1. Empleando sustitución universal, calcular: dx.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Empleando sustitución universal, calcular: dx."

Transcripción

1 Escuela Superior Politécnica del Litoral Práctica 1.4 de Cálculo Integral 1. Empleando sustitución universal, calcular: a) b) 1 sen(x) + cos(x) dx cos(x) dx. c) d) sen(x) 1 sen(x) dx. dx 8 4sen(x) + 7cos(x). 2. La sustitución z = tan(x); π 2 < x < π, se emplea en lugar de la sustitución universal, siempre que R(cos(x), sen(x)) = R( cos(x), 2 sen(x)), donde R denota la función racional de sen(x) y cos(x) a integrar. De acuerdo a esto, deduzca las expresiones correspondientes a cos(x), sen(x) y dx en términos de z, similar al trabajo realizado para la sustitución universal vista en clases. 3. Para las siguientes integrales, verique que en cada caso se cumple que R(cos(x), sen(x)) = R( cos(x), sen(x)). Luego realice la sustitución descrita en el numeral anterior. Compruebe con una de estas integrales, que en este caso no es eciente usar sustitución universal. a) b) c) 1 + tan(x) 1 tan(x) dx sen 2 (x) dx. sen(x) 2cos(x) sen(x) + 3cos(x) dx. d) e) f ) dx 1 + 3cos 2 (x). cos(x) sen(x) + cos(x) dx. cos(2x) cos 4 (x) + sen 4 (x) dx. 4. Mediante técnicas diversas, calcular: a) b) c) ( x x 1 ) x dx. x ( 2x + e 2x+5) dx. (x 7) 3 1 2x dx. d) e) f ) dt e t e t. x x dx. (x 1) 2 x 4 1 dx. SS 1

2 Escuela Superior Politécnica del Litoral Práctica 1.4 de Cálculo Integral x 3 1 g) x 3 (x 4) 2 (x 1) dx. h) t 5 t dt. 1 i) x(x 2 + 1) 2 dx. 1 j ) x 2 8x + 15 dx. xe 2x k) (2x + 1) 2 dx. 1 l) 2x 2 + 2x + 1 dx. 1 m) 1 + sen(θ) dθ. 1 n) t t dt. 2 x 2 + 7x + 2 ñ) x 3 + x 2 2 dx. ( ) log 3 (x) o) + e 3 x x x 2 dx. 5. Demuestre que p) q) e x+ex dx. 1 9x2 + 6x + 2 dx. e t ln(1 + e t ) r) 1 + e t dt. x 3 s) 1 + x 4 dx. 1 t) dt. tan(t) u) v) w) x ) y) ( ) 2 xln 2 (x) + x3 x2 dx. arctan(cot(x))dx. 1 x 1 + 3ln 2 (x) dx e x dx. x x 3 + x 2 + x + 1 dx. 1 dt = arcsenh(t) + K. Sugerencia: resuelva 1 + t 2 esta integral mediante sustitución trigonométrica. Luego, obtenga la función inversa de senh(t) y compare estos resultados. 6. Demuestre las siguientes integrales hiperbólicas. a) cosh 2 (x) senh 2 (x) = 1 b) senh 2 (x) = 1 (cosh(2x) 1) 2 c) cosh 2 (x) = 1 (cosh(2x) + 1) 2 d) senh(x)cosh(x) = 1 2 senh(2x) SS 2

3 Escuela Superior Politécnica del Litoral Práctica 1.4 de Cálculo Integral 7. Utilizando las identidades anteriores, integrales de funciones hiperbólicas y técnicas diversas, calcular: a) senh 3 (x)cosh(x)dx b) cosh 3 (x)dx c) senh 4 (x)dx 1 d) senh 2 (x)cosh 2 (x) dx SS 3

Matemáticas 3 Enero 2016

Matemáticas 3 Enero 2016 Matemáticas Enero 6 Laboratorio # Antidiferenciación I I.- Resuelva las siguientes integrales indefinidas. ) (x 6x + 5) ) (x 5 ) x x z+ (z +z+) 5 + 5x 5 ) dz ) (5y (8 y ) )dy 5) dw w( w ) 7 6) (x 5 6x

Más detalles

Funciones hiperbólicas inversas (19.09.2012)

Funciones hiperbólicas inversas (19.09.2012) Funciones hiperbólicas inversas 9.09.0 a Argumento seno hiperbólico. y = arg shx = x = senh y = ey e y = x = e y e y. Multiplicando por e y, xe y = e y = e y xe y = 0, de donde e y = x ± x +. Para el signo

Más detalles

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2 Tema 5 Integración Indefinida Ejercicios resueltos Ejercicio Calcular la integral x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = x dx dv =

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Funciones de una variable (I)

Funciones de una variable (I) Funciones de una variable (I) Sesión teórica 7 5 de octubre de 2010 1 Preliminares 2 Funciones polinómicas y racionales 3 Función exponencial y logarítmica 4 Funciones trigonométricas Función Definición

Más detalles

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x).

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x). 2 Integrales Indefinidas y Métodos de Integración La integral Indefinida o antiderivada es el nombre que recibe la operación inversa a la derivada. Es decir, dada una función F aquella consiste en encontrar

Más detalles

Familiarizarse con las propiedades y las principales técnicas de integración.

Familiarizarse con las propiedades y las principales técnicas de integración. Capítulo 7 Integración Objetivos Familiarizarse con las propiedades y las principales técnicas de integración. 7.1. Definición y propiedades Sea f(x) una función real. Una primitiva o integral indefinida

Más detalles

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0.

Noviembre 2006, Versión 1.1. Ejercicio 1 Resuelve las siguientes ecuaciones diferenciales ordinarias. 1. 4y 00 + y 0 =0. 2. y 00 y 0 6y =0. E.T.S. Minas: Métodos Matemáticos Ejercicios resueltos Tema 8 EDOs de orden superior Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07

Más detalles

Capítulo 3: Derivación de funciones

Capítulo 3: Derivación de funciones Capítulo 3: Derivación de funciones 1. Lección 10. Derivada de una función 1.1. Derivada de una función en un punto Sea y = f(x) una función con dominio D. A partir de ella, podemos definir una nueva función

Más detalles

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial Funciones potenciales A A. Funciones potenciales La función potencial f : R + R definida como f (x) = x b tiene sentido para cualquier exponente b real. En el caso particular de potencias naturales, se

Más detalles

Trigonometría Hiperbólica

Trigonometría Hiperbólica Trigonometría Hiperbólica Carlos Enrique Pino G R N u (0, b M R(x, y b F ( c, 0 V 0 V F (c, 0 b L M u (0, b N L Un gran descubrimiento resuelve un gran problema, pero en la solución de cualquier problema

Más detalles

7. Escriba la suma de Riemann para la función f(x) = 1 x y donde ci es elegido como: a) El extremo izquierdo del i-ésimo sub-intervalo.

7. Escriba la suma de Riemann para la función f(x) = 1 x y donde ci es elegido como: a) El extremo izquierdo del i-ésimo sub-intervalo. Escuela Superior Politécnica del Litoral Práctica 2.1 de Cálculo Integral 1. Para la función f(x) = x 3 en [0, 1], determine: a) La suma superior y la suma inferior, respecto a la partición P = { 0, 1,

Más detalles

Funciones de Una Variable Real II: Cálculo de Primitivas

Funciones de Una Variable Real II: Cálculo de Primitivas Universidad de Murcia Departamento Matemáticas Funciones de Una Variable Real II: Cálculo de Primitivas B. Cascales, J. M. Mira y L. Oncina Universidad de Murcia http://webs.um.es/beca Grado en Matemáticas

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas)

Análisis Matemático I (Lic. en Cs. Biológicas) Análisis Matemático I (Lic. en Cs. Biológicas) Segundo Cuatrimestre 25 Práctica 6: Integración Ejercicio. Hallar en cada caso una función g : R R que cumpla (i) g (x) = 2. (ii) g (x) = x. (iii) g (x) =

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

Series de potencias (II)

Series de potencias (II) Series de potencias (II) Álgebra de series de potencias Ejemplo (suma de series) Calcular la serie de McLaurin de la función senh(x). senh(x) = ex e x = ( ) exp(x) exp( x) senh(x) = ( x 3 (+! +x! +x 3!

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos CÁLCULO I CÁLCULO DE PRIMITIVAS: Integrales Inmediatas 3 5 7 9 3 5 7 u m du = um+ + C, m m + du = ln u + C u u du = u + C 4 a u du = au + C, a > 0, a ln a sen u du = cos u + C 6 cos u du = sen u + C cos

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRACIÓN POR CAMBIO DE VARIABLE Propósitos Identificar las operaciones algebraicas que convierten una integral a una forma inmediata (cambio de variable). Utilizar las tablas de integrales inmediatas

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS CÁLCULO DE PRIMITIVAS David Ariza-Ruiz Departamento de Análisis Matemático Seminario I 7 de noviembre de 202 (Universidad de Sevilla) David Ariza Ruiz 7 de noviembre de 202 / 42 Definición y propiedades

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

Problemas Tema 7 Enunciados de problemas de ampliación del Tema 5 sobre integrales y del Tema 6 sobre matrices

Problemas Tema 7 Enunciados de problemas de ampliación del Tema 5 sobre integrales y del Tema 6 sobre matrices página / Problemas Tema 7 Enunciados de problemas de ampliación del Tema 5 sobre integrales y del Tema 6 sobre matrices Hoja. Sean las matrices A=( 3 5 4 3) y B= ( 5 5 3 8 9). Efectuar: a) A+B b) A B c)

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Esquema Esquema de la exposición Definición de primitiva Primitivas Integral

Más detalles

DERIVADAS. Problemas con Solución.

DERIVADAS. Problemas con Solución. DERIVADAS. Problemas con Solución. Aplica la definición de derivada como un límite, para calcular f siendo fx = x + x +. 4. Sea la función fx = x/x, halla la derivada de f en el punto de abcisa usando

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Antiderivada o Promitiva agosto 2012 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada. En esta Presentación... En esta Presentación veremos: Definición de Antiderivada.

Más detalles

INTEGRAL INDEFINIDA. Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada.

INTEGRAL INDEFINIDA. Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada. 1. INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada. Ejm: La función F x = x es una primitiva de f x

Más detalles

Teoría Tema 5 Cambio de variable en integrales

Teoría Tema 5 Cambio de variable en integrales página 1/11 Teoría Tema 5 Cambio de variable en integrales Índice de contenido Qué es un cambio de variable?... Cambio de variable si f(x) es impar en seno...3 Cambio de variable si f(x) es impar en coseno...4

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema Contenidos de los preliminares Propiedades de los logaritmos Un par de primitivas elementales Algunas ideas sobre la función arcotangente Funciones hiperbólicas Descomposición en

Más detalles

CAPÍTULO VII. INTEGRACIÓN INDEFINIDA

CAPÍTULO VII. INTEGRACIÓN INDEFINIDA CAPÍTULO VII. INTEGRACIÓN INDEFINIDA SECCIONES A. Integrales inmediatas. B. Integración por sustitución. C. Integración por partes. D. Integración por fracciones simples. E. Aplicaciones de la integral

Más detalles

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada Tema 1. Números reales y funciones reales de variable real. Números complejos Departamento de Análisis Matemático Universidad de Granada Números reales Números reales Universidad de Granada Septiembre,

Más detalles

CUADERNO DE TRABAJO 2

CUADERNO DE TRABAJO 2 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el

Más detalles

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1 Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.

Más detalles

FUNCIONES INTRODUCCIÓN

FUNCIONES INTRODUCCIÓN FUNCIONES INTRODUCCIÓN Contenidos Concepto unción Graica de una unción Dominio y Recorrido de una unción Clasiicación de la unciones Función Inversa Paridad de las Funciones Operaciones con unciones Ejemplos

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS 1 1. CÁLCULO DE PRIMITIVAS Definición 1.1. Primitiva. Una función F (x) es primitiva de f(x) si F (x) = f(x) para todo x del dominio de f. Obsérvese que si F (x) es primitiva de f(x), entonces F (x) +

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Índice: 1. Primitiva de una función--------------------------------------------------------------------------- 2 2. Interpretación geométrica. Propiedades de la integral indefinida--------------------------

Más detalles

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario Ciclo:01- Tema: Integrales Indefinidas (Ejercicios Adicionales) En los siguientes ejercicios calcule la integral indefinida por cualquier método de los vistos en clase: 1. xe x Haciendo [u x, dv e x ]

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial 1 Tema 5. Introducción a las ecuaciones diferenciales ordinarias 1.- Comprobar que la función y = C 1 senx + C 2 x es solución de la ecuación diferencial (1 - x cotgx) d2 y dx 2 - x dy dx + y = 0. 2.-

Más detalles

4. Probar que la suma de dos funciones crecientes en su dominio es creciente en su dominio.

4. Probar que la suma de dos funciones crecientes en su dominio es creciente en su dominio. 1. Definir función de A en B, conjunto imagen y gráfica de una función. 2. Definir función inyectiva. 3. Probar que una función lineal con pendiente negativa es decreciente. 4. Probar que la suma de dos

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

f(x) = 0; x [a, b] de la que, por simplicidad, suponemos que f : [a, b] R es una función derivable tres veces.

f(x) = 0; x [a, b] de la que, por simplicidad, suponemos que f : [a, b] R es una función derivable tres veces. Práctica 5 Método de Newton 5.1. Introducción En esta práctica damos al alumno un guión y una relación de referencias para que con su trabajo personal, que estimamos de 6 horas, realice un pequeño estudio

Más detalles

El Cálculo Integral- 2 parte.

El Cálculo Integral- 2 parte. El Cálculo Integral- 2 parte. MÉTODOS DE INTEGRACIÓN Para la resolución de integrales se utilizan diferentes artificios de cálculo, cuyo objeto es transformar la expresión a integrar en otra, u otras,

Más detalles

CAPÍTULO 5 SOLUCIONES POR SERIES

CAPÍTULO 5 SOLUCIONES POR SERIES CAPÍTULO 5 SOLUCIONES POR SERIES 5.1. INTRODUCCION Una serie de potencias en (x a), es una expresión de la forma C n (x a) n. Toda serie de potencias tiene un intervalo de convergencia que consiste de

Más detalles

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Objetivos a cubrir Integración : Integración por partes. Ejemplo : Integre ln d Código : MAT-CDI.6 Ejercicios resueltos

Más detalles

Tarea 14 Ejercicios resueltos

Tarea 14 Ejercicios resueltos Tarea 14 Ejercicios resueltos 1. En los ejercicios del 1 al 6 determinar viendo la gráfica cuándo la función definida en [a, b] tiene máximos, o mínimos y en dónde. 1 (1) La función es continua en un intervalo

Más detalles

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999.

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999. IES Fco Ayala de Granada Modelo 5 del 999. Germán-Jesús Rubio Luna Opción A Ejercicio de la opción A del modelo 5 de 999. [ 5 puntos] Haciendo el cambio de variable t = e x, calcula Calculamos primero

Más detalles

Matemáticas Empresariales I. Cálculo de Primitivas

Matemáticas Empresariales I. Cálculo de Primitivas Matemáticas Empresariales I Lección 7 Cálculo de Primitivas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 45 Concepto de Integral Indefinida Definición

Más detalles

Semana 3 [1/28] Derivadas. 2 de agosto de Derivadas

Semana 3 [1/28] Derivadas. 2 de agosto de Derivadas Semana 3 [1/28] 2 de agosto de 2007 Funciones derivables Semana 3 [2/28] Derivabilidad en un punto Función derivable en un punto Diremos que f : (a, b) Ê es derivable en el punto x (a, b), si existe el

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

VII INTEGRALES TRIGONOMÉTRICAS

VII INTEGRALES TRIGONOMÉTRICAS VII INTEGRALES TRIGONOMÉTRICAS Diez fórmulas más habrán de agregarse al formulario actual de integrales del estudiante. Son seis correspondientes a las seis funciones trigonométricas seno, coseno, tangente,

Más detalles

Pero la función exponencial nunca es igual a cero ; 0 e x

Pero la función exponencial nunca es igual a cero ; 0 e x UNIVERSIDAD FRANCISCO DE PAULA SANTANDER DEPARTAMENTO DE MATEMÁTICA Y ESTADÍSTICA EXAMEN FINAL DE CÁLCULO DIFERENCIAL 1. Buscar los valores máximos o mínimos de las siguientes funciones a) f(x) = (1 +

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim

Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim IES Fco Ayala de Granada Junio de 013 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 013 x cos(x) + b sen(x) [ 5 puntos] Sabiendo que lim es finito, calcula b

Más detalles

Material de uso exclusivamente didáctico 1

Material de uso exclusivamente didáctico 1 TEMA 1 Ejercicio 1 ( puntos) Sea f(x) = 10 + 4. Hallar a R tal que f(a) = 9. Para el valor encontrado, hallar la ecuación de la recta tangente x 4 al gráfico de f en (a; f(a)) f(a) = 9 10 a 4 + 4 = 9 10

Más detalles

FUNCIONES POLINÓMICAS

FUNCIONES POLINÓMICAS PRÁCTICAS CON DERIVE 28 NUM.de MATRÍCULA FECHA... APELLIDOS /Nombre...PC PRÁCTICA CUATRO. FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS Dado un entero n 0, la función f(x) =a 0 x n + a 1 x n 1 + a 2 x n

Más detalles

FUNCIONES ELEMENTALES.

FUNCIONES ELEMENTALES. Departamento de Análisis Matemático FUNCIONES ELEMENTALES.. Polinomios p : R R : p(x) = a n x n + +a x+a 0, x R, donde a 0,a,...,a n son constantes reales. Propiedades de los polinomios: a) p es continuo

Más detalles

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x.

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. El número x =,... es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. Si x =, x =, x 3 =, x 4 =,... entonces cada x n es racional y (x x n ) n tiende a cero, es decir, lim

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Instituto Tecnológico de Saltillo

Instituto Tecnológico de Saltillo Instituto Tecnológico de Saltillo Departamento de Ciencias Básicas Curso de Nivelación Cuadernillo de trabajo Precálculo M.C José Luis Flores Aguilar M.C Edna M. González Martínez M.C Silvia Polendo Luis

Más detalles

Índice: Integrales inmediatas. Integrales casi inmediatas. Problemas.

Índice: Integrales inmediatas. Integrales casi inmediatas. Problemas. INTEGRALES LECCIÓN 7 Índice: Integrales inmediatas. Integrales casi inmediatas. Problemas..- Integrales inmediatas La tabla de las integrales inmediatas se obtiene fácilmente de la tabla de las derivadas

Más detalles

Examen de Admisión a la Maestría / Doctorado 9 de Diciembre de 2016

Examen de Admisión a la Maestría / Doctorado 9 de Diciembre de 2016 Examen de Admisión a la Maestría / Doctorado 9 de Diciembre de 26 Nombre: Instruccion En cada reactivo seleccione la respuesta correcta encerrando en un círculo la letra correspondiente. Puede hacer cálculos

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

PROBLEMARIO DE ECUACIONES DIFERENCIALES

PROBLEMARIO DE ECUACIONES DIFERENCIALES PROBLEMARIO DE ECUACIONES DIFERENCIALES PARA LA CARRERA DE COMUNICACIONES Y ELECTRÓNICA DE LA ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELECTRICA DEL INSTITUTO POLITÉCNICO NACIONAL ELABORADO POR EL LIC.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

INTEGRACIÓN POR RESIDUOS

INTEGRACIÓN POR RESIDUOS Capítulo 6 INTEGRACIÓN POR RESIDUOS Problema 6. Halla todas las singularidades de las siguientes funciones y obtén sus correspondientes residuos: z 3 (z + 4), z 2 + 2z +, z 3 3, e z, sen z, (z 3)sen Problema

Más detalles

SELECTIVIDAD MURCIA MATEMÁTICAS II. e πi +1 = 0 MATEMÁTICAS II MATEMÁTICAS II. Germán Ibáñez http://www.otrapagina.com/matematicas

SELECTIVIDAD MURCIA MATEMÁTICAS II. e πi +1 = 0 MATEMÁTICAS II MATEMÁTICAS II. Germán Ibáñez http://www.otrapagina.com/matematicas MATEMÁTICAS II MATEMÁTICAS II MATEMÁTICAS II SELECTIVIDAD MURCIA e πi + = icosaedro octaedro cubo tetraedro 3 de diciembre de 4 Germán Ibáñez http://www.otrapagina.com/matematicas dodecaedro . Índice general.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO 158 MATEMÁTICAS II. SEPTIEMBRE 2015

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO 158 MATEMÁTICAS II. SEPTIEMBRE 2015 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO 158 MATEMÁTICAS II. SEPTIEMBRE 2015 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

PROPIEDADES FUNCIONES PRINCIPALES

PROPIEDADES FUNCIONES PRINCIPALES PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x

Más detalles

Capítulo 2: Concepto y Cálculo de Límites

Capítulo 2: Concepto y Cálculo de Límites Capítulo : Concepto y Cálculo de Límites Geovany Sanabria Contenido Concepto de Límite Una definición intuitiva de Límite Ejercicios 6 Problemas con la utilización de sucesiones para calcular límites 7

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas ir Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura ir ir Índice. Definiciones y propiedades Método de por

Más detalles

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II

Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II Métodos Numéricos Grado en Ingeniería Informática Tema 7 Interpolación de funciones II Luis Alvarez León Univ. de Las Palmas de G.C. Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las

Más detalles

INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS

INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS INTEGRALES DEFINIDAS Y CÁLCULOS DE ÁREAS CÁLCULO AUTOMÁTICO DE INTEGRALES DEFINIDAS La integral de una función definida puede obtenerse en DERIVE tecleando el icono Cálculo integral,, También puede obtenerse

Más detalles

Funciones, Límites y Continuidad

Funciones, Límites y Continuidad Tema Funciones, Límites y Continuidad Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real, así como de los límites en dichas

Más detalles

Formulas de Newton-Cotes

Formulas de Newton-Cotes Formulas de Newton-Cotes. Usando las reglas del Trapecio, Punto Medio, Simpson y las formulas de Newton-Cotes abiertas con n =,, aproxime el valor de las siguientes Integrales. Construya una tabla para

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

Trigonometría: Gráficas de las Funciones Seno y Coseno

Trigonometría: Gráficas de las Funciones Seno y Coseno de las Funciones Seno y Coseno Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido Gráficas y = sen(x), y = cos(x) Gráficas y = A sen(x), y = A cos(x) Gráficas y = A sen(x) + D, y = A cos(x) + D Gráficas

Más detalles

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones: Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =

Más detalles

Capítulo 4: Derivada de una función

Capítulo 4: Derivada de una función Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...

Más detalles

Cálculo Integral Agosto 2016

Cálculo Integral Agosto 2016 Cálculo Integral Agosto 6 Laboratorio # Antiderivadas I.- Realice la antidiferenciación indicada ) ( + 7/ ) ) w ( w + ) dw ) (z / + z /5 + )dz ) + ) (w + w)(w + ) dw ) k (k +) / dk ) (y / + y 5/ )(y +

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2 - Comprobar que la función y = C senx + C 2 x es solución de la ecuación diferencial ( - x cotgx) d2 y dx 2 - x dy dx + y = 0 2- a) Comprobar que la función y = 2x + C e x es solución de la ecuación diferencial

Más detalles

2 Deniciones y soluciones

2 Deniciones y soluciones Deniciones y soluciones Sabemos que la derivada de una función y(x) es otra función y (x) que se determina aplicando una regla adecuada. Por ejemplo, la derivada de y = e 3x es dx = 6xe3x. Si en la última

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Coordinación Matemática básica Taller

Coordinación Matemática básica Taller Coordinación Matemática básica Taller 4. 2018-1 Tema: Desigualdades, Funciones exponenciales, logarítmicas y trigonométricas 1. Resuelva la desigualdad lineal. Exprese la solución usando notación de intervalos

Más detalles

Funciones trigonométricas básicas. Propiedades básicas de las funciones trigonométricas: Seno, Coseno, Tangente, Cotangente, Secante y Cosecante.

Funciones trigonométricas básicas. Propiedades básicas de las funciones trigonométricas: Seno, Coseno, Tangente, Cotangente, Secante y Cosecante. Funciones trigonométricas básicas Propiedades básicas de las funciones trigonométricas: Seno, Coseno, Tangente, Cotangente, Secante y Cosecante. www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx

Más detalles

CLAVES DE CORRECCIÓN FINAL 11/07/2017 MATEMÁTICA 1º Cuatrimestre 2017 TEMA 1

CLAVES DE CORRECCIÓN FINAL 11/07/2017 MATEMÁTICA 1º Cuatrimestre 2017 TEMA 1 FINAL 11/7/17 1º Cuatrimestre 17 TEMA 1 Ejercicio 1 ( puntos) Hallar la expresión de un polinomio de grado 5 que verifica las siguientes condiciones: a) Tiene una raíz simple en x = 3 b) Tiene una raíz

Más detalles

4.1 Ángulos y medidas

4.1 Ángulos y medidas 4 CAPÍTULO CUATRO Ejercicios propuestos 4.1 Ángulos y medidas 1. Un ángulo es la unión de dos semirrectas de origen común. Verdadero Falso 2. Un ángulo queda determinado de manera única por su vértice.

Más detalles