Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas."

Transcripción

1 Estadístca (Q) Dra. Daa M. Kelmasky 99. Teoremas límte Frecueca Relatva Orde de la trada Fgura : Frecueca relatva de cara para ua sucesó de 400 tradas. La fgura muestra las frecuecas relatvas de cara obtedas tomado tamaños crecetes desde hasta 400, a partr de 400 tradas sucesvas de ua moeda. Las proporcoes se acerca a 0.5 a medda que se obtee utlzado ua mayor catdad de tradas (los valores de para las 0 prmeras y 0 últmas tradas fuero: ( ) y ( ) respectvamete) Es u resultado coocdo que s se arroja ua moeda muchas veces la proporcó de caras (o de cecas) estará cerca de /. La ley de los grades úmeros permte obteer ese resultado formalmete detro de la teoría de probabldades.. Ley (débl) de los Grades Números

2 Estadístca (Q) Dra. Daa M. Kelmasky 00 Sea,,...,, ua sucesó de v.a. depedetes tales que E( ) = μ y Var( ) = σ <, etoces ε > 0 sedo = =. P ( > ε ) 0 Dem: Sabemos que E( ) = μ y desgualdad de Chebshev a y, por lo tato P μ (), Var( ε Var( ( μ > ε ) = ε > 0 ) σ ) =, etoces aplcado la σ ε σ ( μ > ε ) lm = 0 ε > 0 lm P cqd. ε Cuado vale () decmos que la Umeda muestral coverge e probabldad a μu, lo dcamos por p μ També decmos que es u estmador cosstete de μ UObservacó U: La frecueca relatva de u suceso A tede a su probabldad. Sea ε u expermeto bomal que costa de pruebas y sea Éxto= ocurró el suceso A, A) costate e las pruebas : catdad de veces que ocurró A al realzar ε ~ B (, p), p =A) 0 o ocurre A =, luego / = = ocurre A = / : = frecueca relatva del suceso A = f A = A / Por la LGN p μ, e este caso = / ; E( ) = μ = p = A) luego / p A)

3 La Estadístca (Q) Dra. Daa M. Kelmasky 0 UObservacó U desgualdad de Chebshev permte acotar la catdad de repetcoes ecesaras para que la frecueca relatva del suceso A dfera de su probabldad (A) = p ) e ua certa catdad pre establecda (precsó), co ua probabldad alta determada. Ejemplo: Cuátas pruebas deberá teer el expermeto ε para que la frecueca relatva del suceso A dfera de su probabldad (A) = p ) e como máxmo 0.0 co probabldad mayor o gual a 0.90? Queremos ecotrar tal que ( f p 0.0) P A, () por Chebshev co ε = 0.0 teemos que p( P A (0.0) ( f p 0.0) () Luego la desgualdad () se cumplrá sempre que el últmo térmo de () sea mayor a 0.90: p( p( p( (3) (0.0) (0.0) (0.0) (0.0) El valor mímo de depede de p a través de la expresó p(-p) cuyo valor es máxmo cuado p = (Fgura ) Fgura. Gráfco de la fucó f(p) = p*(-p) para 0 p

4 Estadístca (Q) Dra. Daa M. Kelmasky 0 Por lo tato, para alcazar u msmo grado de precsó (e el ejemplo es 0.0) e la estmacó de p el tamaño de la muestra depede del verdadero valor p (descoocdo): p = p = p = S se arroja la moeda 5000 veces se garatza ua precsó de 0.0 e la estmacó de p para cualquer valor del msmo. UObservacó 3:U Para que valga la ley de los grades úmeros es dspesable la exsteca de la esperaza. Fgura 3: comportameto de la meda muestral a medda que aumeta la catdad de observacoes para ua varable aleatora N(8,) y ua varable aleatora Cauchy cetrada e 8 La fgura 3 muestra que la sucesó correspodete a la N(8,) se acerca a su meda (8) a medda que aumeta la catdad de observacoes. La sucesó correspodete a la dstrbucó Cauchy muestra tedecas crecetes o decrecetes e alguos tramos, cambos abruptos e otros y o parece acercarse a su valor cetral (8). Esta dstrbucó es u ejemplo para la cual o es válda la ley de los grades úmeros porque o está defda su esperaza. Cómo es la dstrbucó Cauchy? La fucó de desdad de probabldad de ua varable aleatora Z llamada Cauchy cetrada e cero es f Z ( z) = < z < π ( + z ) y su fucó de dstrbucó acumulada

5 Estadístca (Q) Dra. Daa M. Kelmasky 03 F Z ( z) = + arcta( z) < z < π Qué forma tee la fucó de desdad de la dstrbucó Cauchy etrada e cero? - Es smétrca co respecto al cero - Tee forma de campaa - Las colas tede a cero más letamete que la Normal Fgura 4: fucoes de desdad de probabldad N(0,) y Cauchy cetrada e cero Debdo a la smetría alrededor de cero de la fucó de desdad, la esperaza de ua varable Cauchy debería ser cero. S embargo E( Z ) = π ( z z dz = dz = lm log( + a + z ) π 0 ( + z ) π a ) = La desdad de la varable Cauchy decrece a cero ta letamete que valores grades puede ocurrr co ua probabldad relatvamete alta mpdedo que la tegral ateror coverja. Cómo surge la dstrbucó Cauchy? Se puede demostrar ( vea por ejemplo Joh Rce Mathematcal Statstcs ad Data Aalyss ) que el cocete de dos varables aleatoras N(0,) depedetes tee dstrbucó Cauchy.. Corolaro de la Ley de los Grades Números Sea,..., ua muestra aleatora de ua dstrbucó co E( ) = μ y Var( ) = σ < etoces

6 Estadístca (Q) Dra. Daa M. Kelmasky 04 a) p μ La meda muestral coverge e probabldad a la meda poblacoal. Decmos que es u estmador cosstete de µ b) S p σ La varaza muestral coverge e probabldad a la varaza poblacoal. Decmos que S estmador cosstete de σ Dem. a) Ya lo vmos, por la Ley de los Grades Números. b) Demostraremos que la varaza muestral S es u estmador cosstete de la varaza poblacoal. ( ) = = = = = S = Por la Ley de los Grades Números p μ, etoces p μ. Por otra parte, aplcado uevamete la Ley de los Grades Números a = p E [ E( )] = σ + ( ) = V ( ) + μ Como además, se obtee = p S = σ + μ μ = σ y por lo tato la varaza muestral es u estmador cosstete de σ.

7 Estadístca (Q) Dra. Daa M. Kelmasky 05.3 Teorema Cetral del Límte: Sea,,... v.a...d co E ( ) = μ y Var( ) = σ <, etoces s es sufcetemete grade, T μ σ ( a) ~ N(0,) ( μ) σ ( a) ~ N(0,) co T = O sea T μ ( μ) P a Φ( a) P a Φ( a) σ σ dode Ф dca la fucó de dstrbucó Normal estádar. Observacoes Cualquera sea la dstrbucó de la varable de terés es posble aproxmar la dstrbucó de la suma de v.a...d por ua dstrbucó Normal, sempre que sea sufcetemete grade. Qué sgfca sufcetemete grade? Cuádo es buea la aproxmacó? El tamaño de muestra requerdo para que la aproxmacó sea razoablemete buea depede de la forma de la dstrbucó de las. Metras más smétrca y acampaada sea, más rápdamete se obtee ua buea aproxmacó..3. Aproxmacó de la dstrbucó bomal por la ormal Sea la catdad de éxtos e repetcoes de u expermeto de Bomal co probabldad de éxto gual a p, etoces ~ B (,p) y sea / la proporcó muestral de éxtos. S defmos = 0 s se obtuvo Éxto e la repetcó s se obtuvo Fracaso e la repetcó para =,...,. Etoces ~ B (, p) depedetes y = = S es sufcetemete grade, del Teorema Cetral del Límte teemos que.

8 Estadístca (Q) Dra. Daa M. Kelmasky 06 ( a ) ( a) p( ~ N( p, p( ) ~ N p, Es decr que la dstrbucó de, tato la catdad de éxtos como la proporcó de éxtos e u expermeto bomal, puede aproxmarse por la dstrbucó Normal. La aproxmacó es buea s p 5 y (-p) 5. S p = 0.5 la aproxmacó de la dstrbucó bomal por la ormal será buea aú para pequeño pues e ese caso la dstrbucó bomal es smétrca, como vemos e la fgura sguete. Fgura 5: Dstrbucoes probabldades de ua v.a. ~N(,0.5) para dsttos valores de Recordemos que E() = p y Var()= p(-p). A medda que aumeta el valor cetral (p) se va corredo a la derecha (fgura 5), los hstogramas de probabldad se esacha y se achata.

9 Estadístca (Q) Dra. Daa M. Kelmasky Correccó por cotudad Cuado se aproxma ua dstrbucó dscreta por ua cotua, como es el caso de la aproxmacó de la dstrbucó bomal por la ormal, es ecesaro efectuar ua correccó. Cosderemos el sguete ejemplo: Sea ~ B (00, 0.5) y calculemos e forma aproxmada 5) y 5). Recordemos que E() = 50 y Var() = 5 S aplcamos drectamete el TCL, obteemos ( sedo Z ~ N(0,)): ) = P Z ) = P Z 5 5 ) 5 ) 5 = Φ ( 0.) = Z = ) 5 = Φ( 0.4) = Utlzado la dstrbucó bomal 5) + 5) =, pero dcho cálculo resultate de la aproxmacó Normal es Se está subestmado las probabldades. Es ecesaro realzar sguete correccó, deomada correccó por cotudad: ) = ) = P Φ( 0.3) = ) = 5 0.5) = P Φ( 0.3) = E geeral, cuado la v.a. es dscreta y x x - =, la correccó se realza e la forma: a) = a) = a + 0.5) a 0.5) Observe que e las expresoes aterores vale la gualdad. Por qué? S la dstaca etre dos valores sucesvos de es k >, cómo aplcaría la correccó por cotudad?.3.3 Otras aplcacoes del Teorema Cetral del Límte Hemos vsto ( seccó 0.6 Sumas y más sumas) que s,...,, so vad

10 Estadístca (Q) Dra. Daa M. Kelmasky 08, etoces ~ B = = ) ~ B(, p) ~ B(, p), etoces = ~ B(, p)., p. ) ~ λ ), etoces ~ P λ. = = ~ Γ (, λ), etoces ~ Γ, λ. = = 3) ~ ε ( λ), etoces ~ Γ(, λ ). 4) ~ N(0,) etoces ~ χ = Γ( ε = = 5) ~ ( λ), etoces ~ χ = /,/ ). E todas las sumas aterores es posble, para sufcetemete grade, aproxmar su dstrbucó por ua dstrbucó Normal. Cosderamos a cotuacó los casos partculares de dstrbucoes Posso y Gamma: a) Sea,,..., v.a...d. co dstrbucó Posso de parámetro λ, etoces = ( ) ~ P λ Por lo tato, cualquer v.a. co dstrbucó de Posso co parámetro sufcetemete grade puede ser aproxmada por la dstrbucó ormal. b) Sea,,..., v.a. depedetes co dstrbucó Gamma de parámetros y λ, o sea ~ Γ(, λ) etoces ~ Γ, λ = = Por lo tato, cualquer v.a. co dstrbucó Γ(m, λ) co parámetro m sufcetemete grade puede ser aproxmada por la dstrbucó ormal.

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara 95 Teoremas límte Cosderemos el exermeto aleatoro que cosste e arrojar ua moeda equlbrada veces. Suogamos que se regstra la roorcó de caras. U resultado coocdo es que esta roorcó estará cerca de /. Formalzado

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C Los axomas de la probabldad obabldad El prmer paso para descrbr la certdumbre es cosderar el cojuto de posbles resultados obtedos a partr de u expermeto aleatoro. Este cojuto es llamado espaco muestral

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

TEMA 5: ANÁLISIS CONJUNTO DE VARIABLES ALEATORIAS Y DISTRIBUCIÓN DE AGREGADOS

TEMA 5: ANÁLISIS CONJUNTO DE VARIABLES ALEATORIAS Y DISTRIBUCIÓN DE AGREGADOS MÉTODOS ESTADÍSTICOS PARA LA EMPRESA TEMA 5: ANÁLISIS CONJUNTO DE VARIABLES ALEATORIAS DISTRIBUCIÓN DE AGREGADOS 5..- Dstrbucoes -dmesoales. Aálss margal y codcoado 5..- Varables aleatoras depedetes. Propedades

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Inferencia Estadística

Inferencia Estadística Ifereca Estadístca Poblacó y muestra Coceptos y defcoes Muestra Aleatora Smple (MAS) Cosderemos ua poblacó, cuya fucó de dstrbucó esta dada por F(), la cual está costtuda por u úmero fto de posbles valores,

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

x θ es conocida pero se desconoce θ total o ˆθ ) debe ser función de los datos de la muestra

x θ es conocida pero se desconoce θ total o ˆθ ) debe ser función de los datos de la muestra Estmacó putual de parámetros. Parámetro( : Característca de la poblacó. E estadístca la forma fucoal de f ( ; es coocda pero se descooce total o parcalmete. La estmacó del parámetro ( debe ser fucó de

Más detalles

Estimación de Parámetros. Estimación Puntual. Universidad Técnica Federico Santa María. Estimación de Parámetros. Estimación de Parámetros.

Estimación de Parámetros. Estimación Puntual. Universidad Técnica Federico Santa María. Estimación de Parámetros. Estimación de Parámetros. Uversdad Técca Federco ata María Estmacó de Parámetros Capítulo 7 Estmacó de Parámetros Estadístca Computacoal II emestre 007 Prof. Carlos Valle Pága : www.f.utfsm.cl/~cvalle e-mal : cvalle@f.utfsm.cl

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

AGRO Examen Parcial 1

AGRO Examen Parcial 1 AGRO 5005 009 Exame Parcal Nombre: Istruccoes: Por favor lea los eucados y las pregutas cudadosamete. Se puede usar el lbro las tablas de dstrbucó ormal la hoja de fórmulas provsta y la calculadora. Para

Más detalles

Introducción a la Inferencia Estadística. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff

Introducción a la Inferencia Estadística. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C Ua empresa motadora de equpos electrócos está realzado u estudo sobre aluos de los compoetes que utlza. E partcular mde el tempo de vda e meses reales de los procesadores que mota, dode a aluos de ellos

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles

Métodos indirectos de estimación: razón, regresión y diferencia

Métodos indirectos de estimación: razón, regresión y diferencia Métodos drectos de estmacó: razó, regresó dfereca Cotedo. Itroduccó, defcó de estmadores drectos. Estmador de razó, propedades varazas. Límtes de cofaza. 3. Tamaño de la muestra e los estmadores de razó

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Facultad de Ciencias del Mar. Curso 2008/09 25/06/09

Facultad de Ciencias del Mar. Curso 2008/09 25/06/09 Estadístca Covocatora de Juo Facultad de Cecas del Mar. Curso 8/9 5/6/9 Los ríos Waccamaw y Lumber, e Carola del Norte (EEUU) se caracterza por ua rca bodversdad. E los últmos años estos ríos ha vsto crecer

Más detalles

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE 009- DURACIÓN

Más detalles

Modelos de Regresión Simple

Modelos de Regresión Simple Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Los Histogramas. Histograma simple

Los Histogramas. Histograma simple Los Hstogramas El Hstograma es ua forma de represetacó de datos que permte aalzar fáclmete el comportameto de ua poblacó, ya sea per se, o por medo de ua muestra. U Hstograma se defe como u cojuto de barras

Más detalles

PARTE SEGUNDA: INFERENCIA ESTADÍSTICA

PARTE SEGUNDA: INFERENCIA ESTADÍSTICA ESTADÍSTICA II PARTE SEGUNDA: INFERENCIA ESTADÍSTICA TEMA III: INTRODUCCION A LA INFERENCIA III..- Itroduccó III..- La eleccó de la muestra. Tpos de muestreo III.3.- Muestreo aleatoro smple. Estadístcos

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

ESTADÍSTICA. Tercera Prueba de Evaluación continua 30 de noviembre de 2015

ESTADÍSTICA. Tercera Prueba de Evaluación continua 30 de noviembre de 2015 Tercera Prueba de Evaluacó cotua 30 de ovembre de 05.- Se ha tomado valores de ua varable físca X, que se supoe ormal, resultado: 30,; 30,8; 9,3; 9; 30,9; 30,8; 9,7; 8,9; 30,5; 3,; 3,3; 8,5. a) Costrur

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

5- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

5- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 33 5- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 5. Suma de varables aleatoras depedetes Cuado se estudaro las varables

Más detalles

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN Qué es ESADISICA? Es u couto de la rama de las Matemátcas Es algo aburrdo que mplca u motó de cuetas 3 Es u couto de téccas que se puede usar para probar cualquer cosa 4 Es u couto de coocmetos téccas

Más detalles

ANalysis Of VAriance ANOVA Análisis de la Varianza. Teresa Villagarcía

ANalysis Of VAriance ANOVA Análisis de la Varianza. Teresa Villagarcía ANalyss Of VArace ANOVA Aálss de la Varaza Teresa Vllagarcía El objetvo del dseño de expermetos Estudar s determados factores fluye sobre ua varable de uestro terés. Por ejemplo: Redmeto de u proceso dustral.

Más detalles

GENERALIDADES ESTADISTICA DESCRIPTIVA

GENERALIDADES ESTADISTICA DESCRIPTIVA MOD MEDIDS DE TEDECI CETRL MEDI MEDI RITMETIC MOD MEDIDS DE TEDECI CETRL MEDI MEDI RITMETIC MEDIDS DE TEDECI CETRL MEDI RITMETIC Defcó: Es la suma de todos los datos de ua sere dvdda por su úmero Cálculo:

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Tema 6: Introducción al muestreo. Estimadores

Tema 6: Introducción al muestreo. Estimadores Facultad de Ecoomía y Empresa Práctcas ema 6.- Itroduccó al muestreo. Estmadores ema 6: Itroduccó al muestreo. Estmadores VARIABLE Certa varable aleatora X se dstrbuye segú la fucó de desdad: sedo E(X)

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL Smposo de Metrología 4 al 7 de Octubre DISTRIBUCIÓ DE LA MEDIA Y EL TEOREMA DEL LÍMITE CETRAL Wolfgag A. Schmd Cetro acoal de Metrología Tel.: (44) 4, e-mal: wschmd@ceam.mx Resume: De acuerdo al Teorema

Más detalles

Tema 12: Modelos de distribución de probabilidad: Variables Continuas

Tema 12: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema Tema : Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(; ) 3. MODELO CHI-CUADRADO DE PEARSON, k 4. MODELO t DE STUDENT, t

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa Error tpo I: Rechazar H sedo H Verdara Test Hpótess Error tpo II: No rechazar H sedo H Falsa Nvel Sgfcacó: = P(error tpo I = P(Rechazar H sedo H Verdara Probabldad error tpo II: = P(error tpo II = P(No

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Análisis de Regresión y Correlación Lineal

Análisis de Regresión y Correlación Lineal Aálss de Regresó y Correlacó Leal Dr. Pastore, Jua Igaco Profesor Adjuto. Aálss de Regresó y Correlacó Leal Hasta ahora hemos cetrado uestra atecó prcpalmete e ua sola varable de respuesta umérca o e seres

Más detalles

1.3. Longitud de arco.

1.3. Longitud de arco. .. Logtud de arco. Defcó. Sea C ua curva suave defda paramétrcamete por la fucó vectoral f : R R / f () t = ( f() t, f() t,, f ( t) ) e el espaco R, co t [ a, b], que se recorre exactamete ua vez cuado

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

Apéndice 1. Ajuste de la función gamma utilizando el método de máxima probabilidad ( maximum likelihood )

Apéndice 1. Ajuste de la función gamma utilizando el método de máxima probabilidad ( maximum likelihood ) Apédces Apédces 357 Apédce. Ajuste de la fucó gamma utlzado el método de máma probabldad mamum lkelhood Se descrbe a cotuacó el ajuste de la fucó gamma utlzado e el apartado.2..2 pága 28. Véase Burguess

Más detalles

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA Uversdad Nacoal del Ltoral Facultad de Igeería y Cecas Hídrcas ESTADÍSTICA Igeería Iformátca TEORÍA Mg.Ig. Susaa Valesberg Profesor Ttular UNIDAD Característcas de varables aleatoras Estadístca - Igeería

Más detalles

7. Muestreo con probabilidades desiguales.

7. Muestreo con probabilidades desiguales. 7. Muestreo co probabldades desguales. 7. Itroduccó. 7.. Probabldades de clusó. 7.. Pesos del dseño muestral. 7.. Alguos métodos co probabldades desguales. 7. Estmacó de la meda, proporcó total poblacoales.

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún: A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad

Más detalles

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre Tema. La medda e Físca Estadístca de la medda Cfras sgfcatvas e certdumbre Cotedos Herrameta para represetar los valores de las magtudes físcas: los úmeros Sstemas de udades Notacó cetífca Estadístca de

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1 TEMA (Últma modcacó 8-7-5 CALCULO DIFERENCIAL E INTEGRAL II DERIVABILIDAD Recordemos el cocepto de dervadas para ucoes de ua varable depedete = (. Para lo cual ormamos el cremeto de la ucó = ( + - ( El

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA MASTER OFICIAL EN GESTIÓN COSTERA ESTIMACIÓN Y CONTRASTE DE HIPÓTESIS.

UNIVERSIDAD DE LAS PALMAS DE GRAN CANARIA MASTER OFICIAL EN GESTIÓN COSTERA ESTIMACIÓN Y CONTRASTE DE HIPÓTESIS. Tema 3. ESTIMACIÓN Y CONTRASTE DE HIPÓTESIS. 3.. INTRODUCCIÓN Detro del ámbto de problemas que se cotempla e la Gestó Costera, es frecuete ecotrarse co la cuestó de cuál es el valor de los parámetros que

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

Especialista en Estadística y Docencia Universitaria PRUEBAS DE NORMALIDAD MÉTODO DE KOLMOGOROV SMIRNOV

Especialista en Estadística y Docencia Universitaria PRUEBAS DE NORMALIDAD MÉTODO DE KOLMOGOROV SMIRNOV Especalsta e Estadístca y Doceca Uverstara PRUEBAS DE NORMALIDAD MÉTODO DE KOLMOGOROV SMIRNOV Tal vez el método más recomedable para el caso e que F(x) es ua dstrbucó cotua es el método para ua muestra

Más detalles

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad Regulardad estadístca. E vrtud de la gra varabldad de muchos procesos, se recurre al estudo del comportameto e grades cojutos de elemetos. Se busca captar los aspectos sstemátcos o los aleatoros. Se pretede

Más detalles

Distribuciones Muestrales

Distribuciones Muestrales Estadístca II / Fucoes Varables Aleatoras. Ig. Dey Gozález Dstrbucoes Muestrales Muestreo Aleatoro Poblacó Muestra Herrametas Estadístcas Medaa Muestral ) ) / (( ) / ( ) / ( ; es mpar ; es par = = Meda

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

Consideraciones Previas

Consideraciones Previas Uversdad Técca Federco Sata María Capítulo 7 Estmacó de arámetros Estadístca Computacoal II Semestre 005 rof. Héctor Allede ága : www.f.utfsm.cl/~hallede e-mal : hallede@f.utfsm.cl Cosderacoes revas Coceptos

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO C

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO C Febrero 010 EAMEN MODELO C Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 6011037 FEBRERO 010 EAMEN MODELO C 1 80 5 3 8 4 1 5 6 6 7 1,0 1,47 38-40 18 35-37 36 3-34 5 9-31 46 6-8

Más detalles

RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS REGRESIÓN LINEAL SIMPLE. CORRELACIÓN. realizar el calibrado en análisis instrumental.

RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS REGRESIÓN LINEAL SIMPLE. CORRELACIÓN. realizar el calibrado en análisis instrumental. RELACIÓN ENTRE DOS VARIABLES NUMÉRICAS REGRESIÓN LINEAL SIMPLE. CORRELACIÓN Los métodos de regresó se usa para estudar la relacó etre dos varables umércas. Este tpo de problemas aparece co frecueca e el

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadístca aplcada al Perodsmo Temaro de la asgatura Itroduccó. Aálss de datos uvarates. Aálss de datos bvarates. Seres temporales y úmeros ídce. Probabldad y Modelos probablístcos. Itroduccó a la fereca

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

No debe entregar los enunciados

No debe entregar los enunciados Curso 01-13 EAMEN MODELO A ág. 1 INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 013 Códgo asgatura: 6011037 EAMEN TIO TET MODELO A DURACION: HORA Materal: Addeda (Formularo y Tablas) y calculadora (cualquer modelo)

Más detalles

5- VARIABLES ALEATORIAS BIDIMENSIONALES

5- VARIABLES ALEATORIAS BIDIMENSIONALES Parte Varables aleatoras bdmesoales Prof. María B. Ptarell 5- VARIABLES ALEATORIAS BIDIMENSIONALES 5. Geeraldades Hasta ahora hemos cosderado el caso de varables aleatoras udmesoales. Esto es, el resultado

Más detalles

Módulo Teórico Estadística Básica Prof. Dr. Juan Ignacio Pastore. Unidad N

Módulo Teórico Estadística Básica Prof. Dr. Juan Ignacio Pastore. Unidad N Udad N Varables aleatoras. Defcó de varable aleatora. Varable aleatora dscreta: fucó de probabldad y de dstrbucó acumulada. Varable aleatora cotua. Fucó de desdad de probabldad. Fucó de dstrbucó acumulada.

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

La Metodología de la Verosimilitud Empírica

La Metodología de la Verosimilitud Empírica La Metodología de la Verosmltud Empírca Gozalo Delgado Facultad de Matemátcas, Uversdad Autóoma de Guerrero Méxco deggozalo@aol.com Probabldad y Estadístca Superor Resume Se expoe la metodología de la

Más detalles

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad.

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad. Parte : MECÁNICA CUÁNTICA 1. Los postulados de la Mecáca Cuátca.. Estados Estacoaros. 3. Relacó de Icertdumbre de Heseberg. 4. Teorema de compatbldad. 1 U breve repaso de Mecáca Clásca 1. Partícula clásca:

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

GENERACION DE VARIABLES ALEATORIAS

GENERACION DE VARIABLES ALEATORIAS GENERACION DE VARIABLES ALEATORIAS Hay ua varedad de métodos para geerar varables aleatoras. Cada método se aplca solo a u subcojuto de dstrbucoes y para ua dstrbucó e partcular u método puede ser más

Más detalles

1.- DISTRIBUCIÓN BIDIMENSIONAL

1.- DISTRIBUCIÓN BIDIMENSIONAL º Bachllerato Matemátcas I Dpto de Matemátcas- I.E.S. Motes Oretales (Izalloz)-Curso 0/0 TEMAS 3, 4 y 5.- DISTRIBUCIONES BIDIMENSIONALES. CÁLCULO DE PROBABILIDADES. DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados eptembre 013 EAMEN MODELO B ág. 1 INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 013 Códgo asgatura: 6011037 EAMEN TIO TET MODELO B DURACION: HORA Materal: Addeda (Formularo y Tablas) y calculadora o programable

Más detalles

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados EAMEN MODELO A Pág. 1 INTRODUCCIÓN AL ANÁLII DE DATO FEBRERO 018 Códgo asgatura: 6011037 EAMEN TIPO TET MODELO A DURACION: HORA Materal: Addeda (Formularo y Tablas) y calculadora (cualquer modelo) Calfcacó

Más detalles

Para poder realizar un estudio estadístico, es necesaria previamente, la observación de sus individuos.

Para poder realizar un estudio estadístico, es necesaria previamente, la observación de sus individuos. Icacó a la Ifereca Estadístca Parámetros de ua poblacó. Para poder realzar u estudo estadístco, es ecesara prevamete, la observacó de sus dvduos. La observacó de u dvduo la descrbmos medate uo o más caracteres.

Más detalles

MEDIDAS DE FORMA Y CONCENTRACIÓN

MEDIDAS DE FORMA Y CONCENTRACIÓN MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de

Más detalles

Definición. Número obtenido a partir del análisis de una variable estadística. Procedimiento de cálculo bien definido:

Definición. Número obtenido a partir del análisis de una variable estadística. Procedimiento de cálculo bien definido: Defcó Número obtedo a partr del aálss de ua varable estadístca. Procedmeto de cálculo be defdo: aplcacó de fórmula artmétca Cuatfca uo o varos aspectos de la formacó (cofrmacó de tabla o gráfco) S calculados

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

Esta t d a í d s í titcos o TEMA 3.3

Esta t d a í d s í titcos o TEMA 3.3 TEMA 3.3 Defcó úmero obtedo a partr del aálss de ua varable estadístca. Procedmeto de cálculo be defdo: aplcacó de fórmula artmétca Cuatfca uo o varos aspectos de la formacó (cofrmacó de tabla o gráfco)

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s)

NOMBRE Apellido Paterno Apellido Materno Nombre(s) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

ESTADÍSTICA TEÓRICA: ESTIMADORES

ESTADÍSTICA TEÓRICA: ESTIMADORES Gestó Aeroáutca: Estadístca Teórca Facultad Cecas Ecoómcas y Empresarales Departameto de Ecoomía Aplcada Profesor: Satago de la Fuete Ferádez ESTADÍSTICA TEÓRICA: ESTIMADORES Estadístca Teórca: Estmadores

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles