e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1"

Transcripción

1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: + yarc tg - 3) (p) Halla las asíntotas d la siguint función, studia su posición rlativa y prsa ésta gráficamnt: ln f() (+) + 4) (p) Encuntra l punto d la parábola y qu stá más próimo al punto P(-8,). 5) (p) Halla l ára d la rgión dl plano limitada por la curva d cuación yln, la rcta normal a su gráfica n l punto d abscisa y la rcta 3. --

2 CURSO 7-8. Sgunda part. 3 d mayo d 8. 6) (p) Discut y rsulv, n su caso, l sistma: k+y+zk k+(-k)y+(k-)zk k+y+kzk 7) (p) Halla l vctor unitario u (a,b,c) si s sab qu los rangos d las matrics A y B son simultánamnt : A a b c B 3 - a b c 8) (p) Rsulv la siguint cuación, indicando l grado d multiplicidad d sus raícs: ) (p) Halla la distancia ntr las rctas r 3+α, y, z-α y s y, -y+z. ) (p) Calcula la cuación continua d la rcta qu stá n l plano π y corta prpndicularmnt a la rcta r: π -y+3z -5 r y- z

3 CURSO 7-8. Ejrcicio : Estudia las discontinuidads d la función: f() / - / + º) Dom(f)(-,) (,+ ). º) La función s continua n su dominio, ya qu, si a Dom(f): lím a f() lím / - a / + /a - /a + f(a) 3º) La función tin una discontinuidad d salto finito n : lím f() lím / - / + /- - / < < ( PUNTO) lím f() lím / - / + > > lím / (/)' / (/)' lím > > Como s indica n la nota, l límit latral drcho d la función f n rsulta sr, al dar l paso al límit, la indtrminación / : lím f() lím / - / + /+ - / > > Otra forma d studiar la continuidad s drivando la función. Como sal la indtrminación /, aplicamos L'Hôpital. También pud hacrs sacando / factor común n numrador y dnominador, simplificando a continuación. -3-

4 CURSO 7-8. Ejrcicio : Dada la siguint función, s pid: a) la drivada simplificada; b) la cuación d la tangnt d inflión: + yarc tg ( PUNTO) - º) Primro drivamos la función: y' ' (+) (-) (-) +(+) (-) (+ ) + º) La condición ncsaria d punto d inflión s qu la drivada sgunda s anul: - y" (+ ) Para confirmar qu s trata d un punto d inflión aplicamos l critrio d la drivada trcra: s: -(+ y ' ) + (+ ) -(+ (+ ) 4 )+8 -- (+ ) 3 +8 (+ ) 3 y '()- Por tanto, la función tin un punto d inflión n. 3º) Calculamos la ordnada dl punto d inflión: y()arc tg π/4 4º) Calculamos la pndint n l punto d inflión: Rsumindo: y'() y y' π/4 6 - (+ ) 3 5º) Por tanto, la cuación plícita d la tangnt d inflión π y- 4 (-) y- π 4 y + π 4 También pud aplicars l critrio d la variación dl signo d la drivada sgunda, qu s lo más cómodo n st caso. -4-

5 CURSO 7-8. Ejrcicio 3: Halla las asíntotas d la siguint función, studia su posición rlativa y prsa ésta gráficamnt: ln f() (+) ( PUNTO) + º) Dom(f)(-,+ ): +> + >- - >- º) La rcta - s asíntota vrtical d la función: lím - >- ln f() lím (+) - + >- ln ( + ) (- ) º) La rcta y s asíntota horizontal d la función n + : ln lím f() lím (+) lím + ln(+) + ln(+) lím + + Posición rlativa: lím + + lím f()-y ln (+) ln + - (+) + Por tanto, como la difrncia s positiva n +, ya qu numrador y dnominador son positivos, la función s ncuntra situada por ncima d la asíntota. 4º) Eprsamos gráficamnt la posición rlativa d la gráfica d la función rspcto a sus asíntotas: O Para calcular l límit dl numrador aplicamos la rgla dl límit d la composición. Como sal la indtrminación /, aplicamos L'Hôpital. Para obtnr sta indtrminación hmos tnido qu aplicar al numrador la rgla dl límit d la composición. -5-

6 CURSO 7-8. Ejrcicio 4: Encuntra l punto d la parábola y qu stá más próimo al punto P(-8,). ( PUNTO) Sa Q(,y) un punto cualquira d la parábola: y Q(,y) P(-8,) O La distancia d P a Q tin qu sr mínima: dd(p,q) (+8) +y Tnmos qu prsar la distancia n función d una sola variabl. Ahora bin, como Q stá n la parábola, satisfac su cuación: y d (+8) + 4 Como d>, podmos sustituirla por su cuadrado: C(+8) + 4 Como la condición ncsaria d trmo rlativo s qu la drivada valga cro, drivamos, igualamos a cro y rsolvmos la cuación: C' (+8) ( 3 ++8) (+)( -4+9) ± Para aplicar l critrio d la drivada sgunda, drivamos d nuvo y calculamos l valor d la drivada sgunda n -: C" + C"(-)48+5> d s mínima n - Por último: - y4 Q(-,4) Dscomponmos l polinomio por Ruffini. También pud aplicars l critrio d la variación dl signo d la drivada primra. -6-

7 CURSO 7-8. Ejrcicio 5: Halla l ára d la rgión dl plano limitada por la curva d cuación yln, la rcta normal a su gráfica n l punto d abscisa y la rcta 3. ( PUNTO) Calculamos primro la rcta normal a la curva n : yln y()ln y'/ y'() y--(-) y-+ º) Rsolvmos l sistma qu forman las funcions qu limitan por arriba y por abajo l rcinto cuya ára qurmos hallar: y-+ yln -+ln º) Avriguamos ntr y 3 qué función stá por ncima y qué función stá por dbajo: 3º) Calculamos l ára: y y - ln A 3 [ln -(-+)] d 3 (ln +-) d 3 ln ln ln ln ln 3ln 7 (ln +-) d ln d ln C ln C Comprobación: S D I + ln - / ln + - ' ln ln ++ - ln +- Rprsntación gráfica yln O 3 y-+ Si la pndint d la tangnt s m', la d la normal s m- (ya qu m m'-). Ya qu la rcta s la normal a la curva n l punto d abscisa. 3 La corrspondint intgral indfinida la hacmos apart. 4 La intgral qu falta (las otras son inmdiatas d tipo potncial) s hac por parts. -7-

8 CURSO 7-8. Ejrcicio 6: Discut y rsulv, n su caso, l sistma: k+y+zk k+(-k)y+(k-)zk k+y+kzk Aplicamos l método d Gauss: k k k -k k- k k k k ~ k -k Estudiamos los distintos casos: k- k- k k k -k k- k k ( PUNTO) º) Si k, l sistma s compatibl indtrminado y la solución dpnd d un parámtro: ~4 - ~5 - y+z z y z α y z º) Si k, l sistma s incompatibl: º) En los dmás casos l sistma s compatibl dtrminado: k+y+zk k -ky+(k-)z z (k-)zk k- k ky(k-)z(k-) k- y k(k-) k- k(k-) kk -y-zk - k- - k k- k 3 -k -k +k-k k- k 3-3k +k k- 7 k(k-)(k-) k- k(k-) k- ªf-ªf; 3ªf-ªf. Como no s pud dividir por cro, tnmos qu calcular los valors dl parámtro qu anulan los coficints d las incógnitas qu tnmos qu dspjar lugo (caso 3º). 3 Ya qu l númro d incógnitas mnos l númro d cuacions fundamntals s. 4 ªf (-/). 5 3ªf+ªf. 6 Ya qu la última cuación s incompatibl. 7 Factorizamos l numrador. -8-

9 CURSO 7-8. Ejrcicio 7: Halla l vctor unitario u (a,b,c) si s sab qu los rangos d las matrics A y B son simultánamnt : a a A b B - b ( PUNTO) c 3 c El rango d la matriz A s : rg(a)rg a b c rg - a b-a c-a ac c-a El rango d la matriz B s : rg(b)rg 3 - a b c rg 6 - a b c 3 rg - a b -3a+c 4 rg - a b -3a+b+c 5-3c+b+c -3a+b+c cb Por último, l vctor u s unitario: u a +b +c 5 b +c 6 b +8b 9b b /9 b±/3 Por tanto, hay dos solucions: a b c u /3 /3 /3 (/3,/3,/3) -/3 -/3 -/3 (-/3,-/3,-/3) ªf-ªf; 3ªf-ªf. 3ªf. 3 3ªf-3 ªf. 4 3ªf+ ªf. 5 Ya qu ac. 6 Ya qu cb. -9-

10 CURSO 7-8. Ejrcicio 8: Rsulv la siguint cuación, indicando l grado d multiplicidad d sus raícs: ( PUNTO) (3-)(--) raíz simpl /3 - raíz tripl ªc+ªc+3ªc+4ªc. ªf-ªf; 3ªf-ªf; 4ªf-ªf. 3 Ya qu l dtrminant d una matriz triangular s igual al producto d los lmntos d la diagonal principal. --

11 CURSO 7-8. Ejrcicio 9: Halla la distancia ntr las rctas r 3+α, y, z-α y s y, -y+z. ( PUNTO) Calculamos una dtrminación linal d cada una d las rctas: 3+α r y z-α P(3,,) u (,,-) y -β s -y+z y -z y zβ Q(,,) v (-,,) Como [QP ](3,,) y las rctas son, vidntmnt, parallas: [QP ] v d(r,s) d(p,s) v i j k i -4j +k Ya qu sus vctors dirccionals son opustos. --

12 CURSO 7-8. Ejrcicio : Calcula la cuación continua d la rcta qu stá n l plano π y corta prpndicularmnt a la rcta r: π -y+3z -5 r y- z+3 - ( PUNTO) Sa s la rcta buscada y P l punto d cort con r: r s P π Calculamos las cuacions paramétricas d la rcta r: -5 y- z+3 - α 5 y+α z-3-α Como P prtnc a r, P(5,+α,-3-α). Y como prtnc a π: 5-(+α)+3(-3-α) 5--4α-9-3α 7α-7 α- P(5,-,-) Como l vctor dirccional d la rcta r, u (,,-), y l vctor caractrístico dl plano, v (,-,3), son prpndiculars a la rcta s, un vctor dirccional d ésta s: i u v j k i -j -k Por tanto, la cuación continua d la rcta s s: -5 s 4 y+ - z+ - También pud hacrs d la siguint manra. Una vz calculado P como intrscción d la rcta r y l plano π, como la rcta s s prpndicular a r, stará n l plano prpndicular a r qu pasa por P, y como también stá n l plano π, su cuación vin dada como la intrscción d ambos planos; o tnindo n cunta qu los puntos d la rcta s son los puntos X dl plano tals qu l producto scalar d los vctors [PX ] y u s cro. Por tanto, X(+α-3β,α,β). --

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

1) Calcula los límites de la siguiente función en 0 y + : 3x+sen x f(x)= x. 2) Estudia la continuidad y derivabilidad de la siguiente función en x=0:

1) Calcula los límites de la siguiente función en 0 y + : 3x+sen x f(x)= x. 2) Estudia la continuidad y derivabilidad de la siguiente función en x=0: CURSO 22-23. 23 de mayo de 23. ) Calcula los límites de la siguiente función en y + : 3+sen f() 2) Estudia la continuidad y derivabilidad de la siguiente función en : 3) Deriva y simplifica: f() e / +e

Más detalles

f' x =1-e Crecimiento f' x >0 1-e >0 -e >-1 e <1 <1 e >1

f' x =1-e Crecimiento f' x >0 1-e >0 -e >-1 e <1 <1 e >1 Solucions modlo 6 d 009 Sa f:r R la función dfinida por f =+ -. Opción A Ejrcicio 1 [0 7 puntos] Dtrmina los intrvalos d crciminto y dcrciminto d f, así como los trmos rlativos o locals d f [0 puntos]

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos

Más detalles

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente.

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente. CURSO 4-5. Septiembre de 5. ) De la siguiente función f, se pide: a) Dominio. b) Derivada. c) Continuidad y discontinuidades. + f()= ln ) De la función del problema anterior, se pide. a) Asíntotas verticales.

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 15-16 Ejrcicio 1º. (,5 puntos) Sabindo qu calcula los valors d a y b. SOLUC: b = a = 1/ a b 1 cos lim sn( ) s finito y val uno, Ejrcicio º.-

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta

Más detalles

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto)

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto) San Blas, 4, ntrplanta. 983 30 70 54 OPCIÓN A 4 E.- San A = 3 y B = a) Estudiar si A y B tinn invrsa y calcularla cuando sa posibl ( punto) 0 b) Dtrminar X tal qu AX = B I sindo I = 0 (.5 puntos) a) Una

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

Curso: 2º Bachillerato Examen VIII. donde m representa un número real.

Curso: 2º Bachillerato Examen VIII. donde m representa un número real. Nombr: Nota Curso: º Bachillrato Eamn VIII Fcha: d Fbrro d 06 La mala o nula plicación d cada jrcicio implica una pnalización d hasta l % d la nota..- Dada la matriz m dond m rprsnta un númro ral. m a)

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matmáticas II EXAMEN FINAL Junio APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE % Las rspustas rrónas rstan puntos. Dbn rljars

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Tema 13. Aplicaciones de las derivadas

Tema 13. Aplicaciones de las derivadas Tma 3. Aplicacions d las drivadas. Monotonía. Crciminto y dcrciminto d una función.... Etrmos rlativos... 3 3. Optimización... 6. Curvatura... 7 5. Puntos d Inflión... 8 6. Propidads d las funcions drivabls,

Más detalles

x-1-1 x+2-2 lím 2) (1p) Averigua el valor del parámetro k para que la función sea continua en todo su dominio: f(x)= ln(1+x) si -1<x 0 k si x=0

x-1-1 x+2-2 lím 2) (1p) Averigua el valor del parámetro k para que la función sea continua en todo su dominio: f(x)= ln(1+x) si -1<x 0 k si x=0 CURSO 2-2. Septiembre de 2. ) (,5p) Calcula: x 2 x-- x+2-2 2) (p) Averigua el valor del parámetro k para que la función sea continua en todo su dominio: sen(2x) f(x) ln(+x) si -

Más detalles

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto:

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto: CURSO 2-22. 24 de mayo de 2. ) Calcula: sen lím cos - 2) Halla a y b para que la siguiente función sea continua y derivable en =. Calcula la ecuación de la recta tangente en dicho punto: f()= a 2 +b+b

Más detalles

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2. MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 01-1 Ejrcicio 1º. (,5 puntos) Condra la función polinómica f : R R qu vin dada por la prón f ( ) a b c Dtrmina los valors d los parámtros a,

Más detalles

lím 2) (1,3p) Halla m y n para que sea derivable la función: x 2-5x+m si x 1 -x 2 +nx si x>1 sen x y=arc tg 1+cos x x 1-x 2 dx

lím 2) (1,3p) Halla m y n para que sea derivable la función: x 2-5x+m si x 1 -x 2 +nx si x>1 sen x y=arc tg 1+cos x x 1-x 2 dx CURSO -. 5 de mayo de. ) (,p) Calcula: ln x lím x (+senx) sen x ) (,3p) Halla m y n para que sea derivable la función: f(x) x -5x+m si x -x +nx si x> 3) (,3p) Deriva y simplifica la función: 4) (,p) Halla:

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f(

Modelo 3 Opción A. , + ) Decreciente: (0, )) = ( , f( Modlo Opción A Ejrcicio º Sa f : (, ) R la función dfinida por f() Ln() (Ln dnota la función logarito npriano). (a) [ 5 puntos] Dtrina los intrvalos d crciinto d dcrciinto los tros rlativos d f (puntos

Más detalles

tiene por límite L cuando la variable independiente x tiende a x

tiene por límite L cuando la variable independiente x tiende a x UNIDAD (Continuación).- Funcions rals. Límits y continuidad 9. LÍMITES. LÍMITES LATERALES Rcordamos dl año antrior qu una función y f () tin por it L cuando la variabl indpndint tind a, y s notaba por

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5 página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

TABLA DE DERIVADAS. g f

TABLA DE DERIVADAS. g f TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)

Más detalles

a) lim x lim senx sen lim lim lim lim lim x x 2 lim Ejercicio nº 1.- Calcula: Solución: Ejercicio nº 2.-

a) lim x lim senx sen lim lim lim lim lim x x 2 lim Ejercicio nº 1.- Calcula: Solución: Ejercicio nº 2.- Ejrcicio nº.- Calcula: c) 8 sn Evaluación: Fcha: c) 8 sn sn Ejrcicio nº.- Calcula l siguint it y studia l comportaminto d la unción por la izquirda y por la drcha d : Calculamos los its latrals: Ejrcicio

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 1 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 1 - Todos resueltos página 1/5 Problmas Tma 9 Solución a problmas d drivadas - Hoja 1 - Todos rsultos Hoja 1. Problma 1 1. a) Driva y simplifica f (x)= 7 cos 7 ( x+1) b) Driva y simplifica f (x)= x +cos(x) + sn( x) c) Estudia

Más detalles

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x (

si x 0 ( 1) es discontinua en x=2. Calcula b. tiene una solución comprendida entre 1 y 2. Por qué?. x 1 x si x ( ANÁLISIS MATEMÁTICO Continuidad y drivabilidad d funcions si = 0 - Estudia la continuidad d la función f ( ) = si o sn si (, π / ) si π / < 0 - Dtrmina los valors d a y d b para qu sa continua la función:

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x- az - x+()y+ (-a)z x+()y+(a +)za+ (3 PUNTOS)

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE 8. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: - y- z +(a -a-)y - +(a -a-)y+(a-)z-a (3 PUNTOS)

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: y+a za+4 a-y+(a+)z a-y+az (3 PUNTOS) Aplicamos

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

PROBLEMAS RESUELTOS DE INTEGRALES. b) Calcula I. Descomponemos el integrando en suma de fracciones simples:

PROBLEMAS RESUELTOS DE INTEGRALES. b) Calcula I. Descomponemos el integrando en suma de fracciones simples: Matmáticas Intgrals PROBLEMAS RESUELTOS DE INTEGRALES ) Sa I d. a) Eprsa I hacindo l cambio d variabl t. I d t dt dt d d dt t dt t t t ( t ) b) Calcula I. Dscomponmos l intgrando n suma d fraccions simpls:

Más detalles

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a.

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a. 5 Dntro dl triángulo limitado por los js OX y OY y la rcta + y 8, s S inscrib un rctángulo d vértics (a, 0), (0, 0), (a, b) y (0, b). Dtrmina l punto (a, b) al qu corrspond l rctángulo d ára máima. 8 b

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 d fbrro d 006 Timpo: horas 30 minutos Cada problma db ntrgars n hojas d xamn

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

TEMA 4. APLICACIONES DE LA DERIVA ERIVADA DA.

TEMA 4. APLICACIONES DE LA DERIVA ERIVADA DA. Unidad. Funcions.Aplicacions d la drivada TEMA. APICACIONES DE A DERIVA ERIVADA DA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1

2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1 CURSO 28-29. Primera parte. 2 de mayo de 29. ) (p) Calcula el siguiente límite: lím x (x e/x ) 2) (p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades de la función: f(x)= x- 3) (p)

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN. Aplicaciones de la derivada: condiciones de máximo, mínimo, inflexión ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. OPTIMIZACIÓN Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad. Aplicacions d la drivada: condicions d

Más detalles

y+3z=1 (a 2 -a-2)x-y-3z=-1 (a 2 -a-2)x+(a 2-2a)z=2-a -3 a 2-2a -1 3 a 2-2a 1 2-a ~ a ~3 0 a=2, a=-1 a 2-2a=0 a(a-2)=0 a=0, a=2 z=1 y=1-3z

y+3z=1 (a 2 -a-2)x-y-3z=-1 (a 2 -a-2)x+(a 2-2a)z=2-a -3 a 2-2a -1 3 a 2-2a 1 2-a ~ a ~3 0 a=2, a=-1 a 2-2a=0 a(a-2)=0 a=0, a=2 z=1 y=1-3z EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: Aplicamos el método de Gauss: ~ a -a-

Más detalles

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando -PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos

Más detalles

Ejercicios para aprender a integrar

Ejercicios para aprender a integrar Ejrcicios para aprndr a intgrar Propidads d las intgrals: af ) d = a f d b f ) d = Rglas d intgración: ad = a ( f ± g( ) d = f d ± g( ) d a a b [ F( ) ] = F( b) F( ) ( f d = a b Polinomios y sris d potncias

Más detalles

2) (1,2p) Halla las ecuaciones de las asíntotas de la función: f(x)= x-1

2) (1,2p) Halla las ecuaciones de las asíntotas de la función: f(x)= x-1 CURSO 2009-200 0 de marzo de 200. π ) (,3p) Dada la función f(x)=x cos( 2 x)+2x, prueba que existe α en (,2) tal que f'(α)=0. Menciona los resultados teóricos que utilices. 2) (,2p) Halla las ecuaciones

Más detalles

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y

Hoja 1. Trigonometría.doc Hoja 2. Resolución de triángulos.doc Hoja 3. Geometría analítica.doc Hoja 4. Cónicas.doc Hoja 5. Funciones, límites y Hoja Trigonomtríadoc Hoja Rsolución d triángulosdoc Hoja Gomtría analíticadoc Hoja Cónicasdoc Hoja Funcions, límits continuidaddoc Hoja 6 Drivadasdoc Hoja 7 Aplicacions d la drivadadoc Hoja 8 Optimizacióndoc

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles