105 EJERCICIOS de DERIVABILIDAD 2º BACH.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "105 EJERCICIOS de DERIVABILIDAD 2º BACH."

Transcripción

1 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()). Estudiar la drivabilidad d f(). Rprsntarla gráficamnt. (Soluc: f'(0)) 4. Ídm con: a) > si 1 f() 4 si 1 b) si f() 5 si (Soluc: a) f() drivabl R-{1}; b) f() drivabl R-{}) 5. Estudiar la drivabilidad d las siguints funcions n los intrvalos qu s indican: a) f() n (0,) b) f()1/ n (-1,1) c) f() 4 n (0,4) d) si 1 < 0 f() 1/ si 1 n su Dom(f) 6. Dada f(), s pid: a) Dibujarla. b) Estudiar su continuidad y drivabilidad. 7. Estudiar la drivabilidad d la función f() 1 (Soluc: drivabl R-{0}) 8. (S) Estudiar la drivabilidad n 1 d la función 1 si 1 f() si > 1 Hacr la gráfica. (Soluc: no s drivabl porqu no s continua) 9. (S) Dada la función si 0 f() si > 0 s drivabl n 0? Es continua n 0? (Soluc: no s drivabl ni continua n 0) Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital

2 En la figura izquirda aparc la gráfica d una función f() dfinida a trozos. S pid: a) Estudiar su continuidad. b) Estudiar su drivabilidad. c) Hallar f '(-1), f '(0 ), f '(1), f '() y f '() 11. En la figura drcha s ha rprsntado la gráfica d una función f() dfinida por ramas. Calcular f '(-1), f '(1), f '() y f '() Dada f() -1, s pid: a) Eprsarla como función dfinida a trozos. b) Estudiar su drivabilidad n 1 c) Rprsntarla. (Soluc: f'(1)) 1. (S) Rprsntar gráficamnt la función y -710 indicar n qué puntos no s drivabl. (Soluc: no s drivabl n y 5) 14. Estudiar la drivabilidad d f() -. Rprsntarla. (Soluc: f'(0); f'()) 15. (S) Dtrminar a y b para qu sa continua la función < 1 si 0 f() a b si 0 5 si > La función qu rsulta s drivabl? Rprsntarla gráficamnt. (Soluc: a-1 y b1; no drivabl) 16. (S) Calcular a y b para qu la siguint función sa drivabl n todo R: (Soluc: a y b-7) a si f() b 4 si > 17. (S) Hallar a y b para qu la función a si < 1 f() a b si 1 < 0 si 0 sa continua. Para sos valors d a y b studiar la drivabilidad. Rprsntarla gráficamnt. (Soluc: ab; para sos valors s drivabl n -1 y no lo s n 0) 18. (S) Sa si 1 f() a b( 1) si > 1 Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital

3 Para qué valors d a y b s continua la función? Para qué valors d a y b s drivabl? Rprsntarla gráficamnt. (Soluc: continua para a y b; drivabl para a y b-) 19. (S) Dada la función a si 1 f() si > 1 a a) Para qué valors dl parámtro a s continua? (Soluc: a1 y a) b) Para qué valors d a s drivabl? Rprsntarla n st caso. (Soluc: Sólo para a1) Rcta tangnt y normal: 0. Hallar la cuación d la rcta tangnt y normal a la curva f() -- n l punto d abscisa. Dibujar la situación, intrprtar l rsultado. (Sol: tangnt -y-70; normal y40) 1. Ídm para f() 1n 0 (Sol: tangnt 0; normal y1). Hallar la cuación d la rcta tangnt a las siguints curvas n los puntos qu s indican: a) f() 8 n 1 (Soluc: 6-y50) b) y 5 4 n -1 (Soluc: 10-y10) c) f() 4-1 n 0 (Soluc: y-1) d) y y4 n P(0,) (Soluc: y-) ) yln n 1 (Soluc: y-1) f) y -4 y40 n 1 (Soluc: 1) g) (S) 1 f() n 0 (Soluc: y) h) f() n (Soluc: y-10) i) yy --y6 n - y ordnada strictamnt positiva (Soluc: y-) j) 1 f() ( 1) n 0 (Soluc: y-1) k) f()(- ) n 0 (Soluc: y) l) 1 f() n 0 (Soluc: y1). En qué punto d la gráfica d la parábola f() -68 la tangnt s paralla al j d abscisas? Qué nombr rcib s punto? Cuál s la cuación d la tangnt? Dibujar ambas curvas. (Soluc: y-1; vértic (,-1) ) Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital

4 4. En qué punto d la gráfica d la función antrior la tangnt s paralla a la bisctriz dl primr cuadrant? Dibujar la situación. (Soluc: 7/,-/4) 5. (S) Dtrminar los puntos d la curva y n los cuals la tangnt s paralla a la rcta y15 (Soluc: (1,16) y (-7,176)) 6. Hallar la cuación d la rcta tangnt a la curva y -56 paralla a la rcta y- Cuál s l punto d tangncia? Hacr un dibujo d la situación. (Sol: y-5; P(1,)) 7. Hallar las coordnadas d los puntos d f() n los qu la rcta tangnt a la gráfica d sa función s horizontal. (Soluc: (1,-19), (-1,1) y (-,8)) 8. Hallar los puntos n qu la tangnt a la función y 1 s: a) Paralla al j OX b) Paralla a la rcta y5 9. (S) Obtnr la cuación d la rcta tangnt a la curva y ( 1) n l punto (,) (Sol: y) 0. (S) Escribir la cuación d la rcta tangnt a la hipérbola y1 n l punto d abscisa. Rprsntar ambas curvas. (Soluc: 9y-60) 1. Dtrminar una función polinómica sabindo qu f ()4 y qu f(0)0, f (0)1 y f (0) (Soluc: f() 4 ). D una función s sab qu f () y qu su gráfica tin tangnt horizontal n P(1,). Hallar dicha función Soluc : f() 1 1. Dtrminar la función polinómica tal qu su drivada sgunda s constant igual a -, y la rcta tangnt a su gráfica n l punto d abscisa 1 s 5-y-0 Soluc : f() 4. (S) S da la curva d cuación y1/. Comprobar qu l sgmnto d la tangnt a dicha curva n l punto (,1/), comprndido ntr los js d coordnadas, stá dividido n dos parts iguals por l punto d contacto. (Soluc: la tangnt, 9y-60, corta a los js n (0,/) y (6,0), y su punto mdio s (,1/)) Torma d Roll: 5. Dadas las siguints funcions, studiar si s vrifican las hipótsis dl torma d Roll n los intrvalos qu s indican. En caso afirmativo, hallar l valor o los valors d dicho intrvalo n qu s vrifica l torma: a) f() n [-,] (Soluc: c0) b) y 4 n [0,4] (Sol: c- ) c) y n [-1,1] (Sol: no driv. n 0) d) f() -41 n [1,] (Soluc: c) ) y n [-1,1] (Sol: c0) f) y n [-1,1] (Sol: no driv. n 0) g) y ( ) n [0,] (Soluc: c6/5) h) y 1 n [-1,1] (Sol: no cont. n 0) i) y7 () n [-,0] (Soluc: c-/) j) f() - 5 n [-1,] (Soluc: c1) Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital

5 6. (S) Dada la función f() -4, studiar si s vrifican las hipótsis y l torma d Roll n [-,] (Soluc: no s drivabl n ) 8 4 si [0,] 7. Enunciar l torma d Roll. Estudiar si s aplicabl a f() n [0,6]. En caso 0 si (,6] afirmativo, hallar l valor intrmdio n qu s vrifica. Intrprtar gráficamnt l rsultado. (Soluc: c10/) 8. (S) Estudiar si s aplicabl l torma d Roll a la siguint función n su dominio d dfinición: si 1 < f() 7 si 5 (Soluc: no, pus no s continua n ) si 1 9. Estudiar si f() vrifica las hipótsis dl torma d Roll n, si > 1 (Soluc: c0) 40. Estudiar si s aplicabl l torma d Roll a la siguint función n su dominio d dfinición: 5 si 1 f() 6 4 si < 5 (Soluc: no, pus no s drivabl n ) 41. Calcular a, b y c para qu a si 1 f() cumpla las hipótsis dl torma d Roll n [-1,5]. b c si < 5 Dónd cumpl la tsis? (Soluc: a10/, b-8/, c9; n 5/) Considrar f() a) Estudiar si f() vrifica las hipótsis dl torma d Bolzano n l intrvalo [-,1]. En caso afirmativo, ncontrar razonadamnt un intrvalo d amplitud 1 contnido n l antrior n l qu f() tnga al mnos una raíz. b) Estudiar si f() cumpl las condicions dl torma d Roll n [-5/4,7/4]. En tal caso, hallar l valor o valors intrmdios qu vrifican la tsis dl torma. (Soluc: c/4) 4. a) Hallar los valors d a, b y c para qu la función: < f() c 1 si a b si vrifiqu las hipótsis dl torma d Roll n l intrvalo [0,4]. (Soluc: a-, b5, c1) b) Para la función obtnida n l apartado antrior hallar l valor o valors intrmdios n qu s vrifica l torma. (Soluc: /) Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital

6 Unicidad d la raíz (Bolzano Roll): 44. (S) Dmostrar qu la cuación 45. (S) Dmostrar qu la cuación no pud tnr más d una raíz ral no pud tnr más d dos raícs rals. 46. Dmostrar qu la función intrvalo d longitud 1. f() 1 tin actamnt una raíz ral. Acotar dicha raíz n un 47. (S) Dmostrar qu la cuación tin actamnt una raíz ral ntr 0 y (S) Comprobar, utilizando los tormas d Bolzano y d Roll, qu la curva actamnt trs puntos d intrscción con l j. 5 y 5 1 tin 49. (S) Comprobar qu la cuación 7 0 tin una única solución ral. Torma dl valor mdio d Lagrang: 50. Dadas las siguints funcions, i) Enunciar l torma dl valor mdio. ii) Estudiar si s vrifican las hipótsis dl torma n los intrvalos qu s indican. En caso afirmativo, hallar l valor o los valors d dicho intrvalo n qu s vrifica l torma. iii) Intrprtar gráficamnt l rsultado. a) f() n [0,4] (Soluc: c) b) y - n [,5] (Soluc: c7/) c) f()(-) (1) n [0,4] 1 Soluc : c 1 d) si [0,1) f() si [ 1,] n su Dom(f) (Soluc: c1) ) si 1< 0 f() 1/ si 1 Soluc : c 1 / y c n su Dom(f) ( ) si < 4 f) f() si 4 n [,5] (Soluc: c17/4) g) y(-1)() ± 7 4 n [-,1] Soluc : c h) f() -- n [-,] Soluc : c ± 1 i) f()ln(1) n [1,] Soluc : c 1 ln ln j) f() 5 n [0,] k) y- n [-,1] l) f()4-56 n [0,] m) f() 9 Soluc : c n [0,4] ( ) Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital

7 51. Dada f() a b si < 1 1 si 1 a) Hallar a y b para qu cumpla las hipótsis dl torma dl valor mdio n [-1,5]. (Soluc: a0, b) b) Hallar l valor o los valors intrmdios qu vrifican l torma. (Soluc: /) 4 c) Hallar la cuación d las rctas tangnt y normal a f() n /. Soluc : y 9 Rgla d L Hôpital: Enunciar prviamnt la rgla. ln 1 1 1/ (S) ( ) cos sn 1 6 sn 1 sn (*) 6. (S) sn sn 1 tg sn 0 6. ( ) ln ln 0 0 (1 cos) ctg π 4 ( 1) tg 1 π (S) sn sn sn ( ) (S) 1/cos (1 cos) π 74. (S) (S) 0 0 tg 1 1 1/sn 76. (S) 1 tg sn 77. (S) ln( 1) sn 1 0 sn 78. (S) (*) ( ) 79. (S) 80. (S) 81. (S) 8. (S) 8. (S) 84. (S) 85. (S) / / (Ayuda: Etrar prviamnt factor común 1/ ) n 0 (n Ν) ln sn( 1) arctg 1 arcsn 0 0 sn 1 6 sn 0 ln(cos ) 0 ( ) ( ) 0 0 cos cos 1 ln ( ) 0 1 Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital

8 88. 0 sn ( cos ) sn sn (sn ) cos 94. ( ) cos sn π sn ( π )cos 99. ( ln ) ( ) cos sn El curso pasado obtuvimos l númro a partir dl siguint límit 1 : 1 1, Dmostrar qu (Ayuda: S rcominda aplicar la rgla A B B lna ) 105. Hallar l valor d a para qu π a Soluc : a 1 π 1 También s obtin mdiant la siguint suma infinita: , n! 1!!! 4! 6 4 n 0 Tto bajo licncia Crativ Commons: s prmit su utilización didáctica así como su rproducción imprsa o digital

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos

Más detalles

TABLA DE DERIVADAS. g f

TABLA DE DERIVADAS. g f TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

(Soluc: a) 1/x b) x 6 /36 c)

(Soluc: a) 1/x b) x 6 /36 c) EJERCICIOS d INTEGRAL INDEFINIDA º BACH.. Calcular las siguints intgrals potncials (s rcominda hacr la comprobación: a d b d c d d d t t dt d g t dt d i d j d t m d n d o d + d ( t dt l d (Soluc: a / b

Más detalles

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

(Soluc: 1) 1/x 2) x 6 /36 3)

(Soluc: 1) 1/x 2) x 6 /36 3) INTEGRALES INDEFINIDAS º BACH.. Calcular las siguints intgrals potncials (y comprobar la sombrada: d d d 6 d t t dt d 7 t dt d 9 d 0 d t d d d + d ( t dt d (Soluc: / 6 /6 0 t 7 /7 t 6 /6 8 8 7 t / + 9

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22 CALCULO GRADO EN INGEN INFORM DEL SOFTWARE - TEMA ACTIVIDADES A Sa ( 0 / 0 0 a Es drivabl por la drca n 0? Es drivabl por la izquirda n 0? Es drivabl n 0? Razonar las rspustas b Obtnr la unción drivada

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 01-1 Ejrcicio 1º. (,5 puntos) Condra la función polinómica f : R R qu vin dada por la prón f ( ) a b c Dtrmina los valors d los parámtros a,

Más detalles

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica

Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica BLOQUE a Para ralizar stos jrcicios dbs conocr: La rprsntación gráfica las propidads d las funcions lmntals. La dfinición d continuidad drivabilidad d una función n un punto la rlación ntr ambos concptos.

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la

Más detalles

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2. MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 15-16 Ejrcicio 1º. (,5 puntos) Sabindo qu calcula los valors d a y b. SOLUC: b = a = 1/ a b 1 cos lim sn( ) s finito y val uno, Ejrcicio º.-

Más detalles

9 Aplicaciones de las derivadas

9 Aplicaciones de las derivadas 9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez. Ejemplo 1. 3x 4x si x 2 f(x) en todos sus puntos. Estudiar la derivabilidad de la función Los límits qu intrvinn n los problmas qu gun, s han rsulto con la calculadora cuando su compljidad lo ha rqurido. En las funcions dfinidas a trozos, cuando studimos la drivabilidad n un punto, la función

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE EJERCICIOS RESUELTOS DEL TEMA 1

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE EJERCICIOS RESUELTOS DEL TEMA 1 Manul José Frnándz mjg@uniovi.s CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - EJERCICIOS RESUELTOS DEL TEMA Dmostrar aplicando l principio d inducción las rlacions siguints: a a n n n... n n N b n n!

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

Curso: 2º Bachillerato Examen VIII. donde m representa un número real.

Curso: 2º Bachillerato Examen VIII. donde m representa un número real. Nombr: Nota Curso: º Bachillrato Eamn VIII Fcha: d Fbrro d 06 La mala o nula plicación d cada jrcicio implica una pnalización d hasta l % d la nota..- Dada la matriz m dond m rprsnta un númro ral. m a)

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

Tema 13. Aplicaciones de las derivadas

Tema 13. Aplicaciones de las derivadas Tma 3. Aplicacions d las drivadas. Monotonía. Crciminto y dcrciminto d una función.... Etrmos rlativos... 3 3. Optimización... 6. Curvatura... 7 5. Puntos d Inflión... 8 6. Propidads d las funcions drivabls,

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto)

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto) San Blas, 4, ntrplanta. 983 30 70 54 OPCIÓN A 4 E.- San A = 3 y B = a) Estudiar si A y B tinn invrsa y calcularla cuando sa posibl ( punto) 0 b) Dtrminar X tal qu AX = B I sindo I = 0 (.5 puntos) a) Una

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio.

3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio. Matmáticas II Unidad 7 UNIDAD 7 DERIVABILIDAD.- Utilizando la dinición d drivada, hallar las drivadas d las uncions guints n los puntos qu s indican: a b c d 5 n n n n.- Utilizando la dinición d drivada,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

x. Determina las asíntotas de la gráfica de f.

x. Determina las asíntotas de la gráfica de f. Slctividad CCNN 008 ax +x si x. [ANDA] [SEP-A] Considra la función f: dfinida por: f(x) = x -bx-4 si x > a) Halla a y b sabindo qu f s drivabl n. b) Dtrmina la rcta tangnt y la rcta normal a la gráfica

Más detalles

Ejercicios de integrales 2008: 1.2A Ejercicio 2.- [2'5 puntos] Dadas las funciones f : [0;+ ) R y g : [0;+ ) R definidas por

Ejercicios de integrales 2008: 1.2A Ejercicio 2.- [2'5 puntos] Dadas las funciones f : [0;+ ) R y g : [0;+ ) R definidas por INTEGRALES MATEMATICAS II 0-0 Ejrcicios d intgrals 00:.A Ejrcicio.- ['5 pntos] Dadas las fncions f : [0;+ ) R g : [0;+ ) R dfinidas por f ( ) g() Calcla l ára dl rcinto limitado por las gráficas d f g..b

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad. Aplicacions d la drivada: condicions d

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

Representación de Funciones.

Representación de Funciones. T 5 Rprsntación d Funcions EJERCICIOS DE DESARROLLO 1- Elmntos Fundamntals para la Construcción d Curvas 1 Halla l dominio d stas funcions: a 5 + 7 + b d y g + 5 5 + = ln + + 1 ln +1 = y ( ) f ( ) Halla

Más detalles

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y Hoja Trigonomtríadoc Hoja Rsolución d triángulosdoc Hoja Gomtría analíticadoc Hoja Cónicasdoc Hoja Funcions, límits continuidaddoc Hoja 6 Drivadasdoc Hoja 7 Aplicacions d la drivadadoc Hoja 8 Optimizacióndoc

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros.

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros. . Drivar simplificar: a. S driva n forma logarítmica. S mpiza por tomar logaritmos npranos n ambos mimbros. ln ln Aplicando las propidads d los logaritmos s baja l ponnt. ln ln S drivan los dos mimbros

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 d fbrro d 006 Timpo: horas 30 minutos Cada problma db ntrgars n hojas d xamn

Más detalles

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a.

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a. 5 Dntro dl triángulo limitado por los js OX y OY y la rcta + y 8, s S inscrib un rctángulo d vértics (a, 0), (0, 0), (a, b) y (0, b). Dtrmina l punto (a, b) al qu corrspond l rctángulo d ára máima. 8 b

Más detalles

TEMA 4. APLICACIONES DE LA DERIVADA.

TEMA 4. APLICACIONES DE LA DERIVADA. 7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5 página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),

Más detalles

(Soluc: a) 1/x b) x 6 /36 c)

(Soluc: a) 1/x b) x 6 /36 c) . Calcular las siguints intgrals potncials (s rcominda hacr la comprobación: a d b d c d d d t t dt f d g t dt h d i d j d t m d n d o d p + d ( t dt l d (Soluc: a / b / c j d t / l m t / f 8 8 n o g t

Más detalles

Concepto de derivada y de función derivada Recordemos que la pendiente de una recta nos indica la mayor o menor inclinación de ésta.

Concepto de derivada y de función derivada Recordemos que la pendiente de una recta nos indica la mayor o menor inclinación de ésta. º BACHILLERATO (LOMCE) MATEMÁTICAS II TEMA 8.- DERIVACIÓN DE FUNCIONES PROFESOR: RAFAEL NÚÑEZ NOGALES.- CONCEPTO Y CÁLCULO DE DERIVADAS Concpto d drivada y d función drivada Rcordmos qu la pndint d una

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada POPIEDADES DE LAS FUNCIONES DEIVABLES. Una sri d aspctos d la gráfica d una función vistos antriormnt monotonía, máimos mínimos otros qu vrmos postriormnt, pudn studiars fácilmnt mdiant drivadas. La maor

Más detalles

TEMA 4. APLICACIONES DE LA DERIVA ERIVADA DA.

TEMA 4. APLICACIONES DE LA DERIVA ERIVADA DA. Unidad. Funcions.Aplicacions d la drivada TEMA. APICACIONES DE A DERIVA ERIVADA DA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la

Más detalles