LEYES DE LA DINÁMICA Y APLICACIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LEYES DE LA DINÁMICA Y APLICACIONES"

Transcripción

1 CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación de la cantidad de movimiento 6.- Tercera ley de la Dinámica (acción y reacción). 7.- Sistemas de referencia: 7.1. Inerciales No inerciales (sólo introducción y algún ejemplo sencillo). 8.- La fuerza de rozamiento. 9.- Estudio de algunas situaciones dinámicas: 9.1. Dinámica de cuerpos aislados. Planos inclinados Dinámica de cuerpos enlazados. Cálculo de la aceleración y de la tensión Dinámica del movimiento circular uniforme. CANTIDAD DE MOVIMIENTO (p) Es el producto de la masa de una partícula por su velocidad. p = m v Es un vector que tiene la misma dirección y sentido que v y es por tanto también tangente a la trayectoria. Como: v = v x i + v y j + v z k p = m v = m (v x i + v y j + v z k) = m v x i + m v y j + m v z k Con lo que: p = p x i + p y j + p z k PRINCIPIO DE INERCIA (PRIMERA LEY DE NEWTON) Se basa en las apreciaciones de Galileo. Si no actúa ninguna fuerza (o la suma vectorial de las fuerzas que actúan es nula) los cuerpos permanecen con velocidad (v) contante. Es decir, sigue en reposo si inicialmente estaba en reposo, o sigue con MRU si inicialmente llevaba una determinada v.

2 2 SEGUNDA LEY DE NEWTON La fuerza resultante aplicada a un objeto es igual a la variación de la cantidad de movimiento con respecto al tiempo, o lo que es lo mismo, al producto de la masa por la aceleración. d p d (m v) d v F = = = m = m a d t d t d t ya que la masa, al ser constante, sale fuera de la derivada. En general, suele existir más de una fuerza por lo que se usa: Σ F = m a DEDUCCIÓN DEL PRINCIPIO DE INERCIA En realidad el primer principio, se deduce fácilmente a partir del anterior: Σ F = m a. Si la fuerza resultante sobre un cuerpo es nula (Σ F = 0) a = 0 v = constante. También puede deducirse: Si Σ F = 0 dp = 0 p = constante v = constante. Un coche de 900 kg de masa parte del reposo y consigue una velocidad de 72 km/h en 6 s. Calcula la fuerza que aplica el motor, supuesta constante. Δp = m v 2 m v 1 = m (v 2 v 1 ) = 900 kg 20 m/s i 0 i = i kg m/s Δp i kg m/s F = = = 3000 i N Δt 6 s Se pueden sustituir diferenciales por incrementos, pues aunque así obtendría Fuerza media, ésta coincidiría con F al considerarla constante. IMPULSO MECÁNICO (I). En el caso de que la fuerza que actúa sobre un cuerpo sea constante, se llama impulso al producto de dicha fuerza por el tiempo que está actuando. I = F Δ t = Δp = m v 2 m v 1 = m Δv El impulso mecánico aplicado a un objeto es igual a la variación en la cantidad de movimiento de éste.

3 3 Un tenista recibe una pelota de 55 g de masa con una velocidad de 72 km/h; y la devuelve en sentido contrario con una velocidad de 36 km/h. Calcula el impulso que recibe la pelota y la fuerza media que aplica el tenista, si el contacto de la pelota con la raqueta dura una centésima de segundo. I = F Δ t = Δp = m v 2 m v 1 = 0,055 kg ( 10 m/s) i 0,055 kg 20 m/s i I = 1,65 i kg m/s I 1,65 i kg m/s F = = = 165 i N Δ t 0,01 s Lógicamente, tanto la componente del impulso como la de la fuerza tienen signo negativo pues tienen sentido contrario al inicial de la pelota. TEOREMA DE CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO. De la propia definición de fuerza: dp F = dt se deduce que si F = 0, (o Σ F, resultante de todas aplicadas sobre una partícula), es 0, entonces p debe ser constante. Lo que significa que deben ser constantes cada una de sus componentes cartesianas: p x, p y y p z, y por tanto también las de la velocidad MRU. PRINCIPIO DE ACCIÓN Y REACCIÓN (TERCERA LEY DE NEWTON) Si tenemos un sistema formado por dos cuerpos que interaccionan entre sí, pero aislados de toda fuerza exterior, la cantidad de movimiento total de dicho sistema permanecerá constante. Δp total = Δp 1 + Δp 2 = 0 Si dividimos ambos miembros por Δ t Δp total Δp 1 Δp 2 Σ F = = + = 0 F 1 = F 2 Δt Δt Δt Es decir, la fuerza que ejercida sobre 1(debido a la interacción de 2) es igual que la ejercida sobre 2 (producida por 1).

4 4 Al actuar las dos fuerzas sobre cuerpos distintos ejercer, en general efectos también distintos (aceleraciones distintas). Por ejemplo, la fuerza con la que nos atrae la Tierra (Peso) tiene el mismo módulo y sentido contrario que la Fuerza con nosotros atraemos a la Tierra. Es evidente, en este caso que mientras la Tierra ejerce sobre nosotros un efecto apreciable (aceleración de la gravedad), el efecto de 60 o 70 kp que ejercemos sobre la Tierra es absolutamente despreciable. Un libro está apoyado en la superficie horizontal de una mesa y se tira de él horizontalmente con una cuerda ligera. Identifica las fuerzas que actúan sobre el libro y sus correspondientes pares acción-reacción. Hay tantas fuerzas como parejas de cuerpos interaccionan. Con el libro interaccionan: la Tierra, la cuerda y la mesa. La Tierra actúa sobre el libro (peso) y el libro atrae a la Tierra (despreciable para la Tierra). La cuerda aplica al libro la Tensión y el libro actúa sobre la cuerda con una fuerza igual pero de sentido contrario. El libro empuja a la mesa con una fuerza igual a su peso. La reacción de la mesa es la fuerza normal. Igualmente, la mesa se opone al deslizamiento del libro con una fuerza de rozamiento y el libro actúa sobre la mesa con una fuerza igual pero de sentido contrario. CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO EN DOS CUERPOS. Ya hemos visto que si Σ F= 0, p debe ser constante. En el caso de que la interacción sea un choque: Σ p antes = Σ p después m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 En el choque elástico v 1 y v 2 (velocidad con que salen rebotados los objetos) son distintos. En el choque inelástico v 1 = v 2. (los dos objetos salen juntos incrustado el uno en el otro). Una canica de 8 g lleva una velocidad constante de 4 m/s, y golpea una bola de madera de 200 g que está en reposo. Si como resultado del choque la canica sale rebotada con una velocidad de 2 m/s, calcula la velocidad con que comienza a moverse la otra bola. m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2

5 5 8 g 4 m/s i g 0 i = 8 g ( 2 m/s) i g v 2 Despejando v 2 obtenemos: 32 g m/s i + 16 g m/s i v 2 = = 0,24 i m/s 200 g Ejercicio A: Una bola de billar choca a una velocidad de 4 m/s con otra bola igual que está parada. Después del choque, la primera bola se mueve en una dirección que forma 30º con la inicial, y la segunda con 60º con la dirección inicial de la primera. Calcula el módulo de la velocidad final de cada bola. (Sol: 2 m/s y 3,46 m/s) SISTEMAS DE REFERENCIA Inerciales: El origen (observador) está en reposo o MRU. Son aplicables las leyes de Newton. Las aceleraciones son producidas por fuerzas debidas a la interacción entre cuerpos (contacto o a distancia). Sistemas no inerciales El origen (observador) lleva una determinada aceleración. No son aplicables las leyes de Newton. Se introducen las llamadas fuerzas de inercia F inercia (virtuales) que no son el resultado de la interacción entre cuerpos sino un artificio matemático para poder aplicar las leyes de Newton: F i = m a Cuando el sistema se encuentra en equilibrio se cumple el principio de D Alembert: Σ F reales + F inercia = 0 Comparativa de ambos sistemas en algunos casos Viaje en autobús Al arrancar con aceleración a, la persona se siente impulsada hacia atrás: Sist. Inercial: (fuera del autobús). No existe fuerza y por tanto tampoco a (nadie le empuja, permanece quieto por inercia).

6 6 Sist. No inercial: (dentro del autobús). Como experimenta el viajero una aceleración a (hacia atrás) deberá existir una fuerza: F i = m a Dentro de un ascensor Sea un cuerpo de masa m suspendido del techo por una báscula. Al subir el ascensor con aceleración a, el objeto marca en la báscula una fuerza superior a su peso: Sist. Inercial: (fuera del ascensor). No existe equilibrio puesto que el objeto acelera con a luego T + P = m a (T m g = m a) T = m (g + a) (T es la fuerza que marca la báscula) Sist. No inercial: (dentro del ascensor). Hay equilibrio. Se aplica el principio de D Alembert: Σ F = 0; T + P + F i = 0 (T m g m a = 0) T = m (g + a) Al tomar una curva Sea una pelota de masa m que viaja sobre una plataforma móvil con velocidad lineal constante. Al tomar la curva la plataforma se produce sobre ésta una aceleración normal a n, mientras que sobre la pelota no existe aceleración. Sist. Inercial: (fuera de la plataforma). La pelota sigue recta con v constante y se sale de la plataforma que gira. Sist. No inercial: (dentro de la plataforma). La pelota sale lanzada hacia el exterior una aceleración igual cuyo módulo vale v 2 /R. Ello implica la existencia de una fuerza (virtual) hacia el exterior que se conoce como fuerza centrífuga. FUERZA DE ROZAMIENTO (F R ) Es la fuerza que aparece en a superficie de contacto de los cuerpos, oponiéndose siempre al movimiento de éstos. Depende de: Los tipos de superficie en contacto. La fuerza normal N de reacción de la superficie sobre el objeto (normalmente igual en módulo a P N excepto que se aplique una fuerza no horizontal sobre el mismo). No depende de: La superficie (cantidad).

7 7 Tipos de fuerza de rozamiento: Estático: Se opone y anula a la fuerza lateral mientras el cuerpo esté en reposo. Es igual a la fuerza necesaria para iniciar un movimiento (de sentido contrario). Cuando un cuerpo está en reposo y se ejerce una fuerza lateral, éste no empieza a moverse hasta que no la fuerza no sobrepasa un determinado valor (F re ). La fuerza de rozamiento se opone y anula a la fuerza lateral mientras el cuerpo esté en reposo. Cinético (o dinámico): Es la fuerza que se opone a un cuerpo en movimiento (F rc ). Es algo menor que F re (en el mismo caso). Cálculo de F R F re (máxima) = μ e N ; F rc = μ c N En donde μ e y μ c son los coeficientes de rozamiento estático y cinético respectivamente, que dependen ambos de la naturaleza de las superficies en contacto y N es la normal (perpendicular a). La normal N es la fuerza de reacción de la superficie de deslizamiento sobre el objeto debido a la P N y al resto de componentes perpendiculares al movimiento. Manera práctica de obtención de F re y F rc. Se pone el objeto sobre la superficie y se va inclinando ésta hasta que empiece a moverse el objeto. En ese instante: P T = F re Al no haber fuerzas exteriores: N = P N m g sen α = μ re m g cos α sen α μ re = = tg α cos α Una vez iniciado el movimiento puede bajarse el ángulo hasta α. Análogamente, μ rc = tg α. Calcular las fuerzas de rozamiento estático y cinético al arrastrar una caja de 5 kg con una fuerza de 20 N aplicada a una cuerda que forma un ángulo con el suelo de 30º, sabiendo que μ e = 0,15 y μ c = 0,12. Se moverá la caja?

8 8 F = 20 N se descompone en: F x = 20N cos 30º = 17,3 N; F y = 20N sen 30º = 10,0 N N = P F y = 5 kg 9,8 m/s 2 10 N = 39 N F re = μ e N = 0,15 39 N = 5,85 N F rc = μ c N= 0,12 39 N = 4,68 N Sí se moverá hacia la derecha, pues F x > F re DINÁMICA DE CUERPOS AISLADOS. Se basa en la segunda ley de Newton: Σ F = m a Hay que determinar todas las fuerzas que actúa sobre el cuerpo y sumarlas vectorialmente. Si hay fuerzas oblicuas al movimiento suelen descomponerse éstas en paralelas y perpendiculares al mismo. Estática: Estudia los cuerpos en equilibrio Se cumple que: a = 0 Σ F = 0. MOVIMIENTO SOBRE PLANO HORIZONTAL. Si arrastramos un objeto tirando con una fuerza F de una cuerda que forma un ángulo α con la horizontal. Dibujamos todas las fuerzas que actúan. Descomponemos la fuerza F en F x y F y. Si existe rozamiento determinamos si F x > F re para comprobar si se mueve. Aplicamos : Σ F x = m a; Σ F y = 0 Calcular la aceleración de la caja del ejemplo anterior: Datos: m = 5 kg F = 20 N, α = 30º, μ c = 0,12. Calculamos todas las componentes de las fuerzas existentes:

9 9 F x = 20N cos 30º = 17,3 N; F y = 20N sen 30º = 10,0 N F y = 0 N = P F y = 5 kg 9,8 m/s 2 10 N = 39 N F rc = μ c N = 0,12 39 N = 4,68 N Una vez que sabemos que F x > Fr re, aplicamos: Σ F x = m a; 17,3 N 4,68 N = 5 kg a 17,3 N 4,68 N a = = 2,524 m s 2. 5 kg PLANOS INCLINADOS. Puede descender sin necesidad empujarlo si P T > F re. de Si arrastramos o empujamos con una fuerza F hacía abajo, descenderá si F + P T > F re. Si arrastramos o empujamos con una fuerza F hacía arriba: Ascenderá si: F > F re + P T No se moverá si: P T F re < F < F re + P T Descenderá si F < P T F re Recordad que F r tiene siempre sentido contrario al posible movimiento. Se moverá un baúl de 100 Kg situado en una superficie inclinada 15º con la horizontal, sabiendo que μ e y μ c valen 0,30 y 0,28 respectivamente. P T = P sen α = 980 N sen 15 = 253,6 N P N = P cos α = 980 N cos 15 = 946,6 N Al no existir otras fuerzas oblicuas: N = P N (sentido contrario) F re = μ e N = 0,30 946,6 N = 284 N Como P T < F re el baúl no se moverá. No se mueve hacia arriba porque F re no toma su valor máximo.

10 10 Qué fuerzas habrá que realizar en el ejercicio anterior a) hacia abajo, b) hacia arriba, para que el baúl comience a moverse? c) Con qué aceleración se moverá si se empuja hacia abajo con una fuerza de 100 N. Datos: m = 100 kg, α = 15º, μ e = 0,30 y μ c = 0,28. P T = 253,6 N ; P N = N = 946,6 N; F re = 284 N a) F mínima (abajo) > 284 N 253,6 N = 30,4 N b) F mínima (arriba) > 284 N + 253,6 N = 537,6 N c) F c = μ c N = 0,28 946,6 N = 265,0 N Σ F = 100 N + 253,6 N 265,0 N = 88,6 N = 100 kg a a = 0,886 m s 2 DINÁMICA DE CUERPOS ENLAZADOS. Cálculo de aceleración y tensión. La acción que ejerce un cuerpo sobre otro se traduce en la tensión de la cuerda que los enlaza, que es lógicamente igual y de sentido contrario a la reacción del segundo sobre el primero. Se aplica la 2ª ley de Newton a cada cuerpo por separado, obteniéndose una ecuación para cada uno con igual a. Tenemos en cuenta únicamente las fuerzas que tienen la dirección del movimiento, pues las perpendiculares se anulan (P 1 = N). Utilizaremos componentes escalares con los que se consideran positivas las fuerzas a favor y negativas las que van en contra. Al sumar las ecuaciones miembro a miembro deben desaparecer las tensiones.

11 11 Cuál será la aceleración del sistema y la tensión de la cuerda suponiendo que hay movimiento y que m 1 = 5 kg y m 2 = 2 kg y μ c vale 0,08? m 2 1 F r Cuerpo 1: T F rc = m 1 a T μ c m 1 g = m 1 a Cuerpo 2: P 2 T = m 2 a m 2 g T = m 2 a 2 kg 9,8 m/s 2 0,08 5 kg 9,8 m/s 2 = (5 kg + 2 kg) a 2 kg 9,8 m/s 2 0,08 5 kg 9,8 m/s 2 a = = 2,24 m/s 2 5 kg + 2 kg T = 5 kg 2,24 m/s + 0,08 5 kg 9,8 m/s 2 = 5,12 N Ejercicio B: 2 Se moverá el sistema de la figura y en caso de que lo haga hacia qué lado? Datos: m 1 = 6 kg; m 2 = 2 kg; μ e = 0,12; μ c = 0,10; α = 30º. Ejercicio C: Calcular la aceleración del sistema y la tensión de la cuerda del ejemplo anterior. Datos: m 1 = 6 kg ; m 2 = 2 kg ; μ e = 0,12; μ c = 0,10; α = 30º. DINÁMICA DEL M.C.U. Se cumplen las siguientes condiciones: v = v = k a t = 0 a n = a n = v 2 / R = v 2 / R = cte donde a n es un vector dirigido hacia el centro de la trayectoria. Aplicando la 2ª ley de Newton deberá haber una fuerza también dirigida hacia el centro cuyo F n = m a n = m v 2 / R que se conoce como fuerza centrípeta (F C ). En caso de objetos que giran horizontalmente debido a una cuerda: F = T. En caso de un coche que gira F = F. C r P 1T N α P 1 P 2 Una bola de 200 g, sujeta a una cuerda de 1,5 m se mueve a v cuyo módulo constante es 6 m/s sobre una mesa sin rozamiento describiendo un círculo. Calcular la tensión de la cuerda. C T P 1 N T

12 12 El peso de la bola P queda compensado por la reacción del plano N, por lo que ambas fuerzas se anulan La tensión T es la responsable del movimiento circular. Es por tanto la fuerza centrípeta. m v 2 0,2 kg (6 m/s) 2 T = = = 4,8 N R 1,5 m La misma bola de 200 g, sujeta a una cuerda de 1,5 m se hace girar en aire a velocidad constante describiendo un péndulo cónico. Si la cuerda forma un ángulo de 30º con la vertical. cuál será la velocidad de la bola? La tensión es ahora una fuerza oblicua que descomponemos en T x que será la fuerza centrípeta y T y que neutralizará el peso de la bola: 0,2 kg v 2 T x = T sen 30º = 1,5 m sen 30º T y = T cos 30º = 0,2 kg 9,8 m/s 2 = 1,96 N Resolviendo el sistema obtenemos que: v = 2,06 m/s Movimiento de un cubo en vertical. T + P = m a n Ecuaciones escalares: Arriba: T + m g = m a n = m v 2 / R Abajo: T m g = m a n = m v 2 / R Si v = cte, T tiene que ser mucho mayor abajo. La velocidad mínima para que el agua no caiga se obtendrá cuando T (arriba) tome el mínimo valor posible, es decir 0. m g = m v 2 / R v = ( g R) 1/2

13 13 La misma bola gira ahora en un plano vertical. Sabiendo que v A = 10 m/s, v B = 8,4 m/s, v C = 6,4 m/s, calcular la tensión de la cuerda en cada punto y la aceleración tangencial. a) m v 2 T A m g = R 0,2 kg (10 m/s) 2 T A = 1,96 N + = 15,3 N 1,5 m 2 b) m v 0,2 kg (8,4 m/s) 2 T B = = = 9,4 N R 1,5 m 2 c) m v 0,2 kg (6,4 m/s) 2 T C = m g = 1,96 N R 1,5 m T C = 3,5 N Sólo existe a t en B pues F T = P (m a t = m g) a t = g = 9,8 m/s 2 En a) y c) at es nula. Curvas sin peralte (con rozamiento) La fuerza de rozamiento hacia el interior de la curva es precisamente la fuerza centrípeta. v 2 Eliminando la masa podemos obtener el radio en función de la velocidad o viceversa: F R = μ m g = m R Un coche de 1500 kg circula a 30 m/s por una carretera siendo 0,2 su coeficiente de rozamiento estático entre las ruedas y el suelo. Calcula el radio mínimo de la curva sin peraltar. 2 2 v (30 m/s) R = = = 459 m g μ (9,8 m/s 2 ) 0,2 Curvas peraltadas (sin rozamiento) 2 v R = v = μ R g g μ

14 14 N x = N sen α ; N y = N cos α F y = 0 N cos α m g = 0 m g N = cos α La N x es la responsable del giro: m g N x = N sen α = sen α cos α v 2 N x = m g tg α = m R R = 2 v g tgα Un coche de 1200 kg circula por una curva de 50 m de radio peraltada 30º. Suponiendo que no exísta rozamiento cuál será la velocidad que deberá llevar para no derrapar. Qué ocurriría si llevara una velocidad inferior? v = (R g tg α) ½ = (50 m 9,8 m s 2 tg 30º) ½ = 16,8 m/s Ejercicio: Si v fuese inferior iría cayendo hacia el interior del peralte al no existir rozamiento. Por qué los astronautas situados en la estación espacial Alfa a sólo unos cientos de km de la superficie terrestre flotan en la nave? Ejercicio: Su peso es algo menor que en la superficie de la Tierra, pero es bastante significativo. Debido a que el peso está dirigido hacia el centro de la Tierra, actúa de fuerza centrípeta que lo mantiene en órbita (está continuamente cayendo). Si utilizáramos un sistema de referencia no inercial (la nave), tendríamos que acudir a una fuerza inercial (centrifuga) para explicar el aparente equilibrio. Cual será a altura de una órbita geoestacionaria? (los satélites permanecen siempre en la vertical de un punto de la Tierra) La velocidad angular del satélite es igual a la terrestre: 2π rad / s = 7, rad/s El peso del satélite es igual a la fuerza centrípeta:

15 15 Ejercicio: M T m G = m ω 2 (R T + h) (R T + h) 2 M T N m 2 5, kg (R T + h) 3 = G = 6, ω 2 kg 2 (7, s 1 ) 2 R T + h = 4, m h = 4, m 6, m = 3, m Cuántas veces menos pesará un objeto situado en un satélite en órbita geoestacionaria en comparación la superficie terrestre? El peso de un objeto en la superficie terrestre es: m 9,8 m/s 2. El peso en la órbita geoestacionaria es: M T N m 2 5, kg m G = m 6, = m m/s 2 (R T + h) 2 kg 2 (4, m) 2 El cociente es: m 9,8 m/s 2 = 43,8 veces menos m m/s 2

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

LAS FUERZAS Y EL MOVIMIENTO

LAS FUERZAS Y EL MOVIMIENTO Página 1 LAS UEZAS Y EL MOVIMIENTO DINÁMICA: Es la parte de la ísica que estudia las fuerzas como productoras de movimientos. UEZA: Es toda causa capaz de modificar el estado de reposo o movimiento de

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

TEMA 7: TRABAJO Y ENERGÍA.

TEMA 7: TRABAJO Y ENERGÍA. Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1 FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1. A QUÉ LLAMAMOS TRABAJO? 1. Un hombre arrastra un objeto durante un recorrido de 5 m, tirando de él con una fuerza de 450 N mediante una cuerda que forma

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

EDUCACIÓN EN VALORES CRITERIOS DE EVALUACIÓN. Actitudes PROGRAMACIÓN DE AULA

EDUCACIÓN EN VALORES CRITERIOS DE EVALUACIÓN. Actitudes PROGRAMACIÓN DE AULA PROGRAMACIÓN DE AULA Elaborar esquemas claros que faciliten la resolución de problemas en los que intervienen fuerzas. Saber elegir los ejes más apropiados para la resolución de un problema en el que aparecen

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09)

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09) EXAMEN TIPO TEST NÚMERO MODELO 1 (Física I curso 008-09) 1.- Un río de orillas rectas y paralelas tiene una anchura de 0.76 km. La corriente del río baja a 4 km/h y es paralela a los márgenes. El barquero

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos XVI OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2005 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI Centro Población Provincia Fecha Teléfono e-mail Las siete primeras preguntas no es

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j. IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los

Más detalles

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton =

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton = FUEZA CENTIPETA Y CENTIFUGA. De acuerdo con la segunda ley de Newton = F m a para que un cuerpo pesa una aceleración debe actuar permanentemente sobre el una fuerza resultante y la aceleración tiene el

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al

Más detalles

Tema 2. DINÁMICA. Física, J.W. Kane, M. M. Sternheim, Reverté, 1989. Tema 2 Dinámica Caps. 3 y 5 Las leyes de Newton del movimiento

Tema 2. DINÁMICA. Física, J.W. Kane, M. M. Sternheim, Reverté, 1989. Tema 2 Dinámica Caps. 3 y 5 Las leyes de Newton del movimiento Tema 2. DINÁMICA Física, J.W. Kane, M. M. Sternheim, Reverté, 1989 Tema 2 Dinámica Caps. 3 y 5 Las leyes de Newton del movimiento Cap. 3, pp44-69 Movimiento circular Cap. 5, pp96-107 TS 5.8 Efectos fisiológicos

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO 1 Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO IES FRANCÉS DE ARANDA. TERUEL. DEPARTAMENTO DE FÍSICA Y QUÍMICA 2 FÍSICA Y QUÍMICA. 1º BACHILLERATO. CONTENIDOS. I.- CINEMÁTICA. 1. Movimiento: sistema de

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 3 LAS FUERZAS Y EL MOVIMIENTO EJERCICIOS PROPUESTOS 3.1 Un malabarista juega con varias pelotas lanzándolas hacia arriba y volviéndolas a coger. Indica cuándo actúan fuerzas a distancia y cuándo por contacto

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

principios de la dinámica

principios de la dinámica 12 Los A-PDF Manual Split Demo. Purchase from www.a-pdf.com to remove the watermark principios de la dinámica 1 Una fuerza tiene de módulo 4 N y forma un ángulo con el eje positivo de las x de 30. Calcula

Más detalles

TEMA 1 FUERZAS Y ESTRUCTURAS

TEMA 1 FUERZAS Y ESTRUCTURAS 1 TEMA 1 FUERZAS Y ESTRUCTURAS FUERZA es aquella causa capaz de producir cambios en el movimiento de un cuerpo o de cambiar su forma. (Por lo tanto, los cuerpos no tienen fuerza, tienen energía. La fuerza

Más detalles

Tema 4: Dinámica del movimiento circular

Tema 4: Dinámica del movimiento circular Tema 4: Dinámica del movimiento circular Ya has estudiado las características del movimiento circular uniforme, calculando la velocidad de giro, relacionándola con la lineal y teniendo en cuenta además

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

( j ) N y F 2 DINAMICA VARIOS: Sobre un objeto se ejercen dos fuerzas: F 1. = 2.4i ˆ + 6.4 ˆ

( j ) N y F 2 DINAMICA VARIOS: Sobre un objeto se ejercen dos fuerzas: F 1. = 2.4i ˆ + 6.4 ˆ DINAMICA VARIOS: Sobre un objeto se ejercen dos fuerzas: F 1 2.4i ˆ + 6.4 ˆ ( j ) N y F 2 ( 8.5i ˆ 9.7ˆ j ) N. a) Cuál es el módulo de cada fuerza? b) Cuál es el ángulo de cada una de estas fuerzas con

Más detalles

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 011 UNIVERSIDAD DE CASTILLA-LA MANCHA Apellidos Nombre DNI Centro Población Provincia Fecha Teléfonos (fijo y móvil) e-mail (en mayúsculas) PUNTUACIÓN Tómese

Más detalles

frenado?. fuerza F = xi - yj desde el punto (0,0) al

frenado?. fuerza F = xi - yj desde el punto (0,0) al 1. Calcular el trabajo realizado por la fuerza F = xi + yj + + zk al desplazarse a lo largo de la curva r = cos ti + sen tj + 3tk desde el punto A(1,0,0) al punto B(0,1,3π/2), puntos que corresponden a

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

3 Estudio de diversos movimientos

3 Estudio de diversos movimientos 3 Estudio de diversos movimientos EJERCICIOS PROPUESTOS 3.1 Un excursionista, de pie ante una montaña, tarda 1,4 s en oír el eco de su voz. Sabiendo que el sonido viaja en el aire a velocidad constante

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

APUNTES DE FÍSICA Y QUÍMICA

APUNTES DE FÍSICA Y QUÍMICA Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA

Más detalles

XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA

XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI e - mail Centro Población Provincia Fecha Teléfono Las siete primeras preguntas no es

Más detalles

Julián Moreno Mestre www.juliweb.es

Julián Moreno Mestre www.juliweb.es Ejercicio de cálculos de trabajo: 1º Una bomba hidráulica llena un depósito de 500 L situado a 6 m de altura. Qué trabajo ha realizado? Sol: 2.94 10 5 J. 2º Determinar el trabajo realizado por una fuerza

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

LEYES DE LA DINÁMICA

LEYES DE LA DINÁMICA LEYES DE LA DINÁMICA Introducción. Se requiere una fuerza para que exista movimiento? Qué o quién mueve a los planetas en sus órbitas? Estas preguntas, que durante años se hizo el hombre, fueron contestadas

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO IAJANDO EN EL TELEFÉRICO EJERCICIO PRÁCTICO PARA APRENDER Y DIERTIRE CUADERNO DEL ALUMNO DECRIPCIÓN Un viaje tranquilo y sin sobresaltos de 2,4km de longitud a través del cielo de Madrid alcanzando una

Más detalles

EJEMPLOS DE CUESTIONES DE EVALUACIÓN

EJEMPLOS DE CUESTIONES DE EVALUACIÓN EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

Teoría y Problemas resueltos paso a paso

Teoría y Problemas resueltos paso a paso Departamento de Física y Química 1º Bachillerato Teoría y Problemas resueltos paso a paso Daniel García Velázquez MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL Magnitud es todo aquello que puede ser

Más detalles

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática Problemas de Cinemática Movimiento rectilíneo uniforme y uniformemente variado 1.- Un móvil recorre una recta con velocidad constante. En los instantes t1= 0,5s. y t2= 4s. sus posiciones son: X1= 9,5cm.

Más detalles

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha V. FRICCIÓN La fricción o rozamiento es una fuerza de importancia singular. La estudiaremos en este lugar como una aplicación concreta de los proble-mas de equilibrio, aun cuando la fricción aparece también

Más detalles

Tema 4. Sistemas de partículas

Tema 4. Sistemas de partículas Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 4. Sistemas de partículas Índice 1. Introducción

Más detalles

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO OPCIÓN A. POBLEMA 1. Un planeta gigante tiene dos satélites, S1 y S2, cuyos periodos orbitales son T 1 = 4.52 días terrestres y T 2 = 15.9 días terrestres respectivamente. a) Si el radio de la órbita del

Más detalles

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica?

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica? 4 año secundario Leyes de Newton Isaac newton (1642-1727), es considerado por los historiadores como un verdadero revolucionario en lo que se refriere a las ciencias y en particular a las ciencias naturales.

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO CINEMATICA El objetivo de este tema es describir los movimientos utilizando un lenguaje científico preciso. En la primera actividad veremos qué magnitudes se necesitan introducir para lograr este objetivo.

Más detalles

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

ESPECIALIDADES : GUIA DE PROBLEMAS N 3 ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es

Más detalles

TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA

TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA Departamento de Física y ATC DIVISIÓN DE FÍSICA APLICADA TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA 1. CINEMÁTICA 1.1 Conceptos Generales 1.2 Tipos de movimiento 2. DINÁMICA 2.1 Leyes de Newton 2.2

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

INTRO.ENERGÍA MECÁNICA Y TRABAJO LA ENERGÍA

INTRO.ENERGÍA MECÁNICA Y TRABAJO LA ENERGÍA INTRO.ENERGÍA MECÁNICA Y TRABAJO La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico o biológico sería

Más detalles

Itraslaciónωtraslación. , aplicando dichas premisas, =. Tal como se expone en la propuesta a.

Itraslaciónωtraslación. , aplicando dichas premisas, =. Tal como se expone en la propuesta a. 4.4. CONSERVACIÓN DEL MOMENTO ANGULAR. 4.4.1. La Tierra dista del Sol, una unidad astronómica y es aproximadamente 3500 veces el radio de la Tierra, con ese dato se puede asegurar que la relación entre

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

ENUNCIADO HABITUAL ENUNCIADO TRANSFORMADO

ENUNCIADO HABITUAL ENUNCIADO TRANSFORMADO 1. La velocidad de la luz en el vacío es de 300.000 km/s. La luz del Sol tarda en llegar a la Tierra 8 minutos y 20 segundos. Cuál es la distancia del Sol a la Tierra?. 2. Un ciclista lleva una velocidad

Más detalles

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones Departamento de Física Año 011 Trabajo Práctico º Movimiento en dos o tres dimensiones Problema 1. Se está usando un carrito robot para explorar la superficie de Marte. El módulo de descenso es el origen

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas

Más detalles

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

FUERZA CENTRÍPETA Y FUERZA CENTRÍFUGA

FUERZA CENTRÍPETA Y FUERZA CENTRÍFUGA FUERZA CENTRÍPETA Y FUERZA CENTRÍFUGA RODRIGO BRAVO Como sabemos, los conceptos de fuerza centrípeta y fuerza centrífuga son fundamentales en Mecánica al estudiar la dinámica del movimiento curvilíneo.

Más detalles

Tema 1: Campo gravitatorio

Tema 1: Campo gravitatorio Tema 1: Campo gravitatorio 1. Masa: Definición. Conservación. Cuantificación. 2. Teorías geocéntricas y heliocéntricas 3. Las leyes de Kepler 4. Interacción entre masas: fuerza gravitatoria La ley de la

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2013 Problemas (Dos puntos por problema). Dinámica Examen de Física-1, 1 Ingeniería Química Segundo parcial Enero de 013 Problemas (Dos puntos por problema) Problema 1: Un resorte vertical de constante k1000 N/m sostiene un plato de M kg de masa

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es

TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es TRABAJO Y ENERGIA 1 TRABAJO Y ENERGIA La primera figura muestra un esquiador que partiendo del reposo desciende por una superficie uniforme Cuál será la velocidad del esquiador cuando llegue al final de

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5

El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5 -Un aro metálico de masa despreciable se encuentra sujetado, mediante hilos, por los tres dinamómetros, tal como se muestra en la figura. partir de la representación de la lectura de los tres instrumentos:

Más detalles

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO Estudiar el movimiento es importante: es el fenómeno más corriente y fácil de observar en la Naturaleza. Todo el Universo está en constante

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevamos un cuerpo una altura h, la fuerza realiza trabajo positivo (comunica energía cinética al cuerpo). No podríamos aplicar la

Más detalles

Programa de Física General I

Programa de Física General I Programa de Física General I Primer semestre - Años 2013 y 2014 I - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto, métodos de la Física y relación

Más detalles