UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012"

Transcripción

1 UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN Estrutur e l prue: l prue se ompone e os opiones "A" y "B" un e ls ules onst e ino uestiones que su vez pueen omprener vrios prtos untuión: C uestión se lifirá on un puntuión máxim e 2 puntos Los prtos e uestión se punturán on el vlor que se ini en los enunios untuión glol máxim 0 puntos Instruiones: Sólo se porá ontestr un e ls os opiones esrrollno íntegrmente su ontenio TIEMO: Un hor y treint minutos Opión A Cuestión nº 2 puntos En l figur junt se muestr el igrm Fe-C simplifio Conteste ls siguientes uestiones reltivs l ompuesto eutétio leeurit: orentje e hierro y e rono 05 puntos Tempertur l que empiez soliifir y tempertur l que termin 05 puntos Cuáles son los onstituyentes en los que se trnsform l soliifir y uál es su proporión?05 puntos Qué trnsformión se proue uno l tempertur esiene por ejo e 700ºC 05 puntos SOLUCION: 45% e C- 955% e Fe Empiez y termin 00ºC Se trnsform en ustenit y ementit l 50% un Se trnsform to l ustenit que que en un eutetoie perlit que tiene un 4% /7 e ementit y un 86% 6/7 e ferrit 600ºC 500ºC Líquio 900ºC Austenit 00ºC Ferrit 700ºC Fe Fe C Cementit % en peso e rono

2 Cuestión n 2 2 puntos El interior e un ongelor que emple un máquin frigorífi e 45 W e poteni y funion e uero l Cilo e Crnot se mntiene l tempertur e 8 C Conoieno que l efiieni e l máquin es 75 lule: El vlor e l tempertur miente en el exterior el ongelor punto El lor elimino el interior el ongelor 05 puntos El lor porto l exterior el ongelor 05 puntos Q lor eio l foo liente Q 2 lor retiro el foo frío W trjo suministro por el ompresor Q Q 2 W T tempertur el foo liente T K η mf Q 2 / W Q 2 / Q Q 2 T 2 / T T 2 T T 2 / η mf T / K 6 C Q 2 η mf W W Q Q 2 W W Cuestión nº 2 untos En el igrm e loques e l figur l funión e trnsfereni el ompror es: E < S 5 E S 0 X E COMARADOR 5 S Z X 2 E COMARADOR S 5 Z 2 Oteng l funión e trnsfereni Z fx unto Oteng l funión e trnsfereni Z 2 fx 2 unto X < Z 5 5 X; X > Z 05X; X2 < S 5 Z2 25 X2 > S 0 Z2 0 Cuestión nº 4 2 puntos Diuje un esquem e un iruito neumátio one el émolo e un ilinro e ole efeto es iono por un válvul on pulsor mnul y uno lnz l rrer máxim retroee utomátimente 2 puntos

3 Cuestión nº 5 2 puntos Represente en omplemento 2 y usno 8 its el número puntos Represente en omplemento 2 y usno 8 its el número puntos Oteng el vlor eiml e 0000 sieno que está represento en omplemento 2 usno 8 its 05 puntos Oteng el vlor eiml e sieno que está represento en omplemento 2 usno 8 its 05 puntos SOLUCIÓN C C C C2 es negtivo C y C C2 es positivo y C Opión B Cuestión nº 2 puntos Conteste revemente ls siguientes uestiones: Qué es un re úi entr y un re úi entr en ls rs? 05 puntos Determine el número e átomos situos en el interior e l elill e un re úi entr en el uerpo y un re úi entr en ls rs 05 puntos Defin el onepto e onstnte retiulr y lule ih onstnte pr un re úi entr y un re úi entr en ls rs suponieno el rio tómio e 05 nm punto Un re úi entr se proue uno los átomos el metl se posiionn en los vérties y en el entro el uo y un re úi entr en ls rs se proue uno los átomos el metl se posiionn en los vérties el uo y en el entro e un e sus rs Re úi entr: Nº átomos átomo / 8 vérties * 8 vérties átomo 2 átomos Re úi entr en ls rs: Nº átomos átomo / 8 vérties * 8 vérties /2 átomo por r * 6 rs 4 átomos Es l istni e ls rists el uo mei ese entro entro e átomo Re Cúi Centr en el Cuerpo:

4 4 R R 2 ; 2 6R 2 4R 0 5nm Re Cúi Centr en ls Crs 4 R 2 2 4R 2 ; 2 2 R 0 42nm Cuestión nº2 2 puntos Un sensor e 25 kg situo en un trión e feri es iono meinte un motor elétrio e orriente ontinu en serie oneto un fuente e 240 V L intensi e orriente es e 60 A y l resisteni intern e 2 Ω El sensor se elev un ltur e 6 m en 20 segunos Determine: oteni onsumi por el motor 05 puntos oteni útil 05 puntos Renimiento el motor 05 puntos éris e lor l exterior por efeto Joule express en julios 05 puntos V I W W u mgh J u W u / t / W η u / 8829 / % Q I 2 r W Q t J Cuestión nº 2 untos Do el igrm e loques e l figur: Oteng l funión e trnsfereni ZfY unto Oteng l funión e trnsfereni ZfX unto X Y _ 2 4 Z 5

5 } { 2 4 Y Z Apoyánonos en el resulto nterior: } { } { X Z Cuestión nº 4 2 untos Se ispone e un ilinro e ole efeto on un émolo e 60 mm y un vástgo e 20 mm su rrer es e 50 mm L presión el ire es e 6 r y reliz un mnior e 0 ilos minuto Clul l fuerz teóri que ejere el ilinro en el vne y en el retroeso punto El onsumo e ire en oniiones normles punto F p S 6 0 π 6 2 /4 696 N Fr p Sr 6 0 π /4 507 N Volumen por ilo en el vne V π 6 2 / m /ilo Cuestión nº5 2 puntos Exprese nónimente omo prouto e mxterms l siguiente funión lógi: f Desrrollo omo prouto e sums: f 05 puntos Desrrollo término sum por sepro: M 2 M 4 M M 5 05 puntos M 2 M 0 M 6 M 4 05 puntos 5 M prouto finl eliminno mxterms reunntes M 4 y M 5 f 05 puntos Not: tmién porí presentrse omo soluión finl igulmente váli l expresión revi: f Π M260245

6 TECNOLOGÍA INDUSTRIAL II CRITERIOS ESECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN Los profesores enrgos e l orreión e ls uestiones isponrán un vez relizs ls prues e un soluión e ls misms pr que les sirv e guí en el esrrollo e su trjo En quells uestiones en ls que los resultos e un prto intervengn en los álulos e los siguientes los orretores eerán vlorr omo válios estos últimos prtos si su plntemiento fuese orreto y tn solo se tiene omo error el erivo el álulo iniil OCIÓN A Cuestión nº : 2 UNTOS reprtios e l siguiente form: Aprto : 05 puntos Aprto : 05 puntos Aprto : 05 puntos Aprto : 05 puntos Cuestión nº 2: 2 UNTOS reprtios e l siguiente form: Aprto : punto Aprto : 05 puntos Aprto : 05 puntos Cuestión nº : 2 UNTOS reprtios e l siguiente form: Aprto : punto Aprto : punto Cuestión nº 4: 2 UNTOS Cuestión nº 5: 2 UNTOS reprtios e l siguiente form: Aprto : 05 puntos Aprto : 05 puntos Aprto : 05 puntos Aprto : 05 puntos untuión totl 0 puntos OCIÓN B Cuestión nº : 2 UNTOS reprtios e l siguiente form: Aprto : 05 puntos Aprto : 05 puntos Aprto : punto Cuestión nº 2: 2 UNTOS reprtios e l siguiente form: Aprto : 05 puntos Aprto : 05 puntos Aprto : 05 puntos Aprto : 05 puntos Cuestión nº : 2 UNTOS reprtios e l siguiente form: Aprto : punto Aprto : punto Cuestión nº 4: 2 UNTOS reprtios e l siguiente form: Aprto : punto Aprto : punto Cuestión nº 5: 2 UNTOS untuión totl 0 puntos

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 200-20 MATERIA: TECNOLOGÍA INDUSTRIAL II INSTRUCCIONES Y CRITERIOS GENERALES DE

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

Ciclos Termodinámicos

Ciclos Termodinámicos Cpítulo 5 Cilos Termoinámios 5.1. Cilo e Crnot Consieremos un gs iel sometio l siguiente proeso ílio: b isoterm f ibt ibt o isoterm V V V Figur 5.1: Cilo e Crnot. Proeso b : Aibt reversible El gs se omprime

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL MODELO INSTRUCCIONES Y CRITERIOS

Más detalles

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión: PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 007-008 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES GENERALES Y VALORACIÓN Estructura

Más detalles

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c.

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL INSTRUCCIONES GENERALES Y CALIFICACIÓN

Más detalles

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2 Exmen Finl Junio - Eletroteni Generl 1 er Cutrimestre/Teorí de Ciruitos 4º Curso de Ingenierí Industril Espeilidd Orgnizión Indsutril 11-VI-2001 Prolem 1 Clulr el equivlente Norton del iruito de l figur.

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

C 5 Q V ab. 3 (capacitores en serie) C eq 5 C 1 1 C 2 1 C 3 1 c (capacitores en paralelo) U 5 Q2 2C 5 1 2 CV 2 5 1 2 QV.

C 5 Q V ab. 3 (capacitores en serie) C eq 5 C 1 1 C 2 1 C 3 1 c (capacitores en paralelo) U 5 Q2 2C 5 1 2 CV 2 5 1 2 QV. CPÍTULO 24 RESUMEN Cpitores y pitni: Un pitor es too pr e onutores sepros por un mteril islnte. Cuno el pitor está rgo hy rgs e igul mgnitu Q y signo opuesto en los os onutores, y el potenil V el onutor

Más detalles

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %

Más detalles

Problemas puertas lógicas, karnaugh...

Problemas puertas lógicas, karnaugh... ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''

Más detalles

COMPRENSIÓN ESPACIAL

COMPRENSIÓN ESPACIAL COMPRENSIÓN ESPACIAL El áre e COMPRENSIÓN ESPACIAL pretene evlur ls estrezs el spirnte pr periir y omprener, trvés e l Representión Gráfi: 1.- Forms y Cuerpos Geométrios ásios y ls reliones entre sus respetivos

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

Álgebra de Boole (Relés y ecuaciones en el mundo industrial)

Álgebra de Boole (Relés y ecuaciones en el mundo industrial) Alger de Boole (Automtismos ominionles) Álger de Boole (Relés y euiones en el mundo industril) UPCO CA Deprtmento de Eletróni y Automáti 1 Alger de Boole (Automtismos ominionles) Vriles y uniones lógis

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID Tempertur (ºC) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Modelo Tecnologí Industril II. 21-211 Opción A Cuestión nº1 (2 puntos)

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

AUTOMATISMOS INDUSTRIALES

AUTOMATISMOS INDUSTRIALES AUTOMATISMOS INDUSTRIALES Tem 1 Introduión los Automtismos Elétrios Introduión Definiión: Sistem que he que un máquin funione de form utónom, reliz ilos ompletos de operiones que se pueden repetir, on

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

AERODINÁMICA A CIERTO FALSO CUALQUIER PUNTO DE BAJA VELOCIDAD ES UN PUNTO DE BAJA PRESIÓN

AERODINÁMICA A CIERTO FALSO CUALQUIER PUNTO DE BAJA VELOCIDAD ES UN PUNTO DE BAJA PRESIÓN EROINÁMI Pregunta Respuesta orrecta Opción Opción Opción Opción LS UTRO FUERZS QUE TÚN SORE UN VIÓN EN VUELO NIVELO, SON: EN UN VIÓN EN VUELO RETO Y NIVELO VELOI ONSTNTE, UÁLES SON LS FUERZS QUE PERMNEEN

Más detalles

McAfee Firewall Enterprise Control Center

McAfee Firewall Enterprise Control Center Guí e iniio rápio Revisión A MAfee Firewll Enterprise Control Center versión 5.3.2 Est guí e iniio rápio proporion instruiones e lto nivel pr l instlión e MAfee Firewll Enterprise Control Center. 1 Comproión

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

2. LEYES DE VOLTAJES Y CORRIENTES DE KIRCHHOFF

2. LEYES DE VOLTAJES Y CORRIENTES DE KIRCHHOFF . LEES DE OLTAJES COENTES DE KCHHOFF.. NTODUCCÓN Este pítulo trt e ls leyes e voltjes y orrientes e Kirhhoff llms KL y KCL respetivmente. KL estlee que l sum lgeri e ls ís e voltje en un seueni err e noos

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

SOLUCIONES DIGITALES PARA ANUNCIANTES MIEMBRO DE

SOLUCIONES DIGITALES PARA ANUNCIANTES MIEMBRO DE SOLUIONES IGITALES PARA ANUNIANTES MIEMBRO E El Intertive Avertising Bureu (IAB), funo nivel internionl en 996, es el prinipl orgnismo representtivo e l inustri puliitri online en el muno. omo soiión internionl

Más detalles

Problemas de Termodinámica - Ejemplo Parciales y Finales

Problemas de Termodinámica - Ejemplo Parciales y Finales Prolems de Termodinámi - Ejemplo Priles y Finles 1. Desri en vrios proesos, (de ejemplo espeífios y desri sus rterístis físis), que oedezn l primer ley de l termodinámi, pero que, si suediern en relidd,

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD UNICIENCIA 22 UNICIENCIA 22, 2008 pp. 5-9 2008 TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD Diego Chverri y Roerto J. Moy Deprtmento de Físi, Universidd Nionl RESUMEN

Más detalles

AVIÓNICA TMA 1 C TAMAÑO DEL PANEL TIPO DE PANEL REDUCIR LA INTERFERENCIA EN LOS RADIO-RECEPTORES

AVIÓNICA TMA 1 C TAMAÑO DEL PANEL TIPO DE PANEL REDUCIR LA INTERFERENCIA EN LOS RADIO-RECEPTORES VIÓNI TM 1 Pregunta Respuesta orrecta Opción Opción Opción Opción EL NÚMERO E SOPORTES MORTIGUORES, REQUERIOS PR L INSTLIÓN E UN PNEL E INSTRUMENTOS, ES ETERMINO POR: TMÑO EL PNEL TIPO E PNEL PESO E L

Más detalles

Cometa. Pág max. 50 C. 6mm. b TSP 4x30

Cometa. Pág max. 50 C. 6mm. b TSP 4x30 Comet Guí e uso Pág. 1 Fije el progrmor l pre, en un lol erro, resguro e los gentes tmosférios y el gu, on un tempertur miente e 0 50 C. No instle el prto l intemperie ni en rquets enterrs. 1 2 OK! 3 mx.

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: TECNOLOGÍA INDUSTRIAL II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: TECNOLOGÍA INDUSTRIAL II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

CONTROL DE ARRANQUE DE MOTOR MOTOR DE COMBUSTIÓN INTERNA DESCRIPCION. DATOS TECNICOS.

CONTROL DE ARRANQUE DE MOTOR MOTOR DE COMBUSTIÓN INTERNA DESCRIPCION. DATOS TECNICOS. iroeletronis de viots # ol rnjs oderns 746 el ustvo dero éxio el x: 578 967 wwwromommx vents@romommx : H 64 59 ev ontrol de rrnque de otor de ombustion ntern Q Ó ienen omo finlidd rrnr y prr un motor de

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

NÚMEROS RACIONALES. y Números Irracionales Q

NÚMEROS RACIONALES. y Números Irracionales Q CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR DEPARTAMENTO DE CIENCIAS BÁSICAS LOGICA Y PENSAMIENTO MATEMATICO ASIGNATURA: AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA TIPO DE

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

EJERCICIO: DIMENSIONAMIENTO Y COMPROBACIÓN DE SECCIONES RECTANGULARES

EJERCICIO: DIMENSIONAMIENTO Y COMPROBACIÓN DE SECCIONES RECTANGULARES HORMIGÓN ARMADO Y PRETENSADO (HAP1) CURSO 010/011 EJERCICIO: DIMENSIONAMIENTO Y COMPROBACIÓN DE SECCIONES RECTANGULARES Dimensionar ó omprobar la seión e la figura en aa uno e los supuestos que se menionan

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

COLUMNAS DE METAL LAMINADO EN FRIO, TUBO CUADRADO DE 30 X 30MM,Y 1,2 MM DE ESPESOR. PATA OVALADA DE 50X25X1,5MM Y DE 500MM DE LONGITUD.

COLUMNAS DE METAL LAMINADO EN FRIO, TUBO CUADRADO DE 30 X 30MM,Y 1,2 MM DE ESPESOR. PATA OVALADA DE 50X25X1,5MM Y DE 500MM DE LONGITUD. 681 mm 543 mm 805 mm MP70/O 711 mm 543 mm 805 mm MP70/T TLERO* GLOMERDO MELMINIO () DE 681 X 447 X 19MM. ON 4 NTOS RETOS DE PV UNIOLOR UNIDO L ESTRUTUR MEDINTE UN SE POLIMÉRI ON 30% FIR DE VIDRIO. * SE

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

DIAGNOSTICOS DE AVERIAS PARA ELEMENTOS NO DETECTABLES. Revoluciones del motor. Temperatura refrigerante motor

DIAGNOSTICOS DE AVERIAS PARA ELEMENTOS NO DETECTABLES. Revoluciones del motor. Temperatura refrigerante motor Sistema de ontrol de inandesenia DESCRIPCION DEL SISTEMA Sensor de posiión del igüeñal (PMS) Revoluiones del motor Relé de inandesenia Bujías de inandesenia Sensor temperatura refrigerante motor Temperatura

Más detalles

DECLARACIÓN CE DE CONFORMIDAD ADVERTENCIAS PARA EL INSTALADOR

DECLARACIÓN CE DE CONFORMIDAD ADVERTENCIAS PARA EL INSTALADOR DECLRCIÓN CE DE CONFORMIDD Frinte: Direión: Delr que: FC S.p.. Vi Benini, 1-40069 Zol Preos BOLOGN - ITLI El operor mo. TM 58 M umple on los requisitos eseniles e seguri e ls siguientes iretivs CEE: -

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

EXAMEN PARA INSTALADOR REPARADOR FRIGORISTA AUTORIZADO. Parte teórica

EXAMEN PARA INSTALADOR REPARADOR FRIGORISTA AUTORIZADO. Parte teórica EXAMEN PARA INSTALADOR REPARADOR FRIGORISTA AUTORIZADO Prte teóri NO ESCRIBAN NADA EN ESTE DOCUMENTO 1. 2. Un refrigernte tóxio, orrosivo y omustile on un onentrión volumétri menor e un 3.5%, es un refrigernte

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

La Plataforma Next Generation Guía rápida

La Plataforma Next Generation Guía rápida Guí rápi Est reve guí h sio prepr pr yurle fmilirizrse más rápimente on ls múltiples funiones y herrmients isponiles en l pltform Next Genertion. Aprenerá óne enontrr los instrumentos pr operr y ls notiis

Más detalles

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra clases.microeconomia.

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra  clases.microeconomia. Competeni Monopolísti EJERCICIOS Profesor Guillermo Pereyr guillermopereyr@miroeonomi.org www.miroeonomi.org lses.miroeonomi.org 1. Cuál e ls siguientes lterntivs no es rterísti e l ompeteni monopolísti?

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

TI. 955 99 99 30 Fax 955998912 Email santiponce@dipusevilla.es " www.santiponce.es

TI. 955 99 99 30 Fax 955998912 Email santiponce@dipusevilla.es  www.santiponce.es Fx 955998912 Emil sntipone@ipusevill.es " www.sntipone.es DE SANTIPONCE Nomre: Cul es el olor hitul e los metros e rpintero? mrillo zul negro vere 2 Que uni e mei us el sonómetro eielio lux herio vtio

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

2 L. c 8 MANUAL DE INSTRUCCIONES OPERATING INSTRUCTIONS

2 L. c 8 MANUAL DE INSTRUCCIONES OPERATING INSTRUCTIONS 2 MANUA DE INSTRUCCIONES OPERATING INSTRUCTIONS 020301 2 1 2 1.- Botonera afe exprés 2.- Botonera appuino 3.- Cappuino Figura 1 3 A Este aparato appuino esta dotado on una rueda graduada (A) on la ual

Más detalles

Conceptos básicos de la Teoría de Grafos

Conceptos básicos de la Teoría de Grafos Mtemáti Disret y Lógi 2 Coneptos ásios e l Teorí e Grfos 1. Definiiones A menuo, uno se utiliz un mp e rreters interes oservr omo ir e un puelo otro por ls rreters inis en el mismo. En onseueni se tienen

Más detalles

Innovación continua en Depilación Láser

Innovación continua en Depilación Láser Innovaión ontinua en Depilaión Láser Innovaión ontinua en Depilaión Láser Soprano XL es un revoluionario sistema de diodo láser para la reduión permanente del vello. Es el primer sistema de depilaión láser

Más detalles

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

Todos los ejercicios se escribirán utilizando factores de conversión.

Todos los ejercicios se escribirán utilizando factores de conversión. Ejeriios TIPO e estequiometrí Ftores Conversión 1CI noviemre 011 1 Resumen e ejeriios tipo e estequiometrí Toos los ejeriios se esriirán utilizno ftores e onversión. Oserv que l llve que te re toos los

Más detalles

CERTIFICADO DE EFICICIENCIA ENERGÉTICA DE EDIFICIOS EXISTENTES

CERTIFICADO DE EFICICIENCIA ENERGÉTICA DE EDIFICIOS EXISTENTES ERTIIO E EIIIENI ENERÉTI E EIIIOS EXISTENTES IENTIIIÓN EL EIIIO O E L PRTE QUE SE ERTII: Nombre del edificio EIIIO EL TITULR irección IREION EL TITULR Municipio TITULR ódigo Postal 99999 Provincia TITULR

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

AERODINÁMICA ULTRALIVIANO

AERODINÁMICA ULTRALIVIANO EROINÁMI ULTRLIVINO Pregunta Respuesta orrecta Opción Opción Opción Opción L LÍNE RET QUE UNE EL ORE E TQUE ON EL ORE E SLI E UN PERFIL LR, SE ENOMIN: URVTUR MEI UER ESPESOR VIENTO RELTIVO VIENTO RELTIVO

Más detalles

Mitutoyo Mexicana, S.A. de C.V. Catálogo M25

Mitutoyo Mexicana, S.A. de C.V. Catálogo M25 Mitutoyo Mexin, S.A. e C.V. Ctálogo M25 PRODUCTOS NUEVOS Cliror Digimti ABS SERIE 500 Con Proteión Polvo/Agu Conforme l Nivel IP66 Cliror e Crátul SERIE 505 Con Movimiento Extrsuve Clirores Clirores Digitles

Más detalles

HIDROSTÁTICA - EJERCICIOS

HIDROSTÁTICA - EJERCICIOS I.E. BEATRIZ DE UABIA Dpto. ísia y Quíia HIDROTÁTICA - EJERCICIO Qué presión ebia a su peso ejere sobre el suelo una esa e 0 kg si se apoya sobre una pata entral e 000 e superfiie?. or lo tanto, la presión

Más detalles

Sobre la matemática del Problema de

Sobre la matemática del Problema de Soe l teáti el Pole e Kele Clos S Chine Soe l teáti el Pole e Kele Clos Sánhe Chine Intouión Johnnes Kele Weil e St, Aleni, 7 e iiee e 57 - Rtison, Aleni, 5 e noviee e 63, ulió ls tes leyes que esien el

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Operaciones Combinadas

Operaciones Combinadas TTEMA... LOS NÚMEROS NA TTURALES Operiones ásis. Reliz ls siguientes operiones: 0 0. Efetú ls siguientes multipliiones: 0. Resuelve ls siguientes ivisiones: : : : :. Clul: 0 0 0 : :. Reliz ls siguientes

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA

DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA DEPARTAMENTO DE CIENCIAS BÁ SICAS E INGENIERÍAS INGENIERÍA EN TELEMÁ TICA NOMBRE DE LA ASIGNATURA CLAVE ASIGNATURA PLAN DE ESTUDIO ELECTRONICA DIGITAL IT0208 2004IT PRACTICA No. LABORATORIO DE NOMBRE DE

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROBLEMAS DE TERMODINÁMICA PROCESOS POLITRÓPICOS DE UN GAS IDEAL

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PROBLEMAS DE TERMODINÁMICA PROCESOS POLITRÓPICOS DE UN GAS IDEAL FUNDAMENOS FÍSICOS DE LA INGENIEÍA POBLEMAS DE EMODINÁMICA POCESOS POLIÓPICOS DE UN GAS IDEAL Prolem. Cilo ets (isoor + diáti + isoterm) Prolem. Cilo de Crnot (ilo de oteni) Prolem. Cilo de Stirling Prolem.

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

1. Cuál de los siguientes métodos se puede aplicar a la oxidación del acero? 2. Cuál de las siguientes afirmaciones se puede aplicar al troquelado?

1. Cuál de los siguientes métodos se puede aplicar a la oxidación del acero? 2. Cuál de las siguientes afirmaciones se puede aplicar al troquelado? 1. Cuál e los siguientes métoos se puee plir l oxiión el ero? Meánio Inyeión Químio Eletroerosión 2. Cuál e ls siguientes firmiones se puee plir l troquelo? Atú en liente sin mio signifitivo e l form volumétri

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

MODELO DE EXAMEN 1 ESPAÑOL. Preparación para el examen. www.telc.net

MODELO DE EXAMEN 1 ESPAÑOL. Preparación para el examen. www.telc.net Common Europen Frmework of Referene MODELO DE EXMEN ESPÑOL Preprión pr el exmen www.tel.net CONTENIDO Test Voulrio y estruturs grmtiles 7 Comprensión uitiv 8 3 Respuests eus 0 4 Comprensión letor 5 Expresión

Más detalles

ACTIVIDADES DE RECUPERACIÓN 3º ESO UNIDAD 1: FRACCIONES Y DECIMALES.

ACTIVIDADES DE RECUPERACIÓN 3º ESO UNIDAD 1: FRACCIONES Y DECIMALES. IES Pre Pove (Gui Ativies e reuperión º ESO Deprtmento e Mtemátis No olvies repsr ls tivies hehs en lse Curso 0/0 ACTIVIDADES DE RECUPERACIÓN º ESO UNIDAD FRACCIONES Y DECIMALES Represent estos números

Más detalles

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw AN_M_G08_U04_L02_03_04 Se reomiend reurso intertivo Sinopsis Un vtr similr Ninj expli el tem ángulos lternos internos y externos, olterles, orrespondientes y opuestos l vértie. Adoe Edge Animtor Pr diujos:

Más detalles

INSTRUMENTOS SI EL ALTÍMETRO NO TIENE ERRORES MECÁNICOS. C EL ALTÍMETRO EL INDICADOR DE VELOCIDAD VERTICAL EL VELOCÍMETRO

INSTRUMENTOS SI EL ALTÍMETRO NO TIENE ERRORES MECÁNICOS. C EL ALTÍMETRO EL INDICADOR DE VELOCIDAD VERTICAL EL VELOCÍMETRO INSTRUMENTOS Pregunta Respuesta orrecta Opción Opción Opción Opción EL VRIÓMETRO INI: VELOI VERTIL ELERIÓN SENIONL L RIGIEZ EN EL ESPIO Y L PREESIÓN SON PRINIPIOS E FUNIONMIENTO E UN: UNO SE EFETU UN VIRJE

Más detalles

BROCAS. Brocas para madera. Brocas para cemento y acero rápido

BROCAS. Brocas para madera. Brocas para cemento y acero rápido ROCAS ho present bros e li profesionl pr un grn vrie e entornos. El mteril que neesite tlrr e nirá l eleión e bro. Aquí le onsejmos ómo esoger l herrmient eu. ros pr mer ro e tres punts Tnto en l versión

Más detalles

Capítulo 14. Equilibrio químico

Capítulo 14. Equilibrio químico Cpítulo 14 Equilirio químio Éste es el primero e vrios pítulos que trt sore los oneptos e uilirio químio. Pree ser que el tem e uilirio químio result ifíil pr muhos lumnos. Sólo espués e iferentes pliiones

Más detalles

JUNIO 2001. Considérese el sistema de ecuaciones dependiente del parámetro real a:

JUNIO 2001. Considérese el sistema de ecuaciones dependiente del parámetro real a: JUNIO INSTRUCCIONS: l emen resent dos ociones B; el lumno deberá elegir un de ells contestr rondmente los cutro ejercicios de que const dich oción en h. min. OPCIÓN jercicio. ( Puntución máim: untos) Considérese

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles