Curso l Física I Autor l Lorenzo Iparraguirre

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso l Física I Autor l Lorenzo Iparraguirre"

Transcripción

1 Curso l Físca I Autor l Lorenzo Iparragurre AEXO 4.2: La Ley del Impulso en un ntervalo nfntesmal y en un ntervalo fnto En el texto prncpal la Ley del Impulso ha sdo presentada para un ntervalo t cualquera, no necesaramente pequeño, aunque se aclara que en eso hay certo grado de smplfcacón, porque vale para fuerzas constantes. Ahora ben, s las fuerzas van varando mentras transcurre el ntervalo, sempre es posble magnarlo subdvddo en muchos ntervaltos sufcentemente pequeños como para que la varacón de las fuerzas pueda consderarse desprecable dentro de cada uno de ellos. Dado que conceptualmente debe quedar muy claro que la ley debe cumplrse nstante a nstante, en cada nstante, s se la escrbe para estos sub-ntervalos de duracón t sufcentemente pequeña, tendremos una stuacón que podremos tomar de partda, en la cual necesaramente la ley será exacta. Consderemos para ello la accón de fuerzas sobre una partícula desde t A hasta t B, como consecuenca de las cuales el vector p del cuerpo va varando contnuamente como se esquematza en la fgura. tb = t t2 t1 t1 ta = t0 t2 t3 Fg. A4.2.1: se muestra una trayectora cualquera de la cual se consdera el ntervalo desde el nstante t A hasta el nstante t B, subdvddo en partes. Se han dbujado algunos vectores p smplemente para sugerr que van varando de alguna manera cualquera. o se hace nnguna suposcón acerca de s el movmento comenza o fnalza en la zona mostrada, n sobre la duracón del ntervalo. El ntervalo des t A hasta t B está subdvddo de manera que: t 0 = t A, t = t B, y t 1, t 2,...t -1, señalan los nstantes de comenzo/fn de las subdvsones ntermedas. Estos ntervalos se harán nfntesmales a medda que se consdere a crecendo nfntamente. p 0 p es el vector cantdad de movmento ncal, A p p B, es el correspondente vector fnal, y p p(t) es el vector en el nstante t, es decr es el vector fnal de un ntervalo e ncal del sguente. para cada ntervalo tenemos la varacón en el vector p expresada como la dferenca vectoral entre los correspondentes vectores fnales e ncales del ntervalo. Es decr, 121

2 p p p p1 p1 pa, p2 p2 p1 B 1 Curso l Físca I Autor l Lorenzo Iparragurre,, etc., y así hasta el fnal, sendo, para el últmo ntervalo I F t, pro- para cada ntervalo nfntesmal se calcula el mpulso como corresponde, cedmento en el cual se debe tener en cuenta que: el vector F es representatvo de la fuerza resultante, no lo ndcamos con subíndces para smplfcar la notacón. la razón para subdvdr el ntervalo (t A, t B ) en ntervaltos nfntesmales es para que el vector fuerza se mantenga sufcentemente constante (en todas sus componentes y característcas) durante el breve transcurso del tempo que se consdera, de manera que quede ben determnado el vector F que corresponde utlzar para cada mpulso nfntesmal. Utlzamos aquí F para ndcar este vector en cualquera de los nstantes dentro del ntervalo t = t t 1. S ahora consderamos que para cada ntervalo la Ley del Impulso (4.7) dce que I F t debe ser gual a p, podremos escrbr todos estos elementos en dos columnas que deben ser guales térmno a térmno: I1 F 1 t1 p 1 pa I2 F 2 t 2 p 2 p1 I F p 3 p 3 3 t 3 2 F F I1 1 t 1 p 1 p 2 I t p B p 1 Todos los elementos aquí presentados son vectores. La columna de la zquerda contene vectores que representan el mpulso aplcado por la fuerza resultante cada pequeño lapso, y es claro que para obtener el mpulso total comuncado por la fuerza durante todo el ntervalo (t A, t B ), debemos realzar la suma (vectoral) de todos ellos. Por otra parte la columna de la derecha contene vectores que, excepto dos, p A y p B, están todos repetdos con sgnos cambados, es decr que al sumarlos se anularán todos excepto los dos menconados, obtenéndose p B p. A Como además las dos columnas deben ser guales renglón a renglón (para eso las hemos escrto), obtenemos entonces: Suma vectoral de la columna zquerda: I F t = Impulso aplcado por la fuerza resultante entre t A y t B A;B sumado sobre todos los t 122

3 Suma vectoral de la columna derecha: p = Curso l Físca I Autor l Lorenzo Iparragurre p B p A = p = varacón total de p en el ntervalo fnto, dependente sólo de los vectores cantdad de movmento ncal y fnal, absolutamente ndependente de los vectores ntermedos (es decr, ndependente del movmento ntermedo). o hace falta decr que el resultado de sumar la columna derecha, además, es totalmente ndependente de la forma en que se subdvda el ntervalo. Es ndependente de que se lo subdvda nfntesmalmente o no. Lo nfntesmal de la subdvsón sólo es mportante en la columna zquerda, para el cálculo del mpulso aplcado por fuerzas que van varando mentras actúan. Fnalmente la expresón más general posble para Ley del Impulso queda de la sguente manera, con exactamente la msma estructura que enuncamos antes en el texto: I total p OTA Sobre la expresón I A;B F t merecen destacarse las sguentes cosas: La suma es vectoral. Es decr debe plantearse para cada componente, o ben debe realzarse gráfcamente. Muchas veces prescndremos de los subíndces, pero en cada caso hay que prestar atencón al ntervalo del cual se está hablando. La nocón de aplcar mpulso es la nocón de acumular el efecto de aplcar una fuerza proporconalmente al tempo que dura dcha aplcacón. Es una nocón lgada nseparablemente a determnado ntervalo de tempo. Suele escrbrse F (t) para hacer explícto el hecho de que F puede r varando en el tempo, y de este modo suele escrbrse: F(t) t ; expresón en la cual estamos sobreentendendo los subíndces, y que sgnfca absolutamente lo msmo. La notacón matemátcamente correcta para una suma de nfntos térmnos nfntamente pequeños es con el símbolo ntegral en lugar del de sumatora: F(t) t. El símbolo es una S estlzada con la que tambén se IA; B pretende sugerr la dea de sumar. Hay procedmentos específcos para calcular ntegrales, pero nosotros en este curso no los utlzaremos, y consderaremos que conceptualmente este símbolo ndca lo msmo que. Independentemente del procedmento de cálculo que se deba aplcar en determnados casos, ahora sólo debemos dejar en claro que las expresones IA;B F t, o IA; B F(t) t, son símbolos ndcadores de un concepto, de algo I A; B 123

4 Curso l Físca I Autor l Lorenzo Iparragurre que hay que pensar, y no necesaramente ndca una suma que haya que efectuar realmente en la práctca. A contnuacón presentamos un procedmento práctco, un truco podríamos decr, que permten hallar el resultado de la ntegracón o suma en casos smples sn un esfuerzo demasado grande. Impulso como área de la gráfca F(t) S subdvdmos el ntervalo total en muchísmos ntervalos sufcentemente pequeños, sempre podremos expresar el mpulso total como la suma (vectoral) de todos los mpulsos aplcados en cada uno de los ntervalos pequeños. Claro que no ntentaremos hacer este cálculo efectvamente en la práctca, porque s la cantdad de ntervalos pequeños es muy grande, el procedmento podría resultar tremendamente tedoso, y tal vez hasta mposble. Pero tene valor como dea. Es decr, ahora tenemos el problema de averguar el resultado de esta suma de toda una enorme cantdad de pequeñas contrbucones, pero sn hacerla realmente. Para soluconar este problema presentaremos aquí un procedmento al cual recurrremos en varas ocasones en este curso. Consderemos una gráfca de una componente de F, por ejemplo F x, en funcón del tempo, como la de la fgura A Dado que la suma vectoral se debe hacer por cada componente, esto que haremos para la componentes x, luego deberá repetrse para las otras componentes que se consderen (en los casos smplfcados de movmento rectlíneo, esto será sufcente) S trazamos líneas vertcales subdvdendo el ntervalo (t 0, t 1 ) en muchos ntervaltos de duracón t sufcentemente pequeña cada uno, el espaco bajo la gráfca, hasta el eje horzontal, queda subdvddo en rectángulos (o trapecos rectangulares) muy angostos, cuya base, o ancho, es t, y cuya altura es el valor de F x allí, en ese el ntervalo. S ahora efectuamos el producto F x t, obtenemos el área de cada rectángulo. Esto sgnfca que la suma de todos los mpulsos aplcados en todos los ntervalos, es lo msmo que la suma de todas las áreas de todos estos delgados rectángulos, y eso es lo msmo que el área total bajo la gráfca. F x () F x F x (t B ) F x (t) F x (t) F x (t A ) I x (en t) t (s) t A t t B t A t B I x (en t) = F x t = área Fg. A4.2.2: Cuando F x varía en el tempo según la gráfca F x(t), el mpulso que aplca (en x) está dado por el área entre la gráfca y el eje de abscsa en el ntervalo que sea. Las undades de esta área serán las del eje de ordenadas por las del eje de abscsas, es decr, s. t t otar que área debería estar entre comllas porque no es la verdadera área geométrca de la fgura, sno que se calcula con las escalas de cada eje, con dmensones de tempo en el eje de abscsas, y de fuerza en el de ordenadas: este área resulta con dmensones s, ya que es un mpulso. 124

5 Curso l Físca I Autor l Lorenzo Iparragurre Fuerza meda S dvdmos el mpulso total del ntervalo (es decr el área) por t, obtenemos la altura de un rectángulo que tendría la msma área, o sea obtenemos el valor de la fuerza meda, que es la que sendo constante aplcaría el msmo mpulso (en el msmo tempo): I x(ent) F m,x = t O tambén (puesto que vale para cualquer eje): vector fuerza meda = I (ent) t 125

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES

SISTEMAS DE ECUACIONES DIFERENCIALES DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis Físca I Apuntes de Clase 2, 2018 Turno D Prof. Pedro Mendoza Zéls Isaac Newton 1643-1727 y y 1 y 2 j O Desplazamento Magntudes cnemátcas: v m r Velocdad meda r r 1 r 2 r velocdad s x1 2 r1 x1 + r2 x2 +

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

6 Minimización del riesgo empírico

6 Minimización del riesgo empírico 6 Mnmzacón del resgo empírco Los algortmos de vectores soporte consttuyen una de las nnovacones crucales en la nvestgacón sobre Aprendzaje Computaconal en la década de los 990. Consttuyen la crstalzacón

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud

Universidad de Pamplona Facultad de Ciencias Básicas Física para ciencias de la vida y la salud Unversdad de Pamplona Facultad de Cencas Báscas Físca para cencas de la vda y la salud AÁLISIS GRÁFICO DE DATOS EXPERIMETALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA UdelaR Facultad de Cencas Curso de Físca I p/lc. Físca y Matemátca Curso 011 1.- CINEMÁTICA UNIDIMENSIONAL CINEMÁTICA Partícula- Modelo de punto materal, de dmensones desprecables. Ley horara x (t) Funcón

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá:

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá: Objetvos El alumno conocerá y aplcará dversas técncas de dervacón e ntegracón numérca. Al fnal de esta práctca el alumno podrá:. Resolver ejerccos que contengan dervadas e ntegrales, por medo de métodos

Más detalles

Expresiones racionales. la función racional. ... l--- Denominador (no nulo)

Expresiones racionales. la función racional. ... l--- Denominador (no nulo) Epresones raconales Así como llamamos números raconales a los números de la forma % con a b enteros (b :t= O)llamaremos epresones raconales a las epresones de la forma: P() Q()... f--- umerador... l---

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

MECANISMO DE INTERACCIÓN DEL AGUA Y DEL AIRE PERFILES Condiciones en un deshumidificador

MECANISMO DE INTERACCIÓN DEL AGUA Y DEL AIRE PERFILES Condiciones en un deshumidificador MECANIMO DE INTERACCIÓN DE AUA DE AIRE PERFIE Condcones en un humdfcador constante del líqudo adabátco. Temperatura Agua T Temperatura Temperatura Constante T = T T Calor latente Calor atente Ovapor Are

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

, x es un suceso de S. Es decir, si :

, x es un suceso de S. Es decir, si : 1. Objetvos: a) Aprender a calcular probabldades de las dstrbucones Bnomal y Posson usando EXCEL. b) Estudo de la funcón puntual de probabldad de la dstrbucón Bnomal ~B(n;p) c) Estudo de la funcón puntual

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratoro de Físca Mecánca. ITM, Insttucón unverstara. Práctca 0. Colsones. Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla corta,

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Facultad de Ciencias Básicas

Facultad de Ciencias Básicas Facultad de Cencas Báscas ANÁLISIS GRÁFICO DE DATOS EXPERIMENTALES OBJETIVO: Representar gráfcamente datos expermentales. Ajustar curvas a datos expermentales. Establecer un crtero para el análss de grafcas

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

3 - VARIABLES ALEATORIAS

3 - VARIABLES ALEATORIAS arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

Probabilidad Grupo 23 Semestre Segundo examen parcial

Probabilidad Grupo 23 Semestre Segundo examen parcial Probabldad Grupo 3 Semestre 015- Segundo examen parcal La tabla sguente presenta 0 postulados, algunos de los cuales son verdaderos y otros son falsos. Analza detendamente cada postulado y elge tu respuesta

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Práctica 3. Media, mediana y moda.

Práctica 3. Media, mediana y moda. Práctca 3. Meda, ana y moda. La presente práctca, te permtrá estudar las das de tendenca central menconadas, a partr de los sguentes datos que corresponden a la estatura de estudantes, ncaremos la práctca.

Más detalles

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule,

x j x 1,,x n, j 1,,n La condición necesaria y suficiente es que el determinante Jacobiano de la transformación no se anule, Mecánca Cambo de Coordenadas En coordenadas Cartesanas estamos acostumbrados a pensar a los vectores base como versores (vectores de norma 1 o untaros) drgdos a lo largo de los correspondentes ejes, en

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

6.9 El trazador cúbico

6.9 El trazador cúbico 4.9 El trazador cúbco El polnomo de nterpolacón es útl s se usan pocos datos y que además tengan un comportamento polnomal, así su representacón es un polnomo de grado bajo y adecuado. S no se cumplen

Más detalles

CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS

CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS Departamento de Físca - UBU enero de 2017 1 CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS En esta hoja podrán vsualzar el campo magnétco creado por una, dos tres o cuatro correntes rectlíneas

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

EQUILIBRIO DE LA BICICLETA

EQUILIBRIO DE LA BICICLETA JUAN RIUS CAMPS EQUILIBRIO DE LA BICICLETA EDICIONES ORDIS 1 2 EDICIONES ORDIS GRAN VIA DE CARLOS III, 59, 2º, 4ª 19 de Marzo de 2010 08028 BARCELONA 3 4 EQUILIBRIO DE LA BICICLETA Resulta muy dfícl explcar

Más detalles

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza EL ANÁLSS DE LA VARANZA (ANOVA). Estmacón de componentes de varanza Alca Maroto, Rcard Boqué Grupo de Qumometría y Cualmetría Unverstat Rovra Vrgl C/ Marcel.lí Domngo, s/n (Campus Sescelades) 43007-Tarragona

Más detalles

Tema 1.- Variable aleatoria discreta (V2.1)

Tema 1.- Variable aleatoria discreta (V2.1) Tema.- Varable aleatora dscreta (V2.).- Concepto de varable aleatora A cada posble resultado de un expermento lo llamamos suceso elemental, y lo denotamos con ω, ω 2, Llamamos espaco muestral al conjunto

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Análisis de Resultados con Errores

Análisis de Resultados con Errores Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten

Más detalles

PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA

PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA PÁCTICA Nº 5. CICUITOS DE COIENTE CONTINUA OBJETIVO Analzar el funconamento de dferentes crcutos resstvos empleando la Ley de Ohm y las Leyes de Krchhoff. FUNDAMENTO TEÓICO Corrente Eléctrca Una corrente

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Un estimado de intervalo o intervalo de confianza ( IC

Un estimado de intervalo o intervalo de confianza ( IC Un estmado puntual, por ser un sólo número, no proporcona por sí msmo nformacón alguna sobre la precsón y confabldad de la estmacón. Debdo a la varabldad que pueda exstr en la muestra, nunca se tendrá

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

FÍSICA I. Mecánica y Termodinámica PLAN DE ACTIVIDADES AÑO 2001 TRABAJO PRÁCTICO Nº 2

FÍSICA I. Mecánica y Termodinámica PLAN DE ACTIVIDADES AÑO 2001 TRABAJO PRÁCTICO Nº 2 Unversdad Naconal del Nordeste acultad de Cencas Exactas y Naturales y Agrmensura ÍSICA I Mecánca y Termodnámca CARRERAS: Ingenería Eléctrca Ingenería Electrónca PLAN DE ACTIVIDADES AÑO 2001 TRABAJO PRÁCTICO

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE 121 REGRESIÓN LINEAL SIMPLE Dado un conjunto de pares de datos (, y), = 1, K, n., se han desarrollado varos métodos para ajustar una recta de la forma y = a+ b, al dagrama de dspersón de dchos datos. El

Más detalles

5ª Parte: Estadística y Probabilidad

5ª Parte: Estadística y Probabilidad ª Parte: Estadístca y Probabldad. Las notas de los alumnos de una clase son:,,,, 6, 7,,,,,,,, 7,,,, 6,, Haz una tabla de frecuencas. Solucón Varable Frecuencas absolutas Frecuencas relatvas estadístca

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 Rcardo Ramírez Facultad de Físca, Pontfca Unversdad Católca, Chle 1er. Semestre 2008 Corrente eléctrca CORRIENTE ELECTRICA Corrente eléctrca mplca carga en movmento.

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión). Examen de Físca-, del Grado en Ingenería Químca Examen fnal. Septembre de 204 Cuestones (Un punto por cuestón. Cuestón (Prmer parcal: Un satélte de telecomuncacones se mueve con celerdad constante en una

Más detalles

Hoja I.4 SOLUCIÓN DEL EJERCICIO 6

Hoja I.4 SOLUCIÓN DEL EJERCICIO 6 SOLUCIÓN DEL EJERCICIO 6 Se trata de defnr la funcón de códgo sguendo un orden dferente, y para dstngurla la llamamos dod(x,y), que Esta funcón de códgo numera la cuadrícula en el orden ndcado en la fgura,

Más detalles

7ª SESIÓN: Medidas de concentración

7ª SESIÓN: Medidas de concentración Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

Capítulo 7 Bucles. Bucle For-Next. Informática

Capítulo 7 Bucles. Bucle For-Next. Informática Capítulo 7 Bucles Bucle For-Net Un procedmento más práctco para controlar varables que deben tomar valores numércos entre un valor ncal hasta un valor fnal, con un ncremento determnado, es el sguente:

Más detalles

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo Aplcacón de curvas resduo de permeato a sstemas batch en contnuo Alan Dder érez Ávla En el presente trabajo se presentara de manera breve como obtener las ecuacones que generan las curvas de resduo, de

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

El planteamiento de los problemas económicos financieros se desarrollan con base en los conceptos de capitalizaciones y actualizaciones.

El planteamiento de los problemas económicos financieros se desarrollan con base en los conceptos de capitalizaciones y actualizaciones. UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMATICA FINANCIERA Lc. Manuel de

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO N FEH DURION 3 11 3 JULIO 26 DE 2013 9

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

La mecánica de Newton

La mecánica de Newton 8 La mecánca de Newton Contendos del módulo 8.1 Espaco y tempo 8.2 Ley de la nerca 8.3 Momentum 8.4 Centro de masa de un sstema de partículas 8.5 Momentum de un sstema de partículas 8.6 Teorema de conservacón

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

El planteamiento de los problemas económicos financieros se desarrollan con base en los conceptos de capitalizaciones y actualizaciones.

El planteamiento de los problemas económicos financieros se desarrollan con base en los conceptos de capitalizaciones y actualizaciones. UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CAMPUS VILLA NUEVA CURSO MATEMATICA FINANCIERA Lc. Manuel de Jesús Campos Boc

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Www.apuntesdemates.weebl.es TEMA AMO EALARE Y VETORIALE. INTRODUIÓN e entende por magntud cualquer cualdad o propedad medble. ueden clasfcarse en: - Magntudes escalares: Quedan totalmente defndas cuando

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Tema 11: Estadística.

Tema 11: Estadística. Tema 11: Estadístca. Ejercco 1. Un fabrcante de tornllos desea hacer un control de caldad. Para ello, recoge 1 de cada 100 tornllos producdos y lo analza. a) Cuál es la poblacón? b) Cuál es la muestra?

Más detalles

PRÁCTICA 10 CINÉTICA QUÍMICA I: DETERMINACIÓN DEL ORDEN DE REACCIÓN Y DE LA CONSTANTE DE VELOCIDAD

PRÁCTICA 10 CINÉTICA QUÍMICA I: DETERMINACIÓN DEL ORDEN DE REACCIÓN Y DE LA CONSTANTE DE VELOCIDAD PRÁCTICA 10 CINÉTICA QUÍMICA I: DETERMINACIÓN DEL ORDEN DE REACCIÓN Y DE LA CONSTANTE DE VELOCIDAD OBJETIVOS. Estudar la cnétca de una reaccón químca por el método de las velocdades ncales. Determnar los

Más detalles

Mecánica Estadística: Estadística de Maxwell-Boltzmann

Mecánica Estadística: Estadística de Maxwell-Boltzmann Ludwg Boltzmann 1844-1906 James Clerk Maxwell 1831-1879 E. Martínez 1 Lápda de Boltzmann en el cementero de Vena S=k ln W E. Martínez 2 S=k ln W Entropía, una propedad termodnámca Una medda de nuestra

Más detalles

Rentas o Anualidades

Rentas o Anualidades Rentas o Anualdades Patrca Ksbye Profesorado en Matemátca Facultad de Matemátca, Astronomía y Físca 10 de setembre de 2013 Patrca Ksbye (FaMAF) 10 de setembre de 2013 1 / 31 Introduccón Rentas o Anualdades

Más detalles

CASO 1: Variable CONTINUA con idéntica probabilidad de ocurrencia para los infinitos valores comprendidos entre dos extremos (inferior y superior)

CASO 1: Variable CONTINUA con idéntica probabilidad de ocurrencia para los infinitos valores comprendidos entre dos extremos (inferior y superior) DIFERENTES TIOS DE DISTRIBUCIÓN UTILIZACIÓN DE FUNCIONES DE EXCEL EN MODELOS DE SIMULACIÓN Utlzacón ndvdual y conjunta de funcones para la representacón del comportamento de varables bajo las alternatvas

Más detalles

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño EDO: Ecuacón Dferencal Ordnara Solucones numércas Jorge Eduardo Ortz Trvño Organzacón general Errores en los cálculos numércos Raíces de ecuacones no-lneales Sstemas de ecuacones lneales Interpolacón ajuste

Más detalles

Principio del palomar

Principio del palomar Prncpo del palomar Juana Contreras S. Claudo del Pno O. Insttuto de Matemátca y Físca Unversdad de Talca Introduccón Cuando se reúnen 367 personas, es seguro que debe haber al menos dos personas que cumplen

Más detalles