( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

Tamaño: px
Comenzar la demostración a partir de la página:

Download "( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9"

Transcripción

1 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < - 1 c) x > 3 Resuelve ls siguientes inecuciones: 4x x < 5x 6x ,1 1, 1, 5 [ + ) 4 Resuelve ls siguientes inecuciones: ( x + 1)( x + 1) 0 x x + 3 < 0 (, 1], + 1 (, ) ( 1, + ) 5 Resuelve ls siguientes inecuciones: 3x < 4x + 4 4x 8 x + 3 < ( )( ) 0, 3 ( 3,) 6 Resuelve ls siguientes inecuciones: x + x + 3x < 5x + 1 5x + 10 > 1x - 4 c) 4x + - x < 8x x < 1 x < c) x > 1/3 7 Resuelve ls siguientes inecuciones: x + 4 < x +6 - x + 1 > x + 4 c) x + 51 < 15x + 9 x > x < -1 c) x > 4

2 8 Encuentr los números cuyo triple menos 0 uniddes es menor que su dole más 40. Se plnte l inecución: 3x - 0 < x + 40; x < 60 9 Resuelve ls siguientes inecuciones: x + x + 3x > 5x + 1 5x + 10 < 1x - 4 c) 4x + - x > 8x x > 1 x > c) x < 1/3 10 Resuelve ls siguientes inecuciones: (x - 3) > 1-3(x - 1) 10(0 - x) < 8(x - 1) c) (1 - x) - 4 > (x + 3) x > x > 8 c) x > - 11 Un vendedor de seguros tiene dos opciones de sueldo, dee elegir entre un fijo de 800 Euros más 80 Euros por póliz o corr 150 Euros de comisión pur (sin fijo) por póliz. A prtir de que cntidd de pólizs es más rentle l opción de comisión pur? Se plnte l inecución: x es el número de pólizs x < 150x; x >11,4 A prtir de 1 pólizs es más rentle l comisión pur. 1 Resuelve l siguiente inecución ordendmente, explicndo todos los psos que relizs: x 1 x + 3 x 5 < 4 3 Multiplicmos por 1 que es el m.c.m. de los denomindores pr que desprezcn: 3(x - 1) < 4(x + 3) - 6(x - 5) Se quitn los préntesis: 3x - 3 < 4x + 1-6x + 30 Se trsponen términos: 3x - 4x + 6x < Se oper en cd miemro: 5x < 45 Se divide por cinco: x < 9 13 Resuelve l siguiente inecución ordendmente, explicndo todos los psos que relizs: 3 x 1 3x 37 4x + > Multiplicmos por 1 que es el m.c.m. de los denomindores pr que desprezcn: -48x + 9-6x > 4-1x - 37 Se trsponen términos: -48x - 6x +1x > Se oper en cd miemro -4x > - 4 Se divide por -4 cd miemro y se cmi el sentido de l desiguldd: x < 1

3 14 Resuelve ls siguientes inecuciones: (x - 3) < 1-3(x - 1) 10(0 - x) > 8(x - 1) c) (1 - x) - 4 < (x + 3) x < x < 8 c) x < - 15 Resuelve ls siguientes inecuciones: x 9 < 0 ( x + )( x 6) 0 ( 3,3) [ ],6 16 Un empres de mntenimiento de scensores cor 100 Euros l trimestre más 15 Euros por visit. Otr empres del sector cor 400 Euros fijos l trimestre y no cor ls visits. En que condiciones conviene elegir un u otr empres? Se plnte l inecución: x es el número de visits x < 400; x < 0 Pr menos de 0 visits l trimestre es más rt l trif de l empres que cor 100 fijo + 15 visit. 17 A un vendedor de coches le ofrecen en un concesionrio 1000 Euros de sueldo fijo más 00 Euros por coche vendido. En otro concesionrio le ofrecen 1800 Euros de fijo más 110 Euros por coche vendido. Si vende un medi de 13 coches l ño, Qué ofert dee coger? Clculmos el número de coches que vende l mes: Se plnte l inecución clculndo cundo es menor el ingreso en uno de los concesionrios, en este cso en el primero: x es el número de coches x < x; x < 8,9 9coches El segundo concesionrio (1800 de fijo más 110 de comisión) es mejor ofert si se venden menos de 9 coches, como el vendedor tiene un medi de 11 coches dee coger l ofert del primer concesionrio. 18 Resuelve ls siguientes inecuciones: x ( x + 3) > x x + 1 x 1 ( )( ) 0 1 (, ), + (, 1] [ 1, + ) 19 Resuelve ls siguientes inecuciones: x + x x + 5 x 4 ( )( ) 0 R (, 5] [ 4, + ) 0 Resuelve ls siguientes inecuciones:

4 x + 3 ( x + 1) > 0 x x 3 0 3,1 (, 1] [ 3, + ) 1 Resuelve ls siguientes inecuciones: 4x + 4x + 3 < 0 x 1 x 6 R [ ] 1,6 ( )( ) 0 Un pdre y su hijo se llevn 5 ños. Encuentr el periodo de sus vids en que l edd del pdre excede en más de 5 ños l dole de l edd del hijo. Se plnte l ecución: x edd del hijo, 5 + x edd del pdre. 5 + x > 5 + x; x < 0 Mientrs l edd del hijo se menor de 0 ños. 3 Resuelve los siguientes sistems de inecuciones: x + < 6 x 0 3x 1 7 x 10 [,) [ ],5 4 Resuelve los siguientes sistems de inecuciones: 3x + 1 > x + 9 x 6 < 0 x + 5 < - 3x x 4 > 5 Ø ( 1,3) 5 Represent l región del plno que verific el siguiente sistem de inecuciones: x y 3 x y 5 x + y x + y < 1

5 6 Represent l región del plno que verific el siguiente sistem de inecuciones: x + y > 0 x + y 4 x - y < 0 - x + y 0 7 Resuelve los siguientes sistems de inecuciones: 5 - x < -1 3x > x < 3x x < 1 19,17 5 ( 4,+ ) 8 Resuelve los siguientes sistems de inecuciones: 6 - x 4x - 5 x 6 < 0 1- x -3 x 4 > 5 Ø ( 1,3) 9 Represent l región del plno que verific el siguiente sistem de inecuciones:

6 x + y 1 - x + y 1 x + y > 0 - x + y > 1 30 Resuelve los siguientes sistems de inecuciones: x + 1 > x - x - < x 1 3 x - 1 < 1-3x 4x - 5 < - 5x 5, 5 Ø 31 Represent l región del plno que verific el siguiente sistem de inecuciones: x - y 4 x + y - x + 3y 1 x + y 1 3 Resuelve los siguientes sistems de inecuciones: 6x + 5 5x 1 3x > 5 x + 1< x 1 >

7 Ø ( 1,1) 33 Resuelve el siguiente sistem de inecuciones: 15 9x 8x 7 > 8 4x 5 > 5x 3 9 7, Resuelve el siguiente sistem de inecuciones: 5x + > 4x x + 3 < x , Resuelve los siguientes sistems de inecuciones: x - 15 x - 5 x 10 > x + x x > 3x (,6] ( 4,10) 36 Represent l región del plno que verific el siguiente sistem de inecuciones: - x + y 3 x - y > 6 x + y - 3 > 0 3x + 5y - 10 < 0

8 37 Represent l región del plno que verific el siguiente sistem de inecuciones: x + y - 3 > 0 3x + 6y - 15 < 0 38 Usndo l clculdor hll el seno, el coseno y l tngente de : 49º ; 41º. Encuentrs lgun relción entre ls rzones trigonométrics de mos ángulos? sen 49º sen 41º sen 49º 0,7547 ; cos 49º 0,6561 ; cos 41º cos 41º ; cos 49º 0,6561 ; tg 49º 1, ,7547 ; tg 41º 0,8693. sen 41º porque 49º + 41º 90º. 39 Usndo l clculdor hll el seno, el coseno y l tngente de : 9º ; 81º. Encuentrs lgun relción entre ls rzones trigonométrics de mos ángulos? sen 9º sen 81º 0,1564 ; cos9º 0,9877 ; cos 81º 0,9877 ; tg9º 0, ,1564 ; tg81º 6,3138. sen9º cos 81º ; cos 9º sen 81º porque 9º + 81º 90º. 40 En un triángulo rectángulo ABC con ángulo recto en A, si tgb 1, y 3 cm, cuánto mide c? 3 3 tgb 1, c,5 cm c c 1,

9 41 Usndo l clculdor hll el seno, el coseno y l tngente de : 8º ; 6º. Encuentrs lgun relción entre ls rzones trigonométrics de mos ángulos? sen 8º sen 6º sen 8º 0,4695 ; cos 8º 0,889 ; cos 6º cos 6º ; cos 8º 0,889 ; tg8º 0, ,4695 ; tg6º 1,8807. sen 6º porque 8º + 6º 90º. 4 Trjndo con ángulos gudos, es cierto que myor ángulo le corresponde myor seno? Y pr el coseno? Cundo los ángulos son gudos, el seno es creciente, es decir, myor ángulo, myor seno, pero el coseno es decreciente, esto es, myor ángulo, menor coseno. 43 Un ciclist tiene que suir un cuest que tiene un inclinción de 1º. Qué ltur hrá suido cundo hy recorrido 00m? L hipotenus del triángulo es 00 m y l ltur es el cteto opuesto los 1º, por lo que h sen 1º h 00 sen1º 00 0,079 41,58 m Si es un ángulo gudo y tg 0,4, cuánto vlen ls otrs dos rzones trigonométrics? 1 cos 1+ tg 1 0,861 cos 1+ 0,16 sen cos tg 0,985 0,4 0, ,861 0,985; 45 Si es un ángulo gudo y tg 0,5, cuánto vlen ls otrs dos rzones trigonométrics? cos cos 1+ tg sen cos tg 0, ,8944; 46 Si es un ángulo gudo y sen 0,3, cuánto vlen ls otrs dos rzones trigonométrics? cos tg 1 sen sen cos 0,3 0, ,09 0, ,91 0,9539;

10 47 Si es un ángulo gudo y sen 0,, cuánto vlen ls otrs dos rzones trigonométrics? cos tg 1 sen sen cos 0, 0, ,04 0,041. 0,96 0,9798; 48 En un triángulo rectángulo, donde el ángulo recto es A, se se que 8 m y 6m. Cuánto mide c? Clcul ls rzones de los ángulos B y C. 8 Por el teorem de Pitágors: 6 + c c senb, cosb, tgb senc, cosc, tgc ,, 7 m. Por tnto: cotgb, secb, cosecb cotgc, secc, cosecc Clcul los restntes elementos de un triángulo ABC, si conocemos l hipotenus c 1 cm y el ángulo A ˆ 5º. Bˆ 90º Â 65º ; c senâ 1 sen 5º 5,071 cm ; c senbˆ 1 sen 65º 10,876 cm Clcul los restntes elementos de un triángulo ABC si conocemos l hipotenus c 5 cm y el ángulo B ˆ 8º. Â 90º Bˆ 6º ; c senâ 5 sen 6º,074 cm ; c sen 8º 5 sen 8º 11,737 cm. 51 Clcul l ltur de un árol que proyect un somr de 5 m cundo el ángulo de elevción del sol respecto l horizontl vle 3º. h tg 3º h 5 tg3º 10,61 m. 5 5 Clcul los restntes elementos de un triángulo ABC, rectángulo en C, si conocemos el cteto 6 cm y B ˆ 30º. el ángulo 6 Â 90º Bˆ 60º ; c 30,0 cm ; tgbˆ tgbˆ 6 tg30º 15,011 cm. senâ sen 60º 53 Clcul los restntes elementos de un triángulo ABC, rectángulo en C, si conocemos el cteto 11 cm y A ˆ 56º. el ángulo

11 11 Bˆ 90º  34º ; c 19,671 cm ; tgâ tgâ 11 tg56º 16,308 cm. senbˆ sen 34º 54 Clcul los restntes elementos de un triángulo ABC, rectángulo en C, si conocemos l hipotenus c 18 A ˆ 38º. cm y el ángulo Bˆ 90º  5º ; c senâ 18 sen 38º 11,08 cm ; c sen 5º 18 sen 5º 14,184 cm. 55 Clcul los restntes elementos de un triángulo ABC, rectángulo en C, si conocemos el cteto 7 cm y el B ˆ 15º. ángulo  90º Bˆ 75º ; c 7,47 cm ; c senbˆ 7,47 sen15º 1,876 cm. senâ sen 75º 56 Averigu l ltur de l torre de un iglesi si un distnci de 80 m, y medido con un teodolito de ltur de 3º. 1,60 m, el ángulo de elevción del prrryos que está en lo lto de l torre es h tg3º h 80 tg3º 33,96 m ; 80 HTorre h+ hteo h+ 1,60 35,56 m. 57 Cuál es el ángulo de inclinción de los ryos solres en el momento en que un loque de pisos de 5 m de ltur proyect un somr de 10 m de longitud? 5 tg   rctg,5 68,1986º 68º 11' 55' ' Cuál es l ltur de un montñ cuy cim, si nos situmos un distnci de 3000 m del pie de su 49º. verticl y medimos con un teodolito de ltur 1,50 m, present un ángulo de inclinción de h tg 49º 3000 h 3000 tg 49º 3451,11 ; HM h+ hteo h+ 1,50 345,61 m. 59 Clcul los restntes elementos de un triángulo ABC, rectángulo en C, si conocemos el cteto 1 cm y el cteto 15 cm. c + 38º 39' 35' ' ; c tgbˆ ,09 cm ; tgâ 1,5 Bˆ rctg1,5 51,340º 51º 0' 5' '. 0,8  rctg 0,8 38,6598º Se cumple que  + Bˆ 90º.

12 60 Cuál es l ltur de un torre que es vist desde 30 m de su pie y con un teodolito de 1,0 m de ltur jo un ángulo de 30º? h tg30º h 30 tg30º 17,3 ; HTorre h+ hteo 17,3 + 1, ,5 m. 61 Clcul los restntes elementos de un triángulo ABC, rectángulo en C, si conocemos el cteto 10 cm y el cteto 9 cm. c + 48º 46' ' ; c tgbˆ ,454 cm ; tgâ 10 9  0,9 Bˆ rctg 0,9 41,987º 41º 59' 14' '. 10 rctg 9 48,018º 6 Si l inclinción en un trmo de crreter es del 8%, cuánto vle el ángulo de inclinción en dicho trmo? Cuánto sue l crreter en 100 m? tg  0,08  rctg 0,08 4,5739º 4º 34' 6' '. Al ser l pendiente del 8%, cd 100 m en horizontl recorre 8 m en verticl. 63 Clcul los restntes elementos de un triángulo ABC, rectángulo en C, si conocemos l hipotenus c 0 cm y el cteto 1 cm. c 53º 7' 48' ' ; senbˆ 0 c ; senâ c ,6 Bˆ rcsen 0,6 36,8699º 36º 5' 1' '. 0,8  rcsen 0,8 53,1301º Se cumple que  + Bˆ 90º.

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

ACTIVIDADES DEL TEMA 4

ACTIVIDADES DEL TEMA 4 ACTIVIDADES DEL TEMA. Resuelve las siguientes ecuaciones: a. 0 0 c. 0 b. 9 0 d. 0. Resuelve las siguientes ecuaciones bicuadradas: a. 0 b. 0. Resuelve las siguientes ecuaciones de primer grado: a. ( -

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

UNIDAD N 4: TRIGONOMETRÍA

UNIDAD N 4: TRIGONOMETRÍA Matemática Unidad 4 - UNIDD N 4: TRIGONOMETRÍ ÍNDICE GENERL DE L UNIDD Trigonometría....... 3 Sistema de medición angular... 3 Sistema seagesimal...... 3 Sistema Radial....... 3 Tabla de conversión entre

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

TRIGONOMETRIA. sen. cos. sen x. cos x. cos. cos 2x= cos. cos. Relación fundamental de la trigonometría. Suma de ángulos: Resta de ángulos:

TRIGONOMETRIA. sen. cos. sen x. cos x. cos. cos 2x= cos. cos. Relación fundamental de la trigonometría. Suma de ángulos: Resta de ángulos: Relación fundamental de la trigonometría TRIGONOMETRIA sen + cos = 1 Ángulo doble: sen = sen. cos cos = cos - sen tg tg = 1 - tg Ángulo mitad sen = cos = tg = 1 - cos 1 + cos 1-1 + cos cos Suma de ángulos:

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

Trigonometría. Objetivos. Antes de empezar.

Trigonometría. Objetivos. Antes de empezar. 7 Trigonometría Objetivos En esta quincena aprenderás a: Calcular las razones trigonométricas de un ángulo. Hallar todas las razones trigonométricas de un ángulo a partir de una de ellas. Resolver triángulos

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

1.1Razones trigonométricas -Son las distintas proporciones que se establecen entre los lados de un triángulo rectángulo:

1.1Razones trigonométricas -Son las distintas proporciones que se establecen entre los lados de un triángulo rectángulo: --ÍNDICE-- Trigonometría 5 Razones trigonométricas 5 Coordenadas trigonométricas de un punto del plano 5 Consecuencias de esta fórmula 5 Razones exactas de ángulos 6 Otras fórmulas 6 Aplicaciones de la

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

EXAMEN DE POLINOMIOS, ECUACIONES Y SISTEMAS 6-3-7

EXAMEN DE POLINOMIOS, ECUACIONES Y SISTEMAS 6-3-7 I.E.S. Humanes Junio de 007 EXAMEN DE POLINOMIOS, ECUACIONES Y SISTEMAS 6-3-7 1º) Resuelve: 3 x ( x 3) = 7x 3 ( x + 4) x x + 4 º) Resuelve: = 3 1 3º) Resuelve: ( x 1) = ( x 1 ) ( x + ) x 4º) Resuelve:

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO.

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ACTIVIDADES PARA EL VERANO MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Eectúe Sol -9/ - Eectúe 9 7 8 6 Sol - Eectúe 8

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

Los polígonos y la circunferencia

Los polígonos y la circunferencia l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =

Más detalles

1. NÚMERO REAL 2. ÁLGEBRA 3. TRIGONOMETRÍA 4. GEOMETRÍA ANALÍTICA 5. CIRCUNFERENCIA 6. CÓNICAS 7. FUNCIONES ELEMENTALES 8. LÍMITES DE FUNCIONES 9.

1. NÚMERO REAL 2. ÁLGEBRA 3. TRIGONOMETRÍA 4. GEOMETRÍA ANALÍTICA 5. CIRCUNFERENCIA 6. CÓNICAS 7. FUNCIONES ELEMENTALES 8. LÍMITES DE FUNCIONES 9. . NÚMERO REAL. ÁLGEBRA. TRIGONOMETRÍA. GEOMETRÍA ANALÍTICA 5. CIRCUNFERENCIA 6. CÓNICAS 7. FUNCIONES ELEMENTALES 8. LÍMITES DE FUNCIONES 9. CONTINUIDAD. DERIVADA. 0. DISTRIBUCIONES BIDIMENSIONALES. DISTRIBUCIONES

Más detalles

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie CURSOSO CURSOSO MATEMÁTICASESPECIALESCAD MóduloIV: Continuiddyderivbilidd MTeresUleciGrcí RobertoCnogrMcKenzie DeprtmentodeMtemáticsFundmentles FcultddeCiencis Curso de Mtemátics Especiles Introducción

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos: Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función

Más detalles

Problemas geométricos

Problemas geométricos 8 Problemas geométricos Objetivos En esta quincena aprenderás a: Aplicar las razones trigonométricas para estudiar las relaciones que existen entre los ángulos y los lados de las figuras planas. Calcular

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

UNIDAD. Vectores y rectas

UNIDAD. Vectores y rectas UNIDAD 6 Vectores y rects L os ectores fcilitn el estudio de los elementos del plno y los prolems que se pueden estlecer entre ellos En su origen, el concepto de ector prece en Físic pr crcterizr cierts

Más detalles

La presentación de los ejercicios debes hacerla en un cuaderno, copiando los enunciados, desarrollando el ejercicio y resaltando los resultados.

La presentación de los ejercicios debes hacerla en un cuaderno, copiando los enunciados, desarrollando el ejercicio y resaltando los resultados. COLEGIO RAIMUNDO LULIO CENTRO CATÓLICO - CONCERTADO Frnciscnos T.O.R. DEPARTAMENTO DE CIENCIAS Cód. 80607 Asigntur TRABAJO DE RECUPERACIÓN PARA SEPTIEMBRE CURSO 0 0 MATEMÁTICAS B Nombre Curso º ESO Ddo

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1 M A T E M Á T I C A S Números Reles Enteros Rcionles Positivos Negtivos Nturles (,,,4,5,6... α) Primos (,,5,7,,,7) Pres (... 4,-,0,,4,6,..., ) Impres ( -...,-,-,0,,,5,..., ) Dígitos ( 0,,,,4,5,6,7,8,9

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

4 ECUACIONES E INECUACIONES

4 ECUACIONES E INECUACIONES 4 ECUACIONES E INECUACIONES EJERCICIOS PROPUESTOS 4.1 Expresa estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es 17. b) Un número más su tercera parte es 16. c) Tres números

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 180 EJERCICIOS Semejanza de figuras 1 Sobre un papel cuadriculado, haz un dibujo semejante a este ampliado al triple de su tamaño: 2 En un mapa a escala 1 :50 000 la distancia entre dos pueblos,

Más detalles

Suma de DOS vectores angulares o concurrentes

Suma de DOS vectores angulares o concurrentes Suma de DOS vectores angulares o concurrentes y F 2 o a q=? F 1 x Suma de DOS vectores angulares o concurrentes Trángulo oblcuo: aquel que no tene nngún ángulo recto Ley de los Senos Ley de los Cosenos

Más detalles

PROBLEMAS DE SISTEMAS DE ECUACIONES

PROBLEMAS DE SISTEMAS DE ECUACIONES PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2 Epresiones lgebrics Unidd frccionris EN ESTA UNIDAD APRENDERÁS A: Interpretr ls epresiones lgebrics frccionris como un generlizción de l opertori con frcciones numérics. Reconocer pr qué vlores un epresión

Más detalles

α = arctag ; como lo que hay que maximizar es α ya tenemos la función a

α = arctag ; como lo que hay que maximizar es α ya tenemos la función a Prolems resueltos de máimos mínimos J.M. mos González Un oservdor se encuentr frente un cudro colgdo de un pred verticl. El orde inferior del cudro está situdo un distnci sore el nivel de los ojos del

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

Cálculo Integral. Métodos de integración

Cálculo Integral. Métodos de integración Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

C u r s o : Matemática ENSAYO UNIVERSIA Nº 6 MATEMÁTICA

C u r s o : Matemática ENSAYO UNIVERSIA Nº 6 MATEMÁTICA C u r s o : Matemática ENSAYO UNIVERSIA Nº 6 MATEMÁTICA PSU MATEMÁTICA INSTRUCCIONES ESPECÍFICAS. Esta prueba consta de 70 preguntas. Usted dispone de horas y 5 minutos para responderla.. A continuación

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

Unidad 4: TRIGONOMETRÍA

Unidad 4: TRIGONOMETRÍA Unidad 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS La palabra tri-gono-metría significa medida de las figuras con tres esquinas, es decir, de los triángulos. La trigonometría estudia las relaciones entre

Más detalles

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad TRIGONOMETRÍA EJERCICIOS PROPUESTOS.. Indica la medida de estos ángulos en radianes. a) º c) º b) º d) º a) º rad c) rad º rad b) rad º rad d) rad rad º º Epresa en grados los siguientes ángulos. a) rad

Más detalles

Laboratorio N 7, Asíntotas de funciones.

Laboratorio N 7, Asíntotas de funciones. Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 9 EJERCICIOS Ls relciones de proporcionlidd 1 Indic, entre los siguientes pres de mgnitudes, los que son directmente proporcionles, los que son inversmente proporcionles y los que no gurdn

Más detalles

Razones trigonométricas DE un ángulo agudo de un triángulo

Razones trigonométricas DE un ángulo agudo de un triángulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE Junio, Ejercicio 4, Opción B Junio, Ejercicio 6, Opción A Reserv 1, Ejercicio 4, Opción B Reserv 1, Ejercicio 5, Opción

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Normativa de señalización exterior e interior

Normativa de señalización exterior e interior Normtiv de señlizción exterior e interior 6 Normtiv de señlizción exterior e interior L señlizción es un sistem de informción cuyo ojetivo principl es loclizr un lugr determindo, y se en l ví púlic, el

Más detalles

- 1 - PLANO INCLINADO

- 1 - PLANO INCLINADO - 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

FUNCIONES LOGARÍTMICAS, EXPONENCIALES Y TRIGONOMÉTRICAS

FUNCIONES LOGARÍTMICAS, EXPONENCIALES Y TRIGONOMÉTRICAS Resúmenes de Mtemátics pr Bchillerto I.E.S. Rmón Girldo FUNCIONES LOGARÍTMICAS, EXPONENCIALES Y TRIGONOMÉTRICAS FUNCIONES LOGARÍTMICAS Logritmo de bse El logritmo en bse ( > 0 y ) de un número N es el

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Matemáticas Ejercicios Tema 6 4º ESO OPCIÓN B Bloque III: Trigonometría Tema 6: Trigonometría. 1.- Un carpintero quiere construir una escalera de tijera cuyos brazos, una vez abiertos, formen un ángulo

Más detalles

EJERCICIOS PARA PENDIENTES DE MATEMÁTICAS DE 1º DE BACHILLERATO DE CIENCIAS DE LA NATURALEZA Y DE LA SALUD

EJERCICIOS PARA PENDIENTES DE MATEMÁTICAS DE 1º DE BACHILLERATO DE CIENCIAS DE LA NATURALEZA Y DE LA SALUD Pendientes º Bachillerato de Ciencias EJERCICIOS PARA PENDIENTES DE MATEMÁTICAS DE º DE BACHILLERATO DE CIENCIAS DE LA NATURALEZA Y DE LA SALUD ÍNDICE BLOQUE I :ARITMÉTICA Y ÁLGEBRA... SOLUCIONES DEL BLOQUE

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Cuadernillo 2. Actividades a realizar para la superación de la materia pendiente:

Cuadernillo 2. Actividades a realizar para la superación de la materia pendiente: Cuadernillo 2 Actividades a realizar para la superación de la materia pendiente: Matemáticas 3º ESO Recuerda que: Habrá 2 cuadernillos, cada uno con la mitad de las unidades que se trabajaron en el curso

Más detalles

7 SEMEJANZA Y TRIGONOMETRÍA

7 SEMEJANZA Y TRIGONOMETRÍA 7 SEMEJNZ Y TRIGONOMETRÍ EJERIIOS PROPUESTOS 7.1 Estos dos cuadriláteros son semejantes, con razón de semejanza 3. alcula la razón de proporcionalidad que hay entre sus perímetros. Se utiliza el teorema

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS Y. Representa en los mismos ejes las siguientes funciones: y = - ; b) y = ; c) y = +. Representa

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS TERCER CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA.

PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS TERCER CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA. Colegio Colón Huelv PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS TERCER CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 0-0 NOMBRE GRUPO Doñ Rosrio Nieto Romero D. Mrcos

Más detalles

Guía -5 Matemática NM-4: Volumen de Poliedros

Guía -5 Matemática NM-4: Volumen de Poliedros Centro Educcionl Sn Crlos de Argón. Coordinción Acdémic Enseñnz Medi. Sector: Mtemátic. Prof.: Ximen Gllegos H. 1 Guí -5 Mtemátic NM-4: Volumen de Poliedros Nombre: Curso: Fech: Unidd: Geometrí. Contenido:

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles