuciones: w 3x + y + z = 0; x y = 1 Hll el subespcio fín W que es ortogonl V y ps por p = (0, 0, 0, 1 (4 A qué corresponde en R n el conjunto de soluciones de un ecución linel de l form 1 x n x n = c con 1,, n constntes no tods nuls, y c 0? (5 Ddos u, v R n l proyección ortogonl de u en v es el vector w = P r(u, v en l dirección de v tl que u w es mínim Muestr que ( P r(u, v = ( u v v v v; (b (u P r(u, v v } (6 Cmbios de métric: Dd culquier bse {u 1,, u n en R n muestr que existe lgún producto interno µ en R n tl que µ (u i, u j = δ ij pr todo i, j (7 Grssmnins: Sen n > 0 y 0 m n dos enteros; y G(m, n el conjunto de todos los subespcios lineles { en R n de dimensión m } Muestr que G(m, n = O(n donde O(n = A GL O(m O(n m n (R : A T = A 1 es el grupo ortogonl de orden n Ayud: Muestr que O(n ctú en G(m, n del modo obvio, clcul un órbit y un estbilizdor usndo el método de Grm-Schmidt (8 En R n el volumen orientdo de n vectores u 1,, u n es V ( u 1,, u n = 1 u 1 1 u 1 n u n 1 u n n

2 2 Mte3 P1 Si dichos vectores formn un bse, l orientción es el signo del determinnte Por otr prte, el producto cruz de n 1 vectores u 1,, u n 1 R n es e 1 e n u 1 u n 1 u 1 u 1 1 n = u n 1 u n 1 1 n donde {e 1,, e n } es l bse cnónic Muestr que: ( (λu 1 u n 1 = λ (u 1 u n 1 (b (u 1 + v 1 u n 1 = (u 1 u n 1 + (v 1 u 2 u n 1 (c (u 2 u 1 u n 1 = (u 1 u 2 u n 1 (d V (u 1,, u n = (u 1 u n 1 u n (e u 1 u n 1 es perpendiculr u j pr j = 1,, n 1 (9 En R 3 demuestr que (u v w = (u wv (v wu Not que el producto cruz no es, en generl, socitivo (10 En R 3 demuestr que V 2 ( u 1, u 2, u 3 = u 1 u 1 u 1 u 2 u 1 u 3 u 2 u 1 u 2 u 2 u 2 u 3 u 3 u 1 u 3 u 2 u 3 u 3 α [Curvs diferencibles] Un curv diferencible I R n es regulr cundo su vector derivd α no se nul nunc Si α (t 0 decimos que t es un vlor regulr y α(t es un punto regulr de l curv α; en cso contrrio t, α(t son respectivmente un vlor y un punto singulres L tngente locl de α en un instnte t I es l rect de vector director α (t y punto de poyo α(t; l denotmos T α(t (1 Dd un curv γ(t = (x 1 (t,, x n (t en R n verificr que dγ = ( x (t,, dt x (t 1 n (2 Pr culesquier curvs γ, δ en R n y culquier función derivble rel f; verificr ( (γ + δ = γ + δ (b (fγ = fγ + f γ (c (γ δ = γ δ + γ δ (d Pr n = 3; (γ δ = γ δ + γ δ (3 Dd un curv regulr α(t escribe l tngente locl T α(t en sus forms vectoril y prmétric (4 Clcul el vector derivd de cd un de ls siguientes curvs y los puntos singulres Decide cuáles de ells son regulres Hz un dibujo en cd cso ( α(t = (cos(t, sen(t, t con t R (b α(t = (t 3, t 2 ; pr t R (c α(t = (t 3 4t, t 2 4 pr t R (d α(t = (t, t pr t R ( 2t (e Cisoide: Ddo > 0 consider α(t = 2, 2t3 con t R Cundo t 1+t 2 1+t 2 l curv α se proxim sintóticmente l rect x = 2

3 Mte3 P1 3 (f Tráctriz: α(t = (sen(t, cos(t + ln(tn ( t 2 L longitud del segmento de est rect ( entre cd punto de tngenci y el eje verticl es exctmente 1 (g α(t = Pr t tnto l curv como su derivd tienden 3t 1+t 3, 3t2 1+t 3 (0, 0 Pr t = 0 l curv es tngente l eje horizontl (h Folio de Descrtes: Si δ(t = α( t es l curv con orientción opuest Cundo t 1 tnto δ como δ se proximn l rect x + y + = 0 L imgen de δ es simétric respecto l eje digonl x = y (i Espirl logrítmic: Ddos > 0, b < 0; tommos ϕ(t = (e bt cos(t, e bt sen(t Cundo t l curv y su derivd se cercn l origen Pr culquier t l longitud de rco de ϕ es finit en [t, (5 Pr ls curvs de l pregunt nterior, hll T α(t en cd vlor regulr (6 Hll un curv α(t cuyo gráfico se el círculo unitrio x 2 + y 2 = 1, recorrido en sentido horrio, y tl que α(0 = (0, 1 (7 Si α(t es un curv en R 2 que no ps por el origen, α(t 0 es el punto en el gráfico de α que está más cerc del origen y α (t 0 0; mostrr que α(t 0 y α (t 0 son vectores ortogonles Ayud: Deriv g(t = α(t α(t en t 0 (8 Clculr α(t si se sbe que α (t = 0 es el vector nulo (9 Si v R 3 es un vector fijo no nulo y α(t es un curv culquier en R 3 tl que α (t v pr todo t y α(0 v; muestr que α(t v pr todo t Ayud: Muestr que l función f(t = α(t v v 2 es derivble (10 Si α(t es un curv en R 3 tl que α (t 0 pr todo t; muestr que α(t = r > 0 es un constnte positiv si y sólo si α(t α (t pr todo t Ayud: Mismo truco del problem (7 (11 Si α, β son dos curvs diferencibles en R 3 que stisfcen, pr cierts constntes, b, c, d R; α = α + bβ muestr que α β es un vector constnte [Repso de cálculo en vris vribles] β = cα + dβ (1 En R 3 ; ddos un cmpo esclr f(x, y, z y un cmpo vectoril V (x, y, z = (v 1 (x, y, z, v 2 (x, y, z, v 3 (x, y, z; considermos los siguientes operdores diferenciles ( f Grdiente: (f =, f, f x y z Derivd direccionl: Siempre que V = 1 se define D(f, V = (f V = f x v 1 + f y v 2 + f z v 3 Divergenci: div(v = v 1 e 1 e 2 e 3 Rotcionl: rot(v = V = x y z v 1 v 2 v 3 Verificr que ( (f + g = (f + (g + v 2 + v 3 x y z

4 4 Mte3 P1 (b (f g = (fg + f (g (c (V + W = V + W (d (fv = (f V + f( V pr tod constnte λ (e ( (f = 0 si f es de clse C 2 (2 Dd un función R 2 f R derivble en un punto p = (x 0, y 0 ; muestr que el grdiente f(p = ( f f (p, (p determin l dirección de máximo crecimiento x y de f (3 Dd γ(t = cos(t pr t [0, 2π; dibuj l superficie S dd por l iguldd z = γ(x 2 + y 2 Hllr los puntos críticos de S y decide si son máximos, mínimos o puntos de sill (4 Demuestr el recíproco de l prte (e de l pregunt nterior; vle decir: Si V = (v 1, v 2, v 3 es culquier cmpo irrotcionl en R 3 (es decir, tl que V = 0 entonces V = (f pr un cmpo esclr f(x, y, z de clse C 2 Ayud: Fij un punto (r 0, s 0 R 3 Define f(r, s, t como l integrl de líne de V lo lrgo de l poligonl que une los puntos (r 0, s 0, (r, s 0, (r, s y (r, s, t Es decir: f(r, s, t = r r 0 v 1 (x, s 0 dx + s s 0 v 2 (r, y dy + t t 0 v 3 (r, s, zdz (5 Teorem de Green en R 2 : Se γ(t un curv cerrd simple con dominio t [, b], y R l región biert que qued encerrd por γ Se V = (P, Q un cmpo vectoril en R 2 Mostrr que [ Q V dγ = x P ] dxdy y γ R Ayud: Sen, b R los extremos de l proyección de γ en el eje horizontl Subdivide l imgen de γ en dos funciones explícits g 1 (x < g 2 (x pr x [, b] muestr que P dxdy = dx y γ R (6 Demuestr que ls siguientes firmciones son equivlentes en R 2 : V es un cmpo conservtivo: L integrl de líne q V dγ no depende de p l tryectori γ que une p, q V dγ = 0 pr culquier curv cerrd γ γ V = (f es un cmpo grdiente (ver pregunt 15 V = 0 (7 Muestr que el áre de un región simple R R 2 encerrd por un curv cerrd conex γ = R stisfce Are(R = 1 xdy ydx ( 2 R (8 Ddo F (x, y = 3x 3 2xy 2 + e (3x+2y ; 2 3 e(3x+2y 2x 2 y clcul l integrl de líne ( q F dγ pr p = ( 3, 0; q = 3 2, 2 y γ el rco más corto de l curv p 2 x y2 4 = 1 Ayud: Depende de γ?

5 Mte3 P1 5 [Curvs diferencibles II] (1 Clcul l longitud de rco de l curv R g R 3 dd por x(t = t, y(t = 2t3, 3 z(t = t 2 entre los puntos p = ( 1, 2, 1 y q = (2, 16, (2 Obteng un prmetrizción de l curv cicloide y clcul l longitud de rco que corresponde un rotción complet del disco (3 Muestr que ls rects tngentes de l curv α(t = (3t, 3t 2, 2t 3 formn un ángulo constnte con l rect y = 0, x = z (4 Dd un curv diferencible α(t en R 3 se [, b] un cerrdo contenido en el dominio de α; p = α( y q = α(b ( Pr cd vector unitrio v muestr que (q p v = b α (t vdt b α (t dt (b Muestr que q p b α (t dt Ayud: Tom v = q p q p (5 Dd un curv α(t en R 3 se s(t = t α (t dt l función que mide l longitud t 0 de rco de α desde lgún t 0 fijo Muestr que α (t 1 si y sólo si s(t difiere de t en un constnte (6 Muestr que tod curv regulr puede ser reprmetrizd por longitud de rco α Ayud: Se (, b 3 R un curv regulr Se s(t = t α (t dt l función de longitud de rco ( Muestr que l = s(t es un función derivble en < t < b, estrictmente creciente, y posee un invers t = r(l derivble y estrictmente creciente en 0 < l < L = s(b Hz un dibujo β (b Verific que (0, L R 3 dd por β(l = α(r(l recorre l mism tryectori de α y es prmetrizd por longitud de rco Ayud: Deriv l iguldd r(s(t = t y us l regl de l cden α [Mrco móvil de un curv regulr] Fijmos un curv regulr (, b R 3 prmetrizd por longitud de rco (ver último ejercicio de l sección nterior Pr cd s (, b el vector derivd α (s tiene norm α (s = 1, por lo cul es llmdo el tngente unitrio, lo denotmos en delnte por t(s = α (s L curvtur de α en s es el vlor k(s = α (s ; llmmos k l función de curvtur Si k(s 0 entonces el vector norml en s es el vector unitrio n(s = α (s El plno determindo k(s por {t(s, n(s} se llm plno osculdor de l curv; y está bien definido siempre que k(s 0; en tl cso el vector b(s = t(s n(s es unitrio y norml l plno osculdor; lo llmmos vector binorml L tern {t(s, n(s, b(s} se llm mrco móvil de Frénet Muestr que (1 k(s 0 si y sólo si α es (un segmento de un rect (2 L función de curvtur es invrinte por cmbio de orientción (3 Si k(s 0 entonces α (s α (s (ejer 11, 1r prte de curvs (4 t (s = k(sn(s (5 b (s = τ(sn(s; el vlor τ(s es l torsión en s y l función τ se llm función de torsión Ayud: Not que b (s b(s (ejer 11, 1r prte de curvs y

6 6 Mte3 P1 b (s t(s Pr ello deriv b = (t n = t n + t n y demuestr que el primer sumndo se nul (6 Si k(s 0; entonces τ(s 0 si y sólo si α es un curv pln (7 Si se cmbi l orientción de l curv, el vector binorml cmbi de signo (8 L torsión es invrinte por cmbio de orientción (9 Siempre que k(s 0 l bse {t(s, n(s, b(s} es ortonorml en R 3 (10 n(s = b(s t(s y t(s = n(s b(s; hz un dibujo y plic l regl de l mno derech (11 n (s = τ(sb(s k(st(s Ayud: Deriv n(s = b(s t(s; us (4 y (5 (12 Un movimiento rígido en R 3 es l composición de un trslción u (u + p (el punto p es el poyo de l trslción y un trnsformción ortogonl u A(u donde A 1 = A T Demuestr que l curvtur y l torsión son invrintes bjo movimientos rígidos Ayud: Verific que el producto interno, el ángulo y l norm son invrintes por movimientos rígidos (13 Dd α(s = ( cos(s/c, sen(s/c, bs/c donde 2 + b 2 = c 2 y s R; ( Muestr que s es el prámetro de longitud de rco (b Clcul l curvtur y l torsión (c Determin el mrco móvil (d Muestr que ls tngentes locles formn un ángulo constnte con el eje z

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 4. INTEGRALES DE LÍNEA Y DE SUPERFICIE

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 4. INTEGRALES DE LÍNEA Y DE SUPERFICIE TEORÍA E CÁLCULO II PARA GRAOS E INGENIERÍA Elbord por omingo Pestn y José Mnuel Rodríguez 4.1. INTEGRALES E LÍNEA 4. INTEGRALES E LÍNEA Y E SUPERFICIE Hbitulmente suele identificrse un tryectori : [,

Más detalles

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2 Unidd Integrl de Líne. Integrl de funciones vectoriles Cmpos Vectoriles Denición. Un cmpo vectoril en el plno R es un función F : R R que sign cd vector x D R un único vector F (x) R con F (x) = P (x)i

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

P 1 P 2 = Figura 1. Distancia entre dos puntos.

P 1 P 2 = Figura 1. Distancia entre dos puntos. ANÁLISIS MATEMÁTICO BÁSICO. LONGITUD DE UNA CURVA PARAMÉTRICA. Ddos dos puntos P 1 = (x 1, x 2,..., x n ), P 2 = (y 1, y 2,..., y n ) R n (pensemos en puntos del espcio, de R 3 ) sbemos clculr l distnci

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos 1. Estimr el áre debjo de l gráfic de f(x) = cosx desde x = hst x = π/2, usndo cutro rectángulos de proximción y como puntos muestr, los extremos derechos de los intervlos. Dibuje l curv y los rectángulos

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Contenidos. Tema 1. Geometría Diferencial. Producto Escalar y Vectorial Producto escalar.

Contenidos. Tema 1. Geometría Diferencial. Producto Escalar y Vectorial Producto escalar. Contenidos Tem 1. Geometrí Diferencil Curvs en el espcio Análisis Vectoril y Estdístico Preliminres Operciones con vectores en R 3 Producto esclr Producto Vectoril Deprtmento de Mtemátic Aplicd E.P.S.

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

Integral de ĺınea. Tema Caminos y curvas en IR n.

Integral de ĺınea. Tema Caminos y curvas en IR n. Tem 3 Integrl de ĺıne 3.1 minos y curvs en IR n. Definición 3.1 Se [, b] IR, diremos que α: [, b] IR n es un cmino en IR n si α es continu en [, b]. A los puntos α y αb de IR n los llmremos extremos del

Más detalles

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera .7. Teorem de Green en el Plno. Se un curv cerrd, simple, suve trozos positivmente orientd en el plno, se l región limitd por l curv, e incluendo. Si F ( ) F ( ),, son continus tiene primers derivds prciles

Más detalles

CALCULO VECTORIAL. Campos vectoriales

CALCULO VECTORIAL. Campos vectoriales mpos vectoriles ALULO VETORIAL Un cmpo vectoril o cmpo de vectores es un función que sign un vector un punto del plno o del espcio. Si M y N son funciones de vriles definids en un región R del plno, un

Más detalles

1 Métodos Matemáticos I. Parte: Integrales de ĺınea y superficie. I.T.I. en Mecánica

1 Métodos Matemáticos I. Parte: Integrales de ĺınea y superficie. I.T.I. en Mecánica 1 Métodos Mtemáticos I Prte II Integrles de ĺıne y superficie Prte: Integrles de ĺıne y superficie I.T.I. en Mecánic 2 Métodos Mtemáticos I : Integrl de ĺıne Tem 3 Integrl de ĺıne 3.1 minos y curvs en

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Tem 10 Aplicciones de l integrl. 10.1. Áre de figurs plns. 10.1.1. Áre encerrd entre un curv y el eje de bsciss. Se f : [, b] R un función integrble, tl que f(x 0 x [, b]. El áre del recinto C = {(x, y

Más detalles

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2 JUNIO DE 8. PROBLEMA A. Estudi el siguiente sistem de ecuciones lineles dependiente del prámetro rel resuélvelo en los csos en que es comptible: x+ x+(+4)+(+)z (+) +( +3+)z+4 (3 PUNTOS) Aplicmos el método

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

Divergencia de un Campo Vectorial en el Plano (R 2 )

Divergencia de un Campo Vectorial en el Plano (R 2 ) Unidd 4 Teorems Integrles 4.1 Teorem de l ivergenci en el Plno ivergenci de un Cmpo Vectoril en el Plno R 2 do un cmpo vectoril F : R 2 R 2, se tiene que F represent el cmpo de velociddes de un uido en

Más detalles

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3 Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn

Más detalles

RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO.

RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO. RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO. 1- Ddo el triángulo de vértices A=(1,-3,), B=(3,-1,0) y C(-1,5,4). ) Determinr ls coordends del bricentro. b) Si ABCD es un prlelogrmo, determinr ls coordends

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencil e integrl 4 Guí 2. emuestr el cso del teorem de Fubini que no se demostró en clse. Concretmente: se R = A B R n un rectángulo compcto con A y B rectángulos de dimensión menor. Supongmos

Más detalles

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. 42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril 2006. FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

0.1 Sustituciones trigonométricas.-

0.1 Sustituciones trigonométricas.- Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC.. Sustituciones trigonométrics.- Cso.- El integrndo contiene un epresión de l form +. Se sugiere l sustitución = tn u d = sec udu de donde Z + = sec u d ( +)

Más detalles

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd

Más detalles

Funciones Vectoriales

Funciones Vectoriales Apendice 2 Funciones Vectoriles Definition 1. Un función f : I R R n cuy regl de correspondenci es ft = f 1 t,f 2 t,...,f n t se denomin función vectoril de un vrible rel t. 1. El nombre de función vectoril

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

RESOLUCIÓN DE EJERCICIOS DE COLOQUIO CLASIFICADOS POR TEMAS

RESOLUCIÓN DE EJERCICIOS DE COLOQUIO CLASIFICADOS POR TEMAS RESOLUCIÓN E EJERCICIOS E COLOQUIO CLASIFICAOS POR TEMAS I) CIRCULACIÓN, FLUJO, IVERGENCIA Y TEOREMAS INTEGRALES II) CURVAS, SUPERFICIES, ÁREAS Y VOLÚMENES III) ECUACIONES IFERENCIALES I) CIRCULACIÓN,

Más detalles

Examen de Admisión a la Maestría 1 de Julio de 2015

Examen de Admisión a la Maestría 1 de Julio de 2015 Exmen de Admisión l Mestrí 1 de Julio de 215 Nombre: Instrucciones: En cd rectivo seleccione l respuest correct encerrndo en un círculo l letr correspondiente. Puede hcer cálculos en ls hojs que se le

Más detalles

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por Operdor nbl El operdor nbl es: = xˆ x + ŷ y + ẑ z Definimos el grdiente de un cmpo esclr ϕ(x ) por: ϕ =xˆ ϕ x + ŷ ϕ y + ẑ ϕ z e A (x ) =A x (x )xˆ +A y (x )ŷ +A z (x )ẑ un cmpo vectorl. L divergenci de

Más detalles

Clase 14: Teorema de Green

Clase 14: Teorema de Green lse 14: Teorem de Green.J. Vnegs 10 de junio de 008 Relcion un integrl de line lo lrgo de un curv cerrd c en el plno R con un intgrl doble en l región encerrd por. En Mtemátics 6 se extenderá este resultdo

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

En este tema supondremos al lector familiarizado con las técnicas más elementales de formas bilineales y cuadráticas sobre un espacio vectorial.

En este tema supondremos al lector familiarizado con las técnicas más elementales de formas bilineales y cuadráticas sobre un espacio vectorial. Cpítulo 4 El espcio euclídeo 4.1 Introducción En este tem supondremos l lector fmilirizdo con ls técnics más elementles de forms bilineles y cudrátics sobre un espcio vectoril. Definición 4.1.1. Un espcio

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

Leccion 6. Espacio tangente. Espacio cotangente.

Leccion 6. Espacio tangente. Espacio cotangente. Leccion 6. Espcio tngente. Espcio cotngente. Estudir: 1 14,20 25. 6.1. Introduccion 1. El objetivo de est leccion es probr que los vectores tngentes X en hcen justici su nombre, ie., que el conjunto T

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García EJERCICIOS DE CÁLCULO I Pr Grdos en Ingenierí Cpítulo 4: Integrción en un vrible Domingo Pestn Glván José Mnuel Rodríguez Grcí Índice 4. Integrción en un vrible 4.. Cálculo de primitivs..................................

Más detalles

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas.

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas. SELECTIVIDAD. Est es un selección de cuestiones propuests en ls otrs comuniddes utónoms en l convoctori de Junio del.. En quells comuniddes en ls que no se indic nd, el formto de emen es similr l que se

Más detalles

Integración de funciones de varias variables Curso 15/16 Grupo A

Integración de funciones de varias variables Curso 15/16 Grupo A urso 15/16 Grupo Frncisco José Freniche Ibáñez Modificdo el 8 de febrero de 2016 Primer prte 1. Medid de Lebesgue en R n 1.1. Volumen de intervlos Sen = ( 1,..., n ), b = (b 1,..., b n ) R n tles que i

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

Integrales de Superficie y sus Aplicaciones

Integrales de Superficie y sus Aplicaciones iclo Básico Deprtmento de Mtemátic Aplicd álculo Vectoril (054) Junio 01 UNIVERIDAD ENTRAL DE VENEZUELA FAULTAD DE INGENIERÍA Integrles de uperficie y sus Aplicciones José Luis Quintero 1. Encuentre un

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada 1 CAPÍTULO 8 Aplicciones de l derivd 8.1 Derivilidd monotoní 1 Como se se, si f es un función derivle en 0, entonces l derivd de f en 0 es un número rel fijo f 0. 0 /, el cul puede ser f 0. 0 / > 0 o ien

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.

Más detalles

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA

IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA DE LA FÍSICA Índice 1. Símolos del lenguje mtemático 2. Álger 3. Geometrí 4. Trigonometrí 5. Cálculo vectoril 6. Cálculo diferencil 2 1 Símolos del lenguje mtemático = es igul, equivle x 0 incremento de

Más detalles

1. Introducción: longitud de una curva

1. Introducción: longitud de una curva 1. Introducción: longitud de un curv Integrles de L ide pr clculr l longitud de un curv contenid en el plno o en el espcio consiste en dividirl en segmentos pequeños, escogiendo un fmili finit de puntos

Más detalles

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por Operdor nbl El operdor nbl es: = xˆ x + ŷ y + ẑ z Definimos el grdiente de un cmpo esclr ϕ(x ) por: ϕ =xˆ ϕ x + ŷ ϕ y + ẑ ϕ z Se A (x ) =A x (x )xˆ +A y (x )ŷ +A z (x )ẑ un cmpo vectorl. L divergenci de

Más detalles

2 Funciones vectoriales

2 Funciones vectoriales 2 Funciones vectoriles 2.1. Definición, dominio, imgen, gráfic Definición de función Un función de vlor vectoril o simplemente un función vectoril (en R n ) vectoril es un función cuyo dominio es un conjunto

Más detalles

Tema 9: Cálculo de primitivas. Integrales definidas e impropias.

Tema 9: Cálculo de primitivas. Integrales definidas e impropias. Integrl definid y sus plicciones. Integrles impropis. Tem 9: Cálculo de primitivs. Integrles definids e impropis. José M. Slzr Noviembre de 206 Integrl definid y sus plicciones. Integrles impropis. Tem

Más detalles

Apéndice al Tema 3 (Geometría Diferencial)

Apéndice al Tema 3 (Geometría Diferencial) Apéndice l Tem 3 (Geometrí Diferencil) Ejemplos de Curvs Superficies en el espcio Curso 2011/12 1. Alguns curvs plns lbeds Elipse b Un elipse centrd en el origen de semiejes b tiene por ecución implícit

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Universidad de Costa Rica. Proyecto MATEM PRIMER EXAMEN PARCIAL CÁLCULO

Universidad de Costa Rica. Proyecto MATEM PRIMER EXAMEN PARCIAL CÁLCULO Universidd de Cost Ric Proyecto MATEM PRIMER EXAMEN PARCIAL CÁLCULO de bril de 017 INSTRUCCIONES GENERALES: Le cuiddosmente, cd instrucción y pregunt, ntes de contestr. Utilice únicmente bolígrfo de tint

Más detalles

6. Curvas en el espacio

6. Curvas en el espacio FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 08-2 Bsdo en el punte del rmo Mtemátics Aplicds, de Felipe Álvrez, Jun Diego Dávil, Roberto Cominetti y Héctor

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

3 Funciones con valores vectoriales

3 Funciones con valores vectoriales GTP 3. Cálculo II - 20 3. Tryectoris: velocidd y longitud de rco 3 Funciones con vlores vectoriles 3. Tryectoris: velocidd y longitud de rco. Pr cd un de ls siguientes curvs determinr los vectores velocidd

Más detalles

1.6. Integral de línea de un Campo Vectorial Gradiente.

1.6. Integral de línea de un Campo Vectorial Gradiente. 1.6. Integrl de líne de un mpo Vectoril Grdiente. n Definición. Se l función esclr f definid por f : D R R, un función continumente diferencible, y se l curv, un curv prcilmente suve definid prmétricmente

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

y ) = 0; que resulta ser la

y ) = 0; que resulta ser la º BT Mt I CNS CÓNICAS Lugr geométrico.- Es el conjunto de los puntos que verificn un determind propiedd p. Considermos un determindo sistem de referenci crtesino del plno. Diremos que l ecución f(x,)=0

Más detalles

Primitiva de una función.

Primitiva de una función. Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)

Más detalles

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1.

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1. Pág. de 7 x si x Ì Hll el vlor de k pr que l función fx = x + k si x > se continu en x =. b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =, h de ser fx = f. x 8

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático

Más detalles

Integrales sobre caminos

Integrales sobre caminos Cpítulo 9 Integrles sobre cminos Hst hor hemos estudido integrción de funciones sobre conjuntos (con volumen) de R n. En este y los próximos cpítulos discutiremos l integrción de funciones sobre cminos

Más detalles

1. Función primitiva. Integral de una función.

1. Función primitiva. Integral de una función. . Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí

Más detalles

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1 II BLOQUE II ANÁLISIS Págin 3 3x si x Ì Hll el vlor de k pr que l función fx = continu en x =. x + k si x > se b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =,

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

6. APLICACIONES DE LA INTEGRAL.

6. APLICACIONES DE LA INTEGRAL. Tem 6. Aplicciones de l intergrl. Curso 217/18 6. APLCACONES DE LA NTEGRAL. 6.1. ntegrles impropis: convergenci. Se debe Cuchy l primer extensión de l integrl pr funciones denids en un intervlo no cotdo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NCIONL DE FRONTER CEPREUNF CICLO REGULR 017-018 CURSO: FISIC Elementos básicos de un vector: SEMN TEM: NÁLISIS VECTORIL Origen Módulo Dirección CLSIFICCION DE LS MGNITUDES FÍSICS POR SU NTURLEZ

Más detalles

Unidad Temática Integral definida

Unidad Temática Integral definida Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y

Más detalles

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo 2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teorems de punto fijo Definición 1. Se X un espcio vectoril rel. Se dice que un

Más detalles

Teorema del punto fijo Rodrigo Vargas

Teorema del punto fijo Rodrigo Vargas Teorem del punto fijo Rodrigo Vrgs Definición 1. Un punto fijo de un plicción f : M M es un punto x M tl que f(x) = x. Definición 2. Sen M, N espcios métricos. Un plicción f : M N es un contrcción cundo

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

CURVAS REGULARES. LONGITUD DE ARCO

CURVAS REGULARES. LONGITUD DE ARCO CURVAS REGULARES. LONGITUD DE ARCO CÉSAR ROSALES. CURVAS Y SUPERFICIES Existen vris forms de presentr lo que intuitivmente entendemos por un curv. Vemos un ejemplo. Ddo p 0 R 2 y R > 0, l circunferenci

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES.

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES. MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Mtrices 11 Definición Se K un cuerpo y n, m N Un mtriz n m sobre K es un plicción: A : {1,,n} {1,,m} K Si (i, j) {1,,n} {1,,m} denotremos ij

Más detalles