PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 MATEMÁTICAS II. CÓDIGO 158

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 MATEMÁTICAS II. CÓDIGO 158"

Transcripción

1 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 01 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones A o B. No está permitido utilizar calculadoras programables ni que realicen cálculo simbólico, integrales o gráficas. OPCIÓN A: CUESTIÓN A.1: a) [1,5 puntos] Determine para qué valores del parámetro a el conjunto de vectores S {(1,a,1),(1 a,a 1,0),(1,1,a)} forma una base de R. b) [1,5 punto] Estudie el rango del conjunto de vectores S en los casos en que no forme una base de R. CUESTIÓN A.: [,5 puntos] Determine la ecuación implícita (o general) del plano que contiene al punto A (0,1,) y es perpendicular a la recta { x + y z 1 r : x y + z CUESTIÓN A.: Dada la función f (x) x a) [0,75 puntos] Dominio de definición. ( ) x 1 1, se pide: b) [0,5 puntos] Calcule lím f (x). Es posible calcular también lím f (x)? Justifique la x 1 + x 1 respuesta. c) [1,5 puntos] Calcule lím x + f (x). CUESTIÓN A.4: [,5 puntos] De todas las primitivas de la función f (x) de coordenadas (0, 1). ex, encuentre la que pasa por el punto 1 + ex

2 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 01 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones A o B. No está permitido utilizar calculadoras programables ni que realicen cálculo simbólico, integrales o gráficas. OPCIÓN B: CUESTIÓN B.1: a) [1,5 puntos] Dada la matriz A A y A 4. b) [1,5 puntos] Calcule A CUESTIÓN B.: Considere las rectas r y s dadas por las ecuaciones, calcule las potencias A, r : x 7 y a 4 z + 6 5a 6 y s : x 5 y 1 1 z 6 4. a) [ puntos] Estudie la posición relativa de r y s en función del parámetro a. b) [0,5 puntos] Calcule el punto de corte de r y s en los casos en que se corten. CUESTIÓN B.: [,5 puntos] Considere la función dada por { x f (x) x + a si x 0 x + bx + b + 1 si x > 0 Determine los valores de los parámetros a y b para los cuales f (x) es continua y derivable en todo R. CUESTIÓN B.4: [,5 puntos] Calcule el área comprendida entre la curva y 6 + x, el eje de abscisas y las rectas verticales que pasan por los puntos de inflexión de dicha curva.

3 SOLUCIONES DE LA OPCIÓN A: CUESTIÓN A.1 a) El conjunto S forma una base de R si y sólo si su rango es, es decir, si y sólo si el determinante de la matriz formada por los vectores de S es distinto de cero. Por ello, consideremos A dicha matriz, 1 1 a 1 A a a a y calculemos su determinante, A a(a 1) + (1 a) (a 1) a (1 a) (a 1)(a + a ) (a 1) (a + ). Se tiene entonces que A 0 si y sólo si (a 1) (a + ) 0, es decir, si y sólo si a 1 o a. Por lo tanto, S forma una base de R para todos los valores de a distintos de 1 y de, es decir, a 1 y a. b) Como sabemos por el apartado anterior, los valores de a para los que S no forma una base de R son a 1 y a. Estudiemos entonces el rango de S para cada uno de estos dos casos o, equivalentemente, el rango de la matriz correspondiente A en cada uno de los dos casos. Si a 1 la matriz A se reduce a A , cuyo rango es 1, ya que tiene al menos un elemento distinto de cero (1 0) y todos los menores de orden que se pueden formar a partir de dicho elemento distinto de cero son cero: y Por lo tanto si a 1, rango(s) 1. Cuando a la matriz A es A menos un menor de orden distinto de cero, ,, cuyo rango es, ya que tiene al y el único menor de orden que contiene es el propio determinante de A, que sabemos que es cero si a. Por lo tanto en este caso tenemos que rango(s). CUESTIÓN A. Solución 1: Para calcular la ecuación del plano, basta con encontrar el vector director de la recta r, que será a su vez perpendicular al plano que nos piden. Por lo tanto, una vez que conozcamos dicho vector, bastará con considerar el haz de planos perpendicular a

4 la recta r y, de entre todo ellos, determinar cuál es el que pasa por el punto A. Pasemos ahora a realizar esto. Dado que la recta r viene dada como intersección de dos planos, la manera más sencilla de calcular su vector director v r es hacer el producto vectorial de los vectores perpendiculares a dichos planos, es decir, v r i j k ( ), 1 1 1, (0,, ). Como únicamente nos importa la dirección de v r, si queremos podemos trabajar con el vector (0,1,1), que es colineal a él y más sencillo. Así, el haz de planos perpendicular a la recta r viene dado por y + z D, D R. Ahora basta con calcular el valor de D para el cual el plano y + z D pasa por A (0,1,), es decir, 1 + D D. Por tanto, la ecuación implícita (o general) del plano pedido es y + z. Solución : Otra forma ( más sencilla?) de resolverlo es observar que, dado que la recta r viene dada como intersección de dos planos, los vectores perpendiculares a dichos planos son precisamente vectores directores de los planos perpendiculares a la recta r. Por lo tanto, podemos tomar ambos vectores v (,1, 1) y w (1, 1,1) como vectores directores del plano que nos piden. Como sabemos además que el plano contiene al punto A (0,1,), entonces su ecuación implícita viene dada por x 0 1 y z 1 1 0, es decir, Esto es, (x 0) (y 1) (z ) (y 1) (z ) 0 y + z. 0. CUESTIÓN A. a) Por el tipo de función, para que esté bien definida debe ser en primer lugar x 1, para que no se anule el denominador de la fracción, y también debe ser 0, para que x 1 exista su raiz cuadrada. Por tanto debemos estudiar el signo del cociente. Al tratarse x 1 de un cociente de polinomios de primer grado, basta con observar los cambios de signo del numerador y denominador y ver qué pasa con su cociente. El numerador es 0 si x 1, es si x > 1 y es si x < 1. El denominador x 1 es 0 si x 1, es si x > 1 y es si x < 1. Por lo tanto, el cociente es 4

5 i) 0 si x 1; ( ) ii) > 0 si x < 1 o si x > 1 ( ) iii) < 0 si x > 1 y x < 1. ( ) ; En resumen, el dominio de definición de la función es (, 1] (1,+ ). b) El lím x 1 + f (x) es simplemente lím f (x) x 1 + lím f (x) 1 x 1,x>1 ( ) 0 1 1( 1) 1 +. Por otra parte, el lím x 1 f (x) no se puede calcular porque la función f (x) no está definida a la izquierda de x 1 para valores muy próximos a x 1. c) En principio, el lím x + f (x) nos da una indeterminación del tipo 0, ya que ( ) ( ) lím f (x) lím x x + x + x 1 1 lím x + x 1 1 (1 1) 0 puesto que, por la regla de los grados, sabemos que lím x + x Para resolver esta indeterminación, operamos algebraicamente de la siguiente manera: x 1 1 x 1 1 x 1 x 1 ( x 1)( + x 1) x 1( + x 1) () (x 1) ()(x 1) + (x 1) x 1 + x 1. Por lo tanto, y, por la regla de los grados, se tiene ( ) lím x x + x 1 1 x ( ) x 1 1 x x 1 + x 1, lím x + x x 1 + x Si no queremos (o no sabemos) utilizar en este último paso la regla de los grados, basta con dividir el numerador y el denominador por x para obtener que ( ) x x 1 1 x x 1 + x 1, 5 x x x 1+x 1 x 1 1 x x

6 por lo que ( ) lím x x + x 1 1 lím x x x CUESTIÓN A.4 Para calcular la integral indefinida e x 1 + e x dx hacemos el cambio de variable y e x, Por lo tanto, dy e x dx y se tiene e x 1 + e x dx ex e x dx 1 + e x A continuación, operamos algebraicamente Por lo tanto Es decir, e x 1 + e x dx Por tanto, todas las primitivas de f (x) y 1 + y dy. y 1 + y 1 + y y 1 + y. ( y 1 + y dy 1 1 ) dy y 1 + y e x 1 + e x dx ex ln(1 + e x ). ex sonde la forma 1 + ex e x ln(1 + e x ) +C, 1 dy y ln(1 + y). 1 + y siendo C una constante de integración. Para determinar el valor de C, obligamos a la solución a pasar por el punto (0,1), es decir, e 0 ln(1 + e 0 ) +C 1 1 ln +C 1 C ln Por lo tanto la solución es e x ln(1 + e x ) + ln, 6

7 SOLUCIONES DE LA OPCIÓN B: CUESTIÓN B.1 a) En primer lugar, calculamos 0 4 A A continuación, A A A donde I denota la matriz identidad, I A 4 A A I A A. Por lo tanto I. b) Como sabemos que A I, para calcular A 01 nos interesa dividir 01 entre y calcular el resto de la división, de manera que escribimos Por lo tanto A 01 A 670+ A 670 A (A ) 670 A. Ahora observamos que 670 5, por lo que (A ) 670 ( I) 670 ( I) 5 (( I) ) 5 I 5 I, ya que ( I) ( I) ( I) I. Finalmente tenemos que A 01 (A ) 670 A I A A CUESTIÓN B. a) El vector director de la recta r es v r (7,a 4,5a 6) y pasa por el punto A (0,0, 6). En cuanto a la recta s, su vector director es v s (, 1,4) y pasa por el punto B (5,1,6). Por lo tanto, para estudiar la posición relativa de las rectas r y s debemos estudiar el rango de las matrices ( ) v r vr y v s v s AB con AB B A (5,1,1) 7

8 En primer lugar, estudiemos el rango de la matriz v r 7 a 4 5a 6 v s 1 4 AB Si calculamos su determinante tenemos que v r v s AB 7 a 4 5a a 96 0 a v r Por lo tanto, si a 4 el rango de la matriz v s es y las rectas se cruzan. AB v r Por otra parte, cuando a 4 el rango de la matriz v s es. En efecto, en ese caso su AB rango no puede ser (ya que el determinante se anula) y tenemos que v r v s 1 4. AB Podemos entonces encontrar y menor de orden distinto de cero, por ejemplo, el formado por sus dos primeras columnas y sus dos primera filas, es decir, ( ) vr Además, por la misma razón cuando a 4 el rango de la matriz es, ya que el v s mismo menor nos sirve para concluir que su rango es. Por lo tanto, cuando a 4 las dos ( ) v r vr matrices y v s tienen rango, por lo que las rectas se cortan. v s AB Observación: Aunque no nos ha hecho falta en nuestro razonamiento, se puede observar de hecho que la matriz ( ) ( ) vr 7 a 4 5a 6 v s 1 4 tiene siempre rango, independientemente del valor del parámetro a. En efecto, el menor de orden formado por sus dos primeras columnas es 7 a a 0 a 5. Por tanto dicho menor es distinto de cero siempre que a 5. Pero en el caso a 5 tenemos otro menor de orden distinto de cero, ya que en ese caso el menor de orden formado por la primera y la tercera columna es distinto de cero, puesto que dicho menor es 7 5a a 0 a

9 Por tanto, independientemente del valor de a( siempre ) tenemos un menor de orden distinto de cero, por lo que el rango de la matriz es siempre. vr v s b) Como hemos visto en el apartado anterior, las rectas se cortan cuando a 4. En ese caso, para calcular el punto de corte escribimos las rectas en forma paramétrica x 7λ x 5 + µ r : y 0 y s : y 1 µ z λ z 6 + 4µ Por la ecuación de r debe ser y 0, por lo que llevando esto a la ecuación de s sabemos que µ 1. Por tanto, haciendo µ 1 en la ecuación de s tenemos el punto de corte (8,0,10). CUESTIÓN B. Como f (x) es continua en todo R, debe ser continua en x 0 por lo que debemos tener f (0) lím x 0 + f (x). Observemos que f (0) a a mientras que lím f (x) lím + bx + b + 1) 0 + b 0 + b + 1 b + 1. x 0 + x 0 +( x Por lo tanto tenemos una primera relación entre a y b que es Por otra parte, tenemos que f (x) a b + 1. { x si x < 0 x + b si x > 0 Como f (x) es derivable en todo R, debe ser derivable en x 0 por lo que debemos tener Ahora bien, y lím f (x) lím f (x). x 0 x 0 + lím f (x) lím ) x 0 x 0 (x lím f (x) lím + b) b. x 0 + x 0 +( x Por tanto debe ser b y, por la relación anterior, se tiene a b + 1. CUESTIÓN B.4 Calculemos en primer lugar los puntos de inflexión de la curva y f (x), es decir 6 + x los puntos que satisfacen la ecuación f (x) 0. Para ello, calculamos la primera y la 9

10 segunda derivada de f (x): f (x) 4x (6 + x ) 1x (6 + x ), f (x) 1(6 + x ) + 1x (6 + x ) 4x (6 + x ) 4 1(6 + x ) + 1 8x (6 + x ) 1( 6 + 6x ) (6 + x ) 7(x 1) (6 + x ). Entonces, los puntos de inflexión son las soluciones de la ecuación 7(x 1) (6 + x 0, es ) decir, x 1 0 x ±1. Los puntos de inflexión de la curva son entonces los puntos de abscisas x 1 y x 1. A continuación observamos que la curva está siempre por encima del eje de abscisas, ya que la función f (x) es siempre positiva, f (x) > 0 para todo valor de x. Por lo 6 + x tanto, el área que nos piden viene dada por la siguiente integral definida área x dx. Esta integral es del tipo arcotangente. En efecto, observando que 6 + x ( ) x 1 ( ) 1 + x se tiene que la integral indefinida es 6 + x dx 1 dx ( ). 1 + x Haciendo ahora el cambio de variable y que 6 + x dx 1 dy 1 + y Por lo tanto, aplicando la regla de Barrow tenemos que área 1 ( ) x x dx arctan ( π 6 π ) 6 π 6 π 6. x, es decir, x y, se tiene dx dy por lo ( dy x 1 + y arctany arctan ). 1 ( ) ( )) 1 1 arctan( arctan 10

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 01 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD Junio 2011 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD Junio 2011 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones A o B. No está permitido utilizar calculadoras

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO 158 MATEMÁTICAS II. JUNIO 2014

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO 158 MATEMÁTICAS II. JUNIO 2014 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO 158 MATEMÁTICAS II. JUNIO 2014 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

, donde denota la matriz traspuesta de B.

, donde denota la matriz traspuesta de B. Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

SEPTIEMBRE 2005 PRUEBA A. b) Para a = 1, calcúlese la recta que pasa por (1, 1, 1) y se apoya en r y s.

SEPTIEMBRE 2005 PRUEBA A. b) Para a = 1, calcúlese la recta que pasa por (1, 1, 1) y se apoya en r y s. Selectividad Septiembre 5 SEPTIEMBRE 5 PRUEBA A PROBLEMAS - a) Calcúlense los valores de a para los cuales las rectas r x = λ y s y = 3+λ son perpendiculares z = + a λ b) Para a =, calcúlese la recta que

Más detalles

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque.

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 203 OBSERVACIONES: FASE ESPECÍFICA MATEMÁTICAS El alumno deberá responder únicamente a una

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO 158 MATEMÁTICAS II. JUNIO 2015

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO 158 MATEMÁTICAS II. JUNIO 2015 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO 158 MATEMÁTICAS II. JUNIO 2015 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones A

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II COMUNIDAD FORAL DE NAVARRA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Grupo Opción A A El sistema es cuadrado, por lo que podemos calcular

Más detalles

Opción de examen n o 1

Opción de examen n o 1 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + +

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos Ejercicio n º 1 de la opción A de junio de 2003 Sea Ln(1 -x 2 ) el logaritmo neperiano de 1 - x 2 y sea f : (-1,1) R la función definida por f(x) = Ln(1 -x 2 ). Calcula la primitiva de f cuya gráfica pasa

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

Matemáticas II Curso

Matemáticas II Curso Matemáticas II Curso 03-04 Exámenes LÍMITES Y CONTINUIDAD. Límites y continuidad Ejercicio. Dada la función f(x) = x 3 + x cos πx, demostrar que existe un valor x = a positivo y menor que, que verifica

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II REGIÓN DE MURCIA CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque A Para saber si la matriz tiene inversa, el determinante de la

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5)

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5) CURSO 04 05 SOLUCIONES (Modelo 5) JUNIO Opción A Ejercicio.- ['5 puntos] Se quiere vallar un campo rectangular que está junto a un camino. Si la valla del lado del camino cuesta 80 euros/metro y la de

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A Corrección examen PAU. Junio 6. OPCIÓN A a) Si x { }, vemos que la función está perfectamente definida y por tanto es continua, x { } Así pues, el único problema que podría existir es en x =. Para que

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA MODELO CURSO 009-00 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A El punto de infleión es aquel en el que la derivada segunda se anula. Calculamos

Más detalles

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos

Examen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Eamen de Matemáticas 2 o de Bachillerato Junio 2002-Selectividad-Opción B Tiempo: 90 minutos Problema 1 (2 puntos) Hallar una ecuación cartesiana del plano que contiene a la recta r: y es perpendicular

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II 1 Matemáticas II COMUNIDAD DE MADRID MODELO CURSO 009-010 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio 1 a) Para calcular los extremos y los intervalos

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS Curso INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS Curso INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBA DE ACCESO PARA MAYORES DE 5 AÑOS Curso 17-18 Ex. Modelo MATERIA: MATEMÁTICAS II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN Después de leer atentamente

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II EXTREMADURA CONVOCATORIA JUNIO 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A a) La matriz A tiene tres filas de las que para calcular el determinante

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

EvAU 2018 Opción A. Comunidad de Madrid. 2x (m + 1)y + z = 1. x + (2m 1)y + (m + 2)z = 2 + 2m, 1 m 0. 2 m m 1 m + 2

EvAU 2018 Opción A. Comunidad de Madrid. 2x (m + 1)y + z = 1. x + (2m 1)y + (m + 2)z = 2 + 2m, 1 m 0. 2 m m 1 m + 2 } EvAU 28 Opción A Comunidad de Madrid } Ejercicio. Dado el sistema de ecuaciones + my m + )y + z se pide: + 2m )y + m + 2)z 2 + 2m, a) Discutir el sistema en función del parámetro m. b) Resolver el sistema

Más detalles

Selectividad Matemáticas II septiembre 2016, Andalucía (versión 1)

Selectividad Matemáticas II septiembre 2016, Andalucía (versión 1) Selectividad Matemáticas II septiembre 16, Andalucía (versión 1) Pedro González Ruiz 14 de septiembre de 16 1. Opción A Problema 1.1 Sabiendo que es finito, calcular m y el valor del límite. ( 1 lím x

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2012 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2012 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2012 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Junio 2009 MATEMÁTICAS II. CÓDIGO 58

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Junio 2009 MATEMÁTICAS II. CÓDIGO 58 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Junio 2009 MATEMÁTICAS II. CÓDIGO 58 OBSERVACIONES IMPORTANTES: El alumno deberá responder a una sola de las dos cuestiones de cada

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto)

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado. Bachillerato L. O. G. S. E. Instrucciones: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios deben

Más detalles

EVAU. Junio matematiib.weebly.com

EVAU. Junio matematiib.weebly.com Propuesta A 1A. x + a si x f(x) = { x + bx 9 si x > a) Se trata de una función definida a trozos a partir de dos funciones polinómicas, por lo que el único punto donde la función podría no ser continua

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para

Más detalles

IES Francisco Ayala Examen Junio de 2009 (modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Francisco Ayala Examen Junio de 2009 (modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, junio de 009 modelo 3 ['5 puntos] Calcula el siguiente límite (In denota logaritmo neperiano), lim x 1 [ 1/Ln(x) /(x 1) ] Calcula el siguiente límite (In denota logaritmo

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Selectividad Matemáticas II junio 2016, Andalucía (versión 3)

Selectividad Matemáticas II junio 2016, Andalucía (versión 3) Selectividad Matemáticas II junio 06, Andalucía (versión 3) Pedro González Ruiz 5 de junio de 06. Opción A Problema. Sabiendo que l = lím ln(x+) asenx+xcos(3x) x es finito, calcular a y el valor del límite

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos)

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos) PROPUESTA A 1A. a) Calcula los valores de los parámetros a, b R para que la función { sea continua y derivable en x = 0. (1 5 puntos) b) Para los valores encontrados, calcula la ecuación de la recta tangente

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2007 Sea f : R R la función definida por f(x) = (x - 3)e x. [1 punto] Calcula los extremos relativos de f (puntos donde se obtienen y valores que se alcanzan).

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Sobrantes del 05 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio opción A, modelo del 05 [ 5 puntos] Sea f : R R la función dada por f(x) = ax 3 + bx + cx + d Halla

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

Examen de Matemáticas II (Junio 2016) Selectividad-Opción A Tiempo: 90 minutos. ln(1 x) 1 x. si x < 0 f(x) = xe x si x 0

Examen de Matemáticas II (Junio 2016) Selectividad-Opción A Tiempo: 90 minutos. ln(1 x) 1 x. si x < 0 f(x) = xe x si x 0 Examen de Matemáticas II (Junio 16) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dada la función: ln(1 x) si x < f(x) = 1 x xe x si x se pide: a) (1 punto). Estudiar la continuidad de

Más detalles

1. Considera la función definida por f(x) =. a. Descompón la función en fracciones simples. Recuerda que las posibles raíces enteras de un polinomio son los divisores del término independiente. b. Calcula

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos) Isaac Musat Hervás 22 de mayo de 2013 Capítulo 5 Año 2004 5.1. Modelo 2004 - Opción A Problema 5.1.1 2 puntos) a) 1 punto) Calcular

Más detalles

Seis problemas resueltos de geometría

Seis problemas resueltos de geometría Problema 1 a) Dados los puntos P(4, 2, 3) y Q(2, 0, 5), da la ecuación implícita del plano π de modo que el punto simétrico de P respecto a π es Q. b) Calcula el valor del parámetro λ R para que el plano

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

Problemas resueltos correspondientes a la selectividad de Matemáticas II de junio de 2009, Andalucía

Problemas resueltos correspondientes a la selectividad de Matemáticas II de junio de 2009, Andalucía Problemas resueltos correspondientes a la selectividad de Matemáticas II de junio de 2009, Andalucía Pedro González Ruiz septiembre de 20. Opción A Problema. Calcular el siguiente límite ln denota logaritmo

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID Principales conceptos que se tendrán en cuenta en la elaboración de las pruebas de Acceso a la Universidad para los estudiantes provenientes del Bachillerato LOGSE de la materia "Matemáticas II" ÁLGEBRA

Más detalles

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función.

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función. 1.- Dada la función: f(x) = x + 1 a) Calculad el dominio de f(x). Encontrar también sus asíntotas verticales, horizontales y oblicuas. b) Encontrad la recta tangente a f(x) en el punto x= 0. c) Calculad

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Junio, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2010 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

Estudia la posición relativa de los planos siguientes según los distintos valores de m: ; A b = m 1 m 1

Estudia la posición relativa de los planos siguientes según los distintos valores de m: ; A b = m 1 m 1 Problema 1 Estudia la posición relativa de los planos siguientes según los distintos valores de m: π 1 x + y + z = m + 1 π 2 mx + y + ) z = m π 3 x + my + z = 1 Si vemos los tres planos como un sistema

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2013 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ARAGÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz. Algebra Opción A a) Las matrices correspondientes son: A m m m m m m A* El determinante

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) Calculamos previamente los vectores directores de

Más detalles