BLOQUE 2 MÉTODOS DE MONTE CARLO Y TÉCNICAS DE BOOTSTRAP. Preliminares. Técnicas de Monte Carlo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "BLOQUE 2 MÉTODOS DE MONTE CARLO Y TÉCNICAS DE BOOTSTRAP. Preliminares. Técnicas de Monte Carlo"

Transcripción

1 BLOQUE 2 MÉTODOS DE MONTE CARLO Y TÉCNICAS DE BOOTSTRAP Preliminares Para seguir adecuadamente estos apuntes es preciso recordar los conceptos claves de inferencia estadística. Es conveniente al menos recordar con claridad los siguientes términos: Contraste de hipótesis Hipótesis nula Hipótesis alternativa Test estadístico Test de una cola; test de dos colas Error tipo I Error tipo II Tamaño y Potencia de un test Región de no-rechazo (aceptación) Región de rechazo Valor crítico P-valor (p-value) Intervalo de confianza Técnicas de Monte Carlo Los procedimientos de Monte Carlo (MC), a los que nos podemos referir como pruebas de MC, experimentos de MC, simulaciones de MC, test o contrastes de MC, tienen un peculiar nombre Monte Carlo dado que necesariamente implican generar un gran número de números aleatorios, como se hace en los juegos de azar de los casinos. El casino más famoso cuando los ordenadores por primera vez fueron capaces de realizar simulaciones era el de Monte Carlo. Esto explica que hablemos de experimento de MC y no de experimentos de LV (Las Vegas). Precisamente la idea fundamental detrás de cualquier método de MC es podemos aprender características de un estadístico (o un test) obteniendo repetidas muestras aleatorias de la población de interés y observando el comportamiento del estadístico para dichas muestras. Los valores observados que va tomando el estadístico para las distintas muestras se utilizan para estimar la distribución de dicho estadístico. Obviamente si previamente conocemos (analíticamente) dicha distribución no es necesario implementar métodos de MC. Se observa que es necesario para los métodos de MC generar números aleatorios. Afortunadamente las secciones anteriores nos han enseñado

2 a hacerlo. Fundamentalmente, toda simulación de MC tiene los siguientes pasos i) Determinar el modelo (población) que representa la verdadera población de interés. ii) Tomar una muestra de la misma. iii) Calcular el valor del estadístico para la muestra generada, y almacenar dicho valor. iv) Repetir los pasos ii y iii para un número B de tiradas. v) Utilizar los B valores almacenados del estadístico de interés para estudiar la distribución del estadístico. Estos pasos pueden ser útiles para estudiar, por ejemplo, la desviación estándar del estadístico. Pero también puede ser extraordinariamente útil para contrastar una hipótesis. Cuando hacemos un contraste estadístico de hipótesis, una vez que observamos el valor que toma el estadístico para una muestra (dada), debemos decidir si el valor observado es consistente con la hipótesis nula o no. Para ello podemos (en caso de no conocer la distribución teórica) utilizar la información que nos proporciona la simulación de MC. Esto requiere que estimemos la distribución del estadístico cuando la hipótesis nula es verdadera (cierta). Recordemos que cuando conocemos la distribución del estadístico, basta que fijemos un nivel de significación para el contraste de hipótesis, y entonces busquemos un valor crítico, para que podamos saber si rechazamos o no la hipótesis nula. Alternativamente (preferiblemente en mi opinión) podemos usar el p-value para realizar el contraste. En el caso de contraste de hipótesis con simulación de MC, el valor crítico y el p- value se obtienen utilizando la distribución estimada para el test en cuestión. El siguiente ejemplo resulta ilustrativo de la técnica usando p-values. Ejemplo El conjunto de dato MCdata contiene 25 observaciones, y sabemos tiene una desviación típica de 7,8. Usemos esos datos para contrastar la siguiente hipótesis nula (Ho) y alternativa (Ha): Ho: versus Ha: Podemos pensar, inicialmente, que los datos provienen de una distribución normal. Visualmente, y a modo sólo del ejemplo, podemos utilizar la función normplot para ver si la distribución normal es apropiada como la población de donde muestrear. normplot(mcdata) Si asumimos que proviene de una normal, entonces

3 % Calcular el valor del estadístico deseado. En este caso la %media muestral. Tobs = mean(mcdata); % Número de muestras de MC deseadas. M = 1000; % Comienza la simulación. Tm = zeros(1,m); for i = 1:M % GEnerar una muestra aleatoria bajo Ho. sigma = 7.8; xs = sigma*randn(1,n) + 454; Tm(i) = mean(xs); end % Obtener el p-value. Es un test de una sola cola (baja). % Buscar todos los valores de la simulación que están por debajo %del valor del estadístico ind = find(tm <= Tobs); pvalhat = length(ind)/m; Obtendremos un valor próximo a 0.007, es decir, el valor del estadístico obtenido de la muestra deja una masa de probabilidad por debajo del 5 por ciento respecto de la distribución muestral que hemos aproximado por MC. Dicho de otro modo, el estadístico toma un valor poco verosímil si la hipótesis nula Ho fuera verdadera. En conclusión, a ese nivel de significación, la Ho se rechaza. Es el momento de trabajar con el ejercicio 6. Los métodos de Monte Carlo son muy frecuentemente utilizados para estudiar el comportamiento de un contraste o estadístico en términos del Error Tipo I y la potencia (=1-Error Tipo II). Supongamos por ejemplo que tenemos un test para el que no estamos seguros de que efectivamente podamos usar una distribución límite estándar normal, y queremos saber si utilizando la aproximación estándar nos equivocamos más de los que estamos dispuestos. O por ejemplo, supongamos que tenemos un test asintóticamente distribuido de acuerdo a una función de probabilidad conocida, sin embargo queremos saber si para muestras pequeñas usar la aproximación asintótica es adecuado. En estos casos es necesario realizar unas pruebas de tamaño del test (error tipo I) para ver si estamos rechazando de acuerdo a lo previsto por la teoría. Los pasos fundamentales (que trabajaremos en el ejercicio 7) son los siguientes Método de Monte Carlo para evaluación del Error Tipo I 1. Determine the pseudo-population when the null hypothesis is true. 2. Generate a random sample of size n from this pseudo-population. 3. Perform the hypothesis test using the critical value. 4. Determine whether a Type I error has been committed. In other words, was the null hypothesis rejected? We know that it should not be rejected because we are sampling from the distribution according to the null hypothesis. Record the result for this trial as, 5. Repeat steps 2 through 4 for M trials. 6. The probability of making a Type I error is

4 . El paso 6 es lo mismo que calcular la proporción de veces que la Ho es falsamente rechazada en las M tiradas que hemos realizado. Esto es una estimación del nivel de significatividad del test para un valor crítico determinado (por la teoría). Ahora es el momento de trabajar el ejercicio 7 es decir, el segundo de este bloque. Técnicas de bootstrapping Lo primero que nos puede llamar la atención es el nombre tan peculiar que tiene esta técnica. Es más sencillo entender el origen de la denominación una vez que entendamos en qué consisten es tipo de técnicas. El bootstrap es un método de Monte Carlo donde no haremos suposiciones paramétricas sobre la población correcta que genera la muestra aleatoria. En su lugar, usamos la muestra como una estimación de la población. Esta estimación se denomina distribución empírica donde cada x i tiene una probabilidad de 1/n. Por tanto, cada x i tiene la misma probabilidad de ser seleccionada en una nueva muestra tomada de. Cuando usamos como nuestra pseudo-población, remuestreamos con reemplazamiento de la muestra original. La nueva muestra obtenida por este procedimiento la denotamos por. Dado que el remuestreo es con reemplazamiento a partir de la muestra original, existe la posibilidad de que algunos puntos aparezcan más de una vez en, o que no aparezcan. Tal y como lo acabamos de exponer, el método es aplicable a un proceso unidimensional, pero es obvio que también puede hacerse para el caso d-dimensional. Uno puede preguntarse por qué es necesario utilizar este procedimiento, y qué utilidad tiene. Recordemos inicialmente que se trata de un procedimiento de Monte Carlo, y por tanto, es útil cuando no podemos obtener una solución analítica para el problema que estamos tratando de resolver. Por ejemplo, supongamos que queremos conocer el error estándar de un estimador. Si este estimador fuera la media muestral, y tuviéramos datos iid, sería muy razonable utilizar dado que el Teorema Central del Límite nos permite estar seguros de que asintóticamente lo estamos haciendo perfectamente.

5 Por otro lado, esto no sería tan sencillo si nuestro estimador fuera, digamos, la mediana o el percentil quinto. Dado que no conocemos la naturaleza del proceso generador de los datos, difícilmente podríamos construir un estimador de su error estándar o un intervalo de confianza. Toda vez que no podemos hacer supuestos sobre la naturaleza del proceso generador, el bootstrap sí nos permite generar este tipo de estimadores, y precisamente ahí está su utilidad. Veamos entonces cómo realizaría para un estimador de nuestro interés, Algoritmo Bootstrap General 1. Dada una muestra aleatoria,, calcula. 2. Toma una muestra con reemplazamiento de la muestra original para formar, donde b indica el número de muestra bootstrap. 3. Calcula el mismo estadístico usando ahora la muestra bootstrap d el paso 2 para obtener 4. Repite los pasos 2 a 3, B veces. 5. Utiliza esta estimación de la distribución de (esto es, las réplicas bootstrap) para obtener la característica deseada (por ejemplo, el error estándar, el sesgo o un intervalo de confianza) A continuación vamos a aplicar el algoritmo general a varios casos. Comenzamos por la estimación bootstrap de error estándar de un estadístico. El algoritmo particular para el error estándar sería el siguiente

6 A modo de ejemplo supongamos que estamos interesados en obtener el error estándar del estimador del apuntamiento de una población. Vamos a estimarlo por bootstrap. Tomamos para ello nuestra muestra MCdata con la que hemos trabajado en los ejercicios previos. El código es el siguiente: load MCdata % Condiciones iniciales: tamaño de la población y número de %réplicas. n = length(mcdata); B = 100;% number of bootstrap replicates % Estimación del estadístico de interés. theta = skewness(mcdata); % Usa la function unidrnd para obtener los índices del %remuestreo. inds = unidrnd(n,n,b); % Extrae estos de los datos. xboot = forearm(inds); % POdemo obetener el apuntamiento de cada columna usando % skewness. thetab = skewness(xboot); % Estimamos ahora el error estándar seb = std(thetab); Hay otras situaciones habituales para las que la estimación por bootstrap nos resulta muy útil. Tal es el caso del sesgo, que es otra cantidad que mide la precisión estadística de un estimador. El sesgo se define como la diferencia entre el valor esperado del estadístico y el parámetro verdadero: Sesgo de ˆθ = E( ˆθ) θ = E[ ˆθ θ]. Muchos estadísticos tienen un sesgo muestral finito, y por tanto su valor es distinto de cero. Sin embargo, asintóticamente son estadísticos insesgados. Los estadísticos sesgados suelen aparecer cuando el estimador es una función no-lineal de los datos. El bootstrap puede utilizarse para estimar el sesgo, y el estimador puede usarse para eliminar el sesgo en el estimador original. La idea consiste en calcular la esperanza sobre la distribución empírica de F. El algortimo sería de la siguiente manera: Como continuación del ejemplo anterior, si quisiéramos estimar el sesgo del apuntamiento muestral, simplemente tendríamos que calcular la

7 media del apuntamiento con las réplicas bootstrap, y restarle la el estimador inicial. Por otro lado, también es posible utilizar estas técnicas para elaborar intervalos de confianza de estimadores. El procedimiento general sería el siguiente: Si los estimadores por bootstrap están ordenados del menor al mayor, y BalphaL y BalphaH son enteros, entonces el intervalo de confianza es [ ˆθ * Bα L, ˆθ * Bα H ]. Completa a continuación el ejercicio 8. EJERCICIOS 6.- En el ejemplo MCdata con p-values hemos obtenido que rechazábamos la hipótesis nula. Ahora vamos a considerar las mismas hipótesis, pero nuestro test estadístico será. Ahora sigue los siguientes pasos % Obtener el valor observado del test estadístico a partir de la muestra MCdat % Genera 1000 muestras aleatorias consistentes con la Ho, recuerda que el número de observaciones de cada muestra ha de ser igual al número de observaciones que hay en MCdata. % Para cada muestra guarda el valor del estadístico de interés valorado para dicha muestra. % Ahora deberías tener un vector con 1000 valoraciones del estadistico de interés. Utiliza la función quantile con un nivel de 0.05 de significatividad para contrastar la Ho. Recuerda que usando quantile, en este caso, obtenemos el valor crítico que nos delimita la frontera entre la región de rechazo y aceptación. % La teoría nos dice que no habría sido necesario usar métodos de MC, toda vez que el estadístico computado se ajusta a una normal (0, 1) y por tanto el valor crítico teórico para esta Ho es de Qué conclusiones puedes sacar al valorar Ho con la distribución teórica (no-simulada) al compararlo con la conclusión obtenida mediante métodos de MC? 7.- Ahora queremos saber si el estadístico utilizado en el ejercicio anterior realmente se comporta como indica su distribución teórica para muestras de tamaño 20. A tal efecto elaboremos una simulación de MC para

8 comprobar si el tamaño del estadístico es correcto. Sigue los siguientes pasos - Fija el número de simulaciones que deseas realizar (M = 1000) - Decide el nivel de significatividad para el contraste de la Ho (alpha = 0.05) - Obtener el valor crítico teórico si usamos z. Ayuda: es , pero usa norminv para determinarlo con el software (no siempre te acuerdas y nunca llevas las tablas encima). - Generar M muestras bajo la Ho - Utiliza las instrucciones bucle if-end para valorar si en cada iteración (cada muestra simulada) el estadístico rechaza falsamente la Ho (es decir, si comete error tipo I) o no. - Para cada iteración deberías contabilizar acumuladamente si el número de veces que se comete dicho error. - Cuando finalices las M iteraciones obtendrás un índice acumulado que te indicará el número de veces que rechazaste (erróneamente) la Ho cuando realmente la hemos generado correctamente. Divide este indicador entre el número de iteraciones, y obtendrás un valor muy próximo a Ahora prueba hacer exactamente lo mismo, pero aumenta el número de simulaciones a M = Has notado variación? - Prueba ahora con M = 10, 50, 100, 150, 200, 300, 500. Compara los resultados para todos los M considerados en el ejercicio con el valor teórico (0.05). Haz un gráfico ilustrativo de lo que sucede. Alguna conclusión? 8.- Intervalo de confianza por percentiles para la media aritmética. Sigue los siguientes pasos: - Genera una población N(0,1) de 100 observaciones. - Calcula su media muestral - Genera un bucle de índices para el remuestreo con reemplazamiento. - Remuestrea B=1000 veces con el bucle anterior la población generada al principio, y calcula las 1000 medias muestrales. - Ordenalas de menor a mayor. - Elije el valor de significación del alpha, y selecciona los valores en la posición B*alpha y B*(1-alpha) de las B medias - Calcula el intervalo para la media. ** Utiliza las normas establecidas para la correcta entrega de ejercicios. Para que los ejercicios sean evaluados y formen parte de la calificación final deben entregarse en tiempo y forma.

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Tests de hipótesis estadísticas

Tests de hipótesis estadísticas Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para

Más detalles

Inferencia Estadística

Inferencia Estadística Felipe José Bravo Márquez 11 de noviembre de 2013 Para realizar conclusiones sobre una población, generalmente no es factible reunir todos los datos de ésta. Debemos realizar conclusiones razonables respecto

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

Práctica 5. Contrastes paramétricos en una población

Práctica 5. Contrastes paramétricos en una población Práctica 5. Contrastes paramétricos en una población 1. Contrastes sobre la media El contraste de hipótesis sobre una media sirve para tomar decisiones acerca del verdadero valor poblacional de la media

Más detalles

Clase 8: Distribuciones Muestrales

Clase 8: Distribuciones Muestrales Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA Pensemos en los tres siguientes ejemplos: Hacemos una encuesta entre los clientes de una tienda para preguntarles su opinión sobre cambios generales que pretendemos hacer en diversas

Más detalles

Inferencia Estadística

Inferencia Estadística MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Inferencia Estadística Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch ** Management Mathematics

Más detalles

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2 Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación

Más detalles

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL Ramón Mahía Febrero 013 Prof. Ramón Mahía ramon.mahia@uam.es Qué se entiende por Multicolinealidad en el marco

Más detalles

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN

MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Suponga que le pedimos a un grupo de estudiantes de la asignatura de estadística que registren su peso en kilogramos. Con los datos del peso de los estudiantes

Más detalles

Estimación. Intervalos de Confianza para la Media y para las Proporciones

Estimación. Intervalos de Confianza para la Media y para las Proporciones Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

Grado en Finanzas y Contabilidad

Grado en Finanzas y Contabilidad Econometría Grado en Finanzas y Contabilidad Apuntes basados en el libro Introduction to Econometrics: A modern Approach de Wooldridge 5.2 Estimadores de Variables Instrumentales La endogeneidad aparece

Más detalles

Un juego de cartas: Las siete y media

Un juego de cartas: Las siete y media Un juego de cartas: Las siete y media Paula Lagares Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla

Más detalles

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA 5.1 Introducción En este capítulo nos ocuparemos de la estimación de caracteristicas de la población a partir de datos. Las caracteristicas poblacionales

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Tema 12: Contrastes Paramétricos

Tema 12: Contrastes Paramétricos Tema 1 Tema 1: Contrastes Paramétricos Presentación y Objetivos. Se comienza este tema introduciendo la terminología y conceptos característicos de los contrastes de hipótesis, típicamente a través de

Más detalles

8. Estimación puntual

8. Estimación puntual 8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

En cualquier caso, tampoco es demasiado importante el significado de la "B", si es que lo tiene, lo interesante realmente es el algoritmo.

En cualquier caso, tampoco es demasiado importante el significado de la B, si es que lo tiene, lo interesante realmente es el algoritmo. Arboles-B Características Los árboles-b son árboles de búsqueda. La "B" probablemente se debe a que el algoritmo fue desarrollado por "Rudolf Bayer" y "Eduard M. McCreight", que trabajan para la empresa

Más detalles

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST 7.1. ANÁLISIS DE LOS ÍTEMS Al comenzar la asignatura ya planteábamos que uno de los principales problemas a los que nos enfrentábamos a la hora

Más detalles

Imagen de Rosaura Ochoa con licencia Creative Commons

Imagen de Rosaura Ochoa con licencia Creative Commons Imagen de Rosaura Ochoa con licencia Creative Commons Durante el primer tema hemos aprendido a elaborar una encuesta. Una vez elaborada la encuesta necesitamos escoger a los individuos a los que se la

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Test ( o Prueba ) de Hipótesis

Test ( o Prueba ) de Hipótesis Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a

Más detalles

Se asignaron al azar ratas en condiciones similares a cuatro dietas (A D). Dos semanas después se midió el tiempo de coagulación.

Se asignaron al azar ratas en condiciones similares a cuatro dietas (A D). Dos semanas después se midió el tiempo de coagulación. EJEMPLO 1 Se asignaron al azar ratas en condiciones similares a cuatro dietas (A D). Dos semanas después se midió el tiempo de coagulación. DIETA1 DIETA2 DIETA3 DIETA4 62 63 68 56 60 67 66 62 63 71 71

Más detalles

Botella-Rocamora, P.; Alacreu-García, M.; Martínez-Beneito, M.A.;

Botella-Rocamora, P.; Alacreu-García, M.; Martínez-Beneito, M.A.; Inferencia estadística (intervalos de confianza y p-valor). Comparación de dos poblaciones (test t de comparación de medias, comparación de dos proporciones, comparación de dos varianzas). Botella-Rocamora,

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 rafael.dearce@uam.es El objeto de las tablas de contingencia es extraer información de cruce entre dos

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

Propiedades de Muestras Grandes y Simulación

Propiedades de Muestras Grandes y Simulación Propiedades de Muestras Grandes y Simulación Microeconomía Cuantitativa R. Mora Departmento of Economía Universidad Carlos III de Madrid Esquema 1 Propiedades en muestras grandes (W App C3) 2 3 Las propiedades

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

EL PODER ESTADÍSTICO. DIFERENCIAS OBSERVADAS CUANDO SE CAMBIA EL ALFA ESTABLECIDO EN UN ESTUDIO DE INVESTIGACIÓN

EL PODER ESTADÍSTICO. DIFERENCIAS OBSERVADAS CUANDO SE CAMBIA EL ALFA ESTABLECIDO EN UN ESTUDIO DE INVESTIGACIÓN EL PODER ESTADÍSTICO. DIFERENCIAS OBSERVADAS CUANDO SE CAMBIA EL ALFA ESTABLECIDO EN UN ESTUDIO DE INVESTIGACIÓN Mylord Reyes Tosta, EdD Resumen Se utilizaron dos ejemplos para una prueba de hipótesis

Más detalles

CONTRASTES DE HIPÓTESIS DE 1 POBLACIÓN

CONTRASTES DE HIPÓTESIS DE 1 POBLACIÓN CONTRASTES DE IPÓTESIS DE POBLACIÓN Autores: Alicia Vila (avilag@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Ángel A. Juan (ajuanp@uoc.edu), Anna López (alopezrat@uoc.edu). ESQUEMA DE CONTENIDOS Definición

Más detalles

1 Introducción a contrastes de hipótesis

1 Introducción a contrastes de hipótesis Inferencia Estadística II Teoría, handout 1 1 Introducción a contrastes de hipótesis En este curso vamos a aprender a usar los datos para cuestionar la validez de ciertas afirmaciones teóricas. Los fenómenos

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

Bloques Repetitivos: Iteración

Bloques Repetitivos: Iteración Fuente: www.appinventor.org Traducción hecha con Google Traductor y mejorada por mi: piatticarlos@gmail.com Bloques Repetitivos: Iteración Una cosa para la que los ordenadores son buenos es la repetición

Más detalles

Tema 2: Estimación puntual

Tema 2: Estimación puntual Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

Estadística y Método Científico Hugo S. Salinas. Fuente: http://dta.utalca.cl/estadistica/

Estadística y Método Científico Hugo S. Salinas. Fuente: http://dta.utalca.cl/estadistica/ Estadística y Método Científico Hugo S. Salinas Fuente: http://dta.utalca.cl/estadistica/ Estadística y Método Científico Podemos definir Estadística como la ciencia de los datos. La palabra ciencia viene

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

3 Cómo determinar las necesidades en innovación de los problemas de la empresa

3 Cómo determinar las necesidades en innovación de los problemas de la empresa 3 Cómo determinar las necesidades en innovación de los problemas de la empresa Palabras clave Caja negra, método de prueba, reparto, valor aleatorio, tabla de decisiones y comprobación Objetivo de la formación

Más detalles

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad

R PRÁCTICA II. Probabilidad-Variables Aleatorias. Probabilidad R PRÁCTICA II Probabilidad-Variables Aleatorias Sección II.1 Probabilidad 15. En el fichero sintomas.dat se encuentran 9 columnas con los resultados de una estadística médica. Cada columna corresponde

Más detalles

Problemas resueltos del Tema 3.

Problemas resueltos del Tema 3. Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad

Más detalles

ESTADÍSTICA SEMANA 4

ESTADÍSTICA SEMANA 4 ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...

Más detalles

Inferencia Estadística

Inferencia Estadística EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre

Más detalles

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local 21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

CAPÍTULO 1: ESTADÍSTICA Y MÉTODO CIENTÍFICO

CAPÍTULO 1: ESTADÍSTICA Y MÉTODO CIENTÍFICO Página 1 de 11 CAPÍTULO 1: ESTADÍSTICA Y MÉTODO CIENTÍFICO Podemos definir Estadística como la ciencia de los datos. La palabra ciencia viene del latín scientia que significa conocimiento. El método científico

Más detalles

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se

Más detalles

Una introducción a la ESTADÍSTICA INFERENCIAL

Una introducción a la ESTADÍSTICA INFERENCIAL Una introducción a la ESTADÍSTICA INFERENCIAL José Chacón Esta obra está bajo una licencia Reconocimiento No comercial Compartir bajo la misma licencia.5 de Creative Commons. Para ver una copia de esta

Más detalles

SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co

SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co SIMULACION Modelos de http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co Julio A. Sarmiento S. Profesor - investigador Departamento de Administración Pontificia Universidad Javeriana

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS MEDIANTE UN ENFOQUE POR CADENAS DE MARKOV ABSORBENTES Lidia Toscana - Nélida Moretto - Fernanda Villarreal Universidad Nacional del Sur, ltoscana@criba.edu.ar

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

TEMA 2: MÉTODO MONTE CARLO

TEMA 2: MÉTODO MONTE CARLO TEMA 2: MÉTODO MONTE CARLO Introducción al tema: En esta sección continuaremos estudiando los elementos necesarios que sustentan el método Monte Carlo. Ya en el tema anterior se vio la aplicación de la

Más detalles

1 Introducción al SPSS

1 Introducción al SPSS Breve guión para las prácticas con SPSS 1 Introducción al SPSS El programa SPSS está organizado en dos bloques: el editor de datos y el visor de resultados. En la barra de menú (arriba de la pantalla)

Más detalles

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico.

Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico. 1 Primeros pasos en R. Al iniciarse R (ver Figura 16), R espera la entrada de órdenes y presenta un símbolo para indicarlo. El símbolo asignado, como puede observarse al final, es > Figura 16. Pantalla

Más detalles

Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Pruebas de ipótesis de Una y Dos Muestras UCR ECCI CI-35 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides ipótesis Estadísticas Conceptos Generales En algunos casos el científico

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Población y muestra. Técnicas de muestreos

Población y muestra. Técnicas de muestreos MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Población y muestra. Técnicas de muestreos Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch **

Más detalles

INDICADORES POR ENCUESTA. Cuaderno Práctico -1 -

INDICADORES POR ENCUESTA. Cuaderno Práctico -1 - INDICADORES POR ENCUESTA Cuaderno Práctico -1 - ÍNDICE Elaboración del CUESTIONARIO...- 4 - Selección de la MUESTRA...- 5 - APLICACIÓN del cuestionario...- 7 - MECANIZACIÓN de datos...- 8 - Cálculo de

Más detalles

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página):

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página): Univ. de Alcalá. Estadística 2014-15 Dpto. de Física y Matemáticas Grado en Biología. Examen final. Miércoles, 21 de Enero de 2015. Apellidos: Nombre: INSTRUCCIONES (LEER ATENTAMENTE). Puedes descargar

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 2700 individuos con 8 variables. Los datos provienen de una encuesta nacional realizada

Más detalles

ESTIMACION DE INTERVALOS DE CONFIANZA

ESTIMACION DE INTERVALOS DE CONFIANZA pag 3. Prohibida su reproducción ESTIMACION DE INTERVALOS DE CONFIANZA Una muestra permite realizar estimaciones puntuales de los parámetros de la población. Utilizando las propiedades de las distribuciones

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

Ciudad de Guatemala, 2013

Ciudad de Guatemala, 2013 Ciudad de Guatemala, 2013 1 Clase 5 Muestreo y tamaño de muestra D i e g o A y c i n e n a diegoaa@ufm.edu Universidad Francisco Marroquín 2 Clases (Profesores) H o r a r i o Actividades en Grupo (Todos)

Más detalles

Nombre...Apellidos... Grado en:...grupo:...

Nombre...Apellidos... Grado en:...grupo:... ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA - Soluciones Estadística- Curso 01/1. 9 de Julio de 01 Nombre...Apellidos... Grado en:...grupo:... 1. Considera la variable aleatoria (v.a.) X cuyos posibles

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

Planificación del tamaño de la muestra. para las evaluaciones de impactos. David Evans, Banco Mundial. (Banco Mundial) Turning Promises into Evidence

Planificación del tamaño de la muestra. para las evaluaciones de impactos. David Evans, Banco Mundial. (Banco Mundial) Turning Promises into Evidence Planificación del tamaño de la muestra para las evaluaciones de impactos David Evans, Banco Mundial Basada en transparencias de Esther Duflo (J-PAL) y Jed Friedman (Banco Mundial) REGIONAL IMPACT EVALUATION

Más detalles

Memoria. Introducción. Scratch

Memoria. Introducción. Scratch Scratch 2 Memoria All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/ccwreg to register your club. Introducción

Más detalles

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES Para la valuación de opciones hay dos modelos ampliamente reconocidos como son el modelo binomial y el modelo de Black

Más detalles

Ejemplos de conversión de reales a enteros

Ejemplos de conversión de reales a enteros Ejemplos de conversión de reales a enteros Con el siguiente programa se pueden apreciar las diferencias entre las cuatro funciones para convertir de reales a enteros: program convertir_real_a_entero print

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Concepto General de Test de Hipótesis

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Concepto General de Test de Hipótesis Pedro Femia Marzo, Mª Teresa Miranda León, José A Roldán Nofuentes, Inmaculada Roldán López Hierro Estadística 2º curso l Grado en Ciencias la Actividad Física y el Deporte ---oo--- Concepto General Test

Más detalles

Capítulo 4 Procesos con estructuras de repetición

Capítulo 4 Procesos con estructuras de repetición Estructura de contador Capítulo 4 Procesos con estructuras de repetición Esta es una operación que incrementa en una unidad el valor almacenado en la variable c, cada vez que el flujo del diagrama pasa

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

NT8. El Valor en Riesgo (VaR)

NT8. El Valor en Riesgo (VaR) NT8. El Valor en Riesgo (VaR) Introducción VaR son las siglas de Valor en el Riesgo (Value at Risk) y fue desarrollado por la división RiskMetric de JP Morgan en 1994. es una manera de medir el riesgo

Más detalles

Tema 3: El modelo de regresión lineal múltiple

Tema 3: El modelo de regresión lineal múltiple Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal

Más detalles

Porqué varían los resultados analíticos?

Porqué varían los resultados analíticos? ESTADÍSTICA BÁSICA I 1. La estadística y sus objetivos. Aplicación de la Estadística en Química Analítica 3. Variabilidad analítica. Distribución normal 4. Otros conceptos básicos. Intervalos de confianza

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Prueba de Software de Conteo Celular

Prueba de Software de Conteo Celular Prueba de Software de Conteo Celular Act. Guadalupe Siordia Montero Universidad Autónoma de Yucatán 25 de Octubre del 2006 Índice 1. Antecedentes 2 2. Planteamiento del problema 4 2.1. Objetivo del trabajo............................

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC Abel Martín ( * ) Rosana Álvarez García ( ) En dos artículos anteriores ya hemos estudiado la distribución Binomial de parámetros

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 2011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 7] Diseños con más de dos grupos independientes. Análisis de varianza con dos factores completamente aleatorizados 1 Índice 7.1 Introducción...

Más detalles