UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE INGENIERÍA QUÍMICA CARRERA DE INGENIERIA QUÍMICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE INGENIERÍA QUÍMICA CARRERA DE INGENIERIA QUÍMICA"

Transcripción

1 UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE INGENIERÍA QUÍMICA CARRERA DE INGENIERIA QUÍMICA DISEÑO DE UN SECADOR DISCONTINUO PARA LA ESPECIE DE ALGA CHLORELLA. TRABAJO DE GRADO PARA LA OBTENCIÓN DEL TITULO DE INGENIERO QUÍMICO AUTOR: LUIS EDUARDO GAIBOR EGAS TUTOR: ING. MARIO ROMEO CALLE MIÑACA QUITO 2014

2 APROBACIÓN En calidad de tutor, luego del estudio y análisis realizado sobre el trabajo de grado presentado por la Señor LUIS EDUARGO GAIBOR EGAS que titula DISEÑO DE UN SECADOR DISCONTINUO PARA LA ESPECIE DE ALGA CHLORELLA, sobre el particular informo que el trabajo de grado tiene valor académico y utiliza conocimientos de la Ingeniería Química que han resuelto el problema y los objetivos planteados, por lo que declaro mi conformidad con el mismo. En la ciudad de Quito, a los 15 días del mes de enero de 2015 iii

3 AUTORIZACIÓN DE LA AUTORÍA INTELECTUAL Yo, LUIS EDUARDO GAIBOR EGAS en calidad de autor de la trabajo realizada sobre DISEÑO DE UN SECADOR DISCONTINUO PARA LA ESPECIE DE ALGA CHLORELLA, por la presente autorizo a la UNIVERSIDAD CENTRAL DEL ECUADOR, hacer uso de todos los contenidos que me pertenecen o de parte de los que contiene esta obra, con fines estrictamente académicos o de investigación. Los derechos que como autor me corresponden, con excepción de la presente autorización, seguirán vigentes a mi favor, de conformidad con lo establecido en los artículos 5, 6, 8, 19 y demás pertinentes de la Ley de Propiedad Intelectual y su Reglamento. En la ciudad de Quito, a los 15 días del mes de enero de Luis Gaibor Egas. C.C Luiseduardo.gaibor@hotmail.com iv

4 DEDICATORIA Con un infinito cariño, el esfuerzo constante, y la dedicación depositada en esta Trabajo, es dedicada de manera muy especial para mis Padres Lucía y Luis, que en el día a día llenan de luz y esperanza mis pensamientos y han sabido guiarme en el camino del estudio para alcanzar esta hermosa profesión y ser hombre de bien y útil a la sociedad. A ellos les dedico este trabajo, los quiero mucho. v

5 AGRADECIMIENTOS A mí amado Dios y su hijo Jesús quienes permiten que mis sueños se hagan realidad, siempre brindándome fortaleza y salud. A mis Padres que en todo momento han sabido apoyarme, que me han guiado por el camino del bien y que son el pilar fundamental para alcanzar mis objetivos. A mi tutor Ing. Mario, que supo guiarme no solo en la realización de este trabajo, sino también durante todos mis estudios universitarios. A mí estimada profesora Ing. Lorena, quien me apoyo en muchas circunstancias adversas no solo como maestra sino como amiga. A mis estimados profesores que han sabido inculcarme valiosos conocimientos y valores necesarios para ser un excelente profesional. A todos mis amigos y compañeros que de una u otra manera contribuyeron para realización de este trabajo ya han sabido brindarme su apoyo incondicional y sobre todo su amistad sincera. Gracias por todos los buenos momentos que hemos compartido en esta carrera que hemos cruzado que no es de velocidad sino de resistencia. Gracias Gabicita, Andreita, Tefita que siempre estuvieron dándome ánimos y apoyo para poder culminar este paso tan importante. A todas las personas que contribuyeron positivamente a la realización de esta investigación. Gracias totales! vi

6 CONTENIDO pág CONTENIDO... vii LISTA DE TABLAS... x LISTA DE FIGURAS...xi LISTA DE GRÁFICOS... xii LISTA DE ANEXOS... xiii RESUMEN... xiv ABSTRACT... xv INTRODUCCIÓN MARCO TEÓRICO Secado Definición Características del Secado Aplicaciones del Secado Velocidad de Secado Tiempo de secado Secadores Definición Tipos de Secadores Secador de Bandeja Principales Características Alga Chlorella Características Principales.: Usos de Alga Chlorella como Biocombustible MARCO EXPERIMENTAL Diseño experimental Cultivo de alga Secado del alga vii

7 2.2. Materiales y equipos Sustancias y reactivos Procedimiento Cultivo de algas Secado del alga Chlorella DATOS Variables operacionales Datos obtenidos a partir del secado CÁLCULOS Cálculos del secado Promedio de replicas Cálculo de la humedad Cálculo de la derivada de X en función del tiempo θ Cálculo de la velocidad de secado Cálculo del tiempo de secado Dimensionamiento del secador prototipo Cálculos del secador modelo Cálculos del secador prototipo RESULTADOS Resultados del secado Ecuaciones de tiempo de secado y porcentajes de contenidos de grasa Resultados de análisis de contenidos de grasas Dimensiones del secador prototipo DISCUSIÓN Cultivo de algas Secado de algas Análisis de porcentaje de grasas totales después del secado Dimensionamiento del secador prototipo CONCLUSIONES RECOMENDACIONES viii

8 CITAS BIBLIOGRÁFICAS BIBLIOGRAFÍA ANEXOS ix

9 LISTA DE TABLAS pág. Tabla 1 Rendimiento de aceite a partir de diferentes fuentes Tabla 2. Contenido de aceite de Distintos tipos de algas en base seca Tabla 3. Variables operacionales Tabla 4. Experimentación N 1 T=60 C y M1=1,0 g Tabla 5. Experimentación N 2 T=60 C y M2=1,5 g Tabla 6. Experimentación N 3 T=60 C y M3=2,0 g Tabla 7. Experimentación N 4 T=80 C y M1=1,0 g Tabla 8. Experimentación N 5 T=80 C y M2=1,5 g Tabla 9. Experimentación N 6 T=80 C y M3=2,0 g Tabla 10. Experimentación N 7 T=100 C y M1=1,0 g Tabla 11. Experimentación N 8 T=100 C y M2=1,5 g Tabla 12. Experimentación N 9 T=100 C y M3=2,0 g Tabla 13. Relaciones de proporción entre dimensiones del secador modelo Tabla 14. Secado a las condiciones de T1=60 C y M1=1,0 g Tabla 15. Secado a las condiciones de T1=60 C y M2=1,5 g Tabla 16. Secado a las condiciones de T1=60 C y M3=2,0 g Tabla 17. Secado a las condiciones de T2=80 C y M1=1,0 g Tabla 18. Secado a las condiciones de T2=80 C y M2=1,5 g Tabla 19. Secado a las condiciones de T2=80 C y M3=2,0 g Tabla 20. Secado a las condiciones de T3=100 C y M1=1,0 g Tabla 21. Secado a las condiciones de T3=100 C y M2=1,5 g Tabla 22. Secado a las condiciones de T3=100 C y M3=2,0 g Tabla 23. Ecuaciones de tiempo de secado y porcentajes de contenidos de grasa Tabla 24. Análisis de contenidos de grasas resultantes en función de la Masa sobre el Área Tabla 25. Dimensiones para el secador prototipo x

10 LISTA DE FIGURAS pág. Figura 1. Esquema de Clasificación de Tipos de Secadores... 7 Figura 2. Secador de bandejas... 8 Figura 3. Alga Chlorella... 8 Figura 4. Condiciones de crecimiento de alga Chlorella Figura 5. Diseño experimental del secado de alga Chlorella Figura 6. Dimensiones del secador modelo Figura 7. Dimensiones del secador prototipo xi

11 LISTA DE GRÁFICOS pág. Gráfico 1. Humedad de la muestra en función dl tiempo para T1=60 C y M1=1,0 g Gráfico 2. Velocidad de secado en función de la humedad para T1=60 C y M1=1,0 g Gráfico 3. Humedad de la muestra en función dl tiempo para T1=60 C y M2=1,5 g Gráfico 4. Velocidad de secado en función de la humedad para T1=60 C y M2=1,5 g Gráfico 5. Humedad de la muestra en función dl tiempo para T1=60 C y M3=2,0 g Gráfico 6. Velocidad de secado en función de la humedad para T1=60 C y M3=2,0 g Gráfico 7. Humedad de la muestra en función dl tiempo para T2=80 C y M1=1,0 g Gráfico 8. Velocidad de secado en función de la humedad para T2=80 C y M1=1,0 g Gráfico 9. Humedad de la muestra en función dl tiempo para T2=80 C y M2=1,5 g Gráfico 10. Velocidad de secado en función de la humedad para T2=80 C y M2=1,5 g Gráfico 11. Humedad de la muestra en función dl tiempo para T2=80 C y M3=2,0 g Gráfico 12. Velocidad de secado en función de la humedad para T2=80 C y M3=2,0 g Gráfico 13. Humedad de la muestra en función del tiempo para T3=100 C y M1=1,0 g Gráfico 14. Velocidad de secado en función de la humedad para T3=100 C y M1=1,0 g Gráfico 15. Humedad de la muestra en función del tiempo para T3=100 C y M2=1,5 g Gráfico 16. Velocidad de secado en función de la humedad para T3=100 C y M2=1,5 g Gráfico 17. Humedad de la muestra en función del tiempo para T3=100 C y M3=2,0 g Gráfico 18. Velocidad de secado en función de la humedad para T3=100 C y M2=2,0 g Gráfico 19. Porcentaje de grasa en el sólido seco en función de la relación de la masa de solido por área expuesta al secado xii

12 LISTA DE ANEXOS pág. Anexo A Equipo de secado Termobalanza Anexo B Secado de algas chlorella vulgaris Anexo C. Resultados de análisis de contenido de grasas totales xiii

13 DISEÑO DE UN SECADOR DISCONTINUO PARA LA ESPECIE DE ALGA CHLORELLA. RESUMEN Se realizó el estudio del secado de la microalga Chlorella sp. y diseño de un secador tipo discontinuo. La experimentación se inició con el cultivo de la microalga bajo condiciones de crecimiento definidas en la literatura, luego se procedió al secado de muestras de la microalga en una termobalanza, variando la temperatura: 60, 80 y 100 ºC y la masa de la microalga: 1; 1,5 y 2 g. Con los datos obtenidos se elaboraron curvas de secado y se determinó la velocidad y el tiempo de secado para cada experimentación. En el producto seco se cuantificó las grasas totales, como criterio para establecer las mejores condiciones de secado. El diseño de un secador prototipo se realizó con semejanzas geométricas y manteniendo las mismas relaciones de forma que el secador modelo. Se concluyó que a menor temperatura existe un mayor contenido de grasas en el producto seco, manteniendo en el proceso la misma masa de sólido por unidad de área expuesta al secado, así para una temperatura de 60 ºC y una relación masa / área de 1,01; la cantidad de grasa en el sólido seco es de 2,07 %, que es el contenido máximo alcanzado en todas las pruebas realizadas. Por lo tanto, dichos datos representan las mejores condiciones de operación. PALABRAS CLAVE: / SECADO / SECADOR DE BANDEJAS / DISEÑO / MICROALGA CHLORELLASP. / DESARROLLO DE PROTOTIPOS / xiv

14 DESIGNING OF A BATCH DRYER FOR A KIND OF ALGAE NAMED CHLORELLA ABSTRACT A drying study of microalgae Chlorella sp. and a design of a batch type dryer were performed. The experiment began with the cultivation of microalgae growth under conditions defined in the literature, then proceeded to the drying of samples of microalgae a scale thermo, varying the temperature: 60, 80 and 100 ºC and the mass of the microalgae: 1; 1,5 to 2 g. Data obtained with drying curves were developed and the speed and the drying time was determined for each experiment. In total fat dry as a criterion was quantified to establish best drying conditions. Designing a prototype dryer was performed with geometric similarities and maintaining the same relationships so that the dryer model. Concluded that lower temperature there is an increased fat content in the dry product while maintaining the process in the same mass of solid per unit area exposed to drying and to a temperature of 60 ºC and a mass / area ratio of 1,01; the amount of fat in the dry solid is 2,07 %, which is the maximum reached in all tests. Therefore, these data represent the best operating conditions. KEYWORDS: / DRY / TRY DRYER / DESIGN / MICROALGAE CHLORELLA SP. / PROTOTYPE DEVELOPMENT / xv

15 INTRODUCCIÓN El uso de energía proveniente de petróleo, al interior del modelo productivo, económico y de desarrollo de la humanidad, se inició a finales del siglo XIX, alcanzando su máximo de utilización a finales del siglo XX e inicios del siglo XXI, previéndose su declive como fuente principal de energía durante la primera mitad del siglo XXI. Existen algunos aspectos sobre la realidad del mercado del petróleo, que permiten visualizar las dificultades de mantener o peor aún incrementar el nivel de consumo de oro negro en el mundo, sin precipitar el alcance del nivel máximo de producción petrolera a nivel mundial. La matriz energética a nivel mundial refleja que el petróleo es la principal fuente de energía, representando aproximadamente un 35,3 %, seguida por el carbón con 23,2 %, el gas natural 21,1 %, la biomasa tradicional 9,5 %, energía nuclear 6,5 %, hidroeléctrica con un 2,2 % y la biomasa moderna con 1,7 %. En el Ecuador existen varias iniciativas para el desarrollo de biocombustibles, entre las que se puede contar: etanol, biodiesel, biomasa, aceite vegetal, entre los principales. No obstante a primera vista su nivel de desarrollo es limitado, mostrándose apenas un importante desarrollo en materia de etanol a base de caña de azúcar y de aceite vegetal o biodiesel a base de palma africana ambos destinados en su mayoría al consumo humano y a la exportación. Las microalgas contienen aceites que pueden ser convertidos en biodiesel. La idea de usar estos microorganismos para producir este combustible no es nueva, pero actualmente ha renovado interés en torno a la búsqueda de energía sostenible. El biodiesel producido a partir de microalga se está investigando como una alternativa al uso convencional de cultivos vegetales para dicho fin. El cultivo de microalgas en comparación a estos cultivos tradicionales, produce más aceite, consume menos espacio y pueden ser crecidas en condiciones de terreno no apto para la agricultura. La biomasa cosechada es un producto perecedero y debe tratarse con rapidez después de la cosecha, la deshidratación o secado se suele utilizar para ampliar la viabilidad en función del producto final requerido. Los métodos que han sido utilizados son el secado al sol, el secado por aspersión, tambor de secado, en lecho fluido de secado, liofilización entre otras. [1]. 1

16 El secado al sol es el método más barato, pero las principales desventajas son los largos tiempos de secado, necesidad de grandes superficies, y el riesgo de pérdida de material. El secado por aspersión es comúnmente utilizado para la extracción de productos de alto valor, pero es relativamente caro y puede causar un deterioro significativo de algunos pigmentos de algas. La liofilización es igualmente costosa, especialmente para las operaciones a gran escala, pero facilita la extracción de aceites. [2]. Los elementos intracelulares, como los aceites son difíciles de extraer de la biomasa húmeda con disolventes sin interrupción de la célula, pero se extraen más fácilmente de la biomasa seca. Para esto en esta investigación se realizaron ensayos variando la temperatura y la cantidad de algas a ser secadas, obteniéndose como resultados que; Como resultado de la investigación se puede concluir que mientras menor sea la temperatura de secado esto favorece a un mayor contenido de grasas resultantes. Además se puede apreciar que en una relación Peso sobre Área expuesta cercana a 0,0509 la cantidad de grasa resultante es mayor, lo que aumentaría mucho más el contenido de grasa posterior al secado al trabajar bajo dicha relación. 2

17 1. MARCO TEÓRICO 1.1 Secado Definición. El término secado, se refiere a la eliminación de relativamente pequeñas cantidad de agua de un sólido o de un material casi sólido. En la mayor parte de los casos, el secado implica la eliminación del agua a temperaturas menores de su punto de ebullición Características del Secado. El secado de materiales constituye a menudo la operación final de fabricación, llevándose a cabo inmediatamente antes del envasado o la expedición. En algunos casos el secado es una parte esencial del proceso de fabricación, como por ejemplo en la fabricación del papel o en el acondicionamiento de la madrea, aunque en la mayoría de los procesos industriales, el secado se lleva a cabo por una o más de las siguientes razones. Para reducir el coste del transporte Para obtener un material más manejable, por ejemplo jabón en polvo, colorantes o fertilizantes. Para proporcionar unas determinadas propiedades, por ejemplo la fluidez de la sal común. Para evitar la presencia de la humedad, que podría provocar la corrosión Aplicaciones del Secado. Las aplicaciones del secado son muy amplias y se las puede ubicar en función del campo de aplicación. Campo Alimenticio: Mediante el uso del secado se puede obtener glucosa, almidones, gluten, proteína, así como leche malteada. Campo Farmacéutico. Se aplica para la elaboración de vitaminas, enzimas, antibióticos, extracto de hígado, gomas, suero humano estéril, dextran. Cerámicos: Arcillas para sanitarios, pisos, paredes, lozas, ferritos, esmalte, porcelanas. Campo de Química Orgánica: Aminoácidos, ácido calicílico, cítrico, maleico, ascórbico, sales orgánicas como ftalatos, estearatos, saliciltos, benzoatos y además compuestos nitrogenados como ureas, hidracina, cloraminas. 3

18 1.1.4 Velocidad de Secado.- Se define como velocidad de secado a la perdida de humedad del sólido en la unidad de tiempo, operando en las condiciones de temperatura, presión, humedad y velocidad del aire constantes. Los datos experimentales que se obtienen en una investigación del efecto de las condiciones externas durante el secado de un sólido por una corriente de aire, son el contenido de humedad en función del tiempo en condiciones constantes de secado. El término condiciones de secado constantes indica que la temperatura, velocidad, humedad y presión del aire se mantienen constantes y que las condiciones de salida del aire son sustancialmente las mismas que las de entrada. [3]. La diferenciación de los resultados en forma gráfica o numérica dan el valor de la velocidad de secado que puede construirse gráficamente en función del contenido de humedad libre o en función del tiempo. El gráfico más utilizado es el de velocidad de secado por unidad de área de secado, en función del contenido de humedad libre. [4] Tiempo de secado.- El tiempo de secado de un sólido húmedo se determina por la integración entre las humedades iniciales y finales de la ecuación de la velocidad de secado. Hecha la integración mencionada obtenemos: [5]. (1) Para resolver esta ecuación, tenemos que conocer la velocidad de secado W que es función de la humedad (X), y en general distinguiremos dos períodos diferentes: Período antecrítico: Es el período en el cual la humedad disminuye linealmente con el tiempo de secado o lo que es lo mismo, que durante este período la velocidad de secado es constante. La humedad del sólido disminuye linealmente hasta un valor de humedad crítica (Xc). La integración desde la humedad crítica nos lleva a la siguiente ecuación: [6]. (2) donde: = tiempo de secado del período antecrítico S = peso del sólido seco 4

19 A = área de la superficie expuesta X i = humedad inicial X c = humedad crítica W c = velocidad de secado crítica Si la humedad final X f es más grande que la humedad crítica, ha de substituirse X c por X f en esta última ecuación. Período poscrítico: Es el período en el cual la velocidad de secado disminuye hasta que se anula. Empieza con la humedad crítica hasta que llega a la humedad final o humedad de equilibrio. [7]. Hay dos métodos para resolver este último período: Método gráfico: Si no se conoce la relación analítica W=f(x), la integración de la ecuación ha de hacerse gráficamente representando X frente a 1/W. El valor de la integral será el área limitada por la curva, eje de abscisas y las ordenadas extremas X c y X f. Métodos analíticos: Si la velocidad de secado varía linealmente con la humedad, desde la humedad crítica hasta la final, la integración de la ecuación conduce a la expresión: (3) donde: = tiempo de secado período poscrítico S = peso del sólido seco A = área de la superficie expuesta X c = humedad crítica X f = humedad final W c = velocidad de secado crítica W f = velocidad de secado final 5

20 W log = velocidad de secado logarítmica Si no se conoce la forma en que varía la velocidad de secado en este período, se puede obtener una expresión aproximada suponiendo que la variación es lineal desde la humedad crítica hasta la de equilibrio. Admitiendo esta hipótesis se llega a la siguiente expresión: donde: (4) = tiempo de secado del período poscrítico S = peso del sólido seco A = área de la superficie expuesta X c = humedad crítica X*= humedad de equilibrio X f = humedad final W c = velocidad de secado crítica En estas dos últimas ecuaciones se supone que la humedad inicial es mayor que la crítica; en caso contrario, ha de substituirse X c por X i. 1.2 Secadores Definición. Un secador es un equipo en el cual se genera la operación de secado. Esta operación involucra transporte de masa y energía. Existen diferentes tipos de secadores, todo está en función del uso al cual este diseñado, así como el producto que se secará Tipos de Secadores. Para poder clasificar a los secadores, se considera diferentes criterios. Uno de ellos es debido a Cronshaw, y es útil para el describir los tipos de aparatos. A continuación se muestran la forma en que se maneja el material durante el proceso de secado. 6

21 Figura 1. Esquema de Clasificación de Tipos de Secadores 7

22 1.3 Secador de Bandeja Principales Características. Son secadores más comúnmente utilizados en la industria farmacéutica. Se emplea para materiales muy diversos: cualquier tipo de material susceptible de manejarse en bandejas (materiales cristalizados, sustancias granulares, precipitados, sustancias plásticas, frutas). Figura 2. Secador de bandejas 1.4 Alga Chlorella Es un género de algas verdes unicelulares del filo Chlorophyta. Tiene forma esférica, midiendo de 2 a 10 μm de diámetro, y no posee flagelo. Chlorela contiene los pigmentos verdes fotosintetizadores clorofila-a y -b en su cloroplasto. A través de la fotosíntesis se multiplica rápidamente, requiriendo sólo dióxido de carbono, agua, luz solar y pequeñas cantidades de minerales. Figura 3. Alga Chlorella 8

23 1.4.1 Características Principales. Existe diferentes características que haces que esta especie de alga sea muy estudiada en distintos campos de la ciencia. Entre las características principales, se tiene: Fue descubierta en 1890 por M.W. Beijernick, un especialista en microbiología holandés, que la estudió al analizar agua de una laguna. En el campo de la medicina, en la década de 1970 en adelante, científicos japoneses utilizaron este tipo de alga para acelerar la evacuación de metales pesado de los cuerpos de los pacientes. Debido a su alta eficiencia fotosintética (8%), fue utilizada como fuente de alimento. Este valor puede ser comparable con productos como caña de azúcar. Tiene un tamaño muy pequeño que no puede ser vista sin la ayuda de un microscopio, mide 6 milésimas de milímetro a lo ancho, pero se reproduce con gran rapidez ya que cada alga se puede subdividir en cuatro nuevas células cada 16 a 20 horas. Más del 60 % de la composición de esta alga es proteína y se puede producir 50 veces más eficientemente que otros cultivos. [8] Usos de Alga Chlorella como Biocombustible. Distintos estudios realizados en Asia, como en la Universidad Tsinghua (Pekín) muestran que existe un gran potencial para la producción de biocombustible líquido a partir de esta alga, ya que en trabajos realizados en esta universidad muestran que se puede extraer un gran cantidad de aceite de cultivos de esta alga en fermentadores, que mediante un proceso de transesterificación se convierten en biodiesel de alto poder calórico. Recientes estudios demuestran que la producción de biomasa de microalgas, es un recurso que puede satisfacer la demanda mundial de combustible, además de existir más especies diferentes capaces de producir y almacenar grandes cantidades de lípidos en su interior, tienen gran adaptabilidad para crecer, ya que se pueden cultivar en terrenos indeseables, requieren menos recursos y no necesitan suelo agrícola, también tienen rápidas tasas de crecimiento, no dependen de las condiciones ambientales (lluvias, estaciones, latitud), y son de fácil crecimiento en biorreactores. [9]. Algunas características y ventajas del biodiesel producido a partir de algas son las siguientes: Las algas tienden a producir una alta cantidad de ácidos grasos poli insaturados, lo que disminuye la estabilizad del biodiesel. Pero los ácidos grasos poli insaturados tienen puntos 9

24 de fusión bajos por lo que en climas fríos es mucho más ventajoso que otros tipos de biocombustibles. [10]. La producción de aceites a partir de algas es 200 veces mayor que en plantas. Por lo que también es mayor la producción de biodiesel. La producción de biodiesel de algas tiene las características de reducir las emisiones de CO2 y compuestos nitrogenados de la atmosfera. [11]. El uso de algas ricas en azucares, de manera análoga a la producción de biodiesel conllevan a la producción de etanol mediante un proceso de fermentación, dicho etanol es el usado como aditivo de la gasolina. [12] En la tabla 1. se puede apreciar los contenidos de aceite de diferentes fuentes conocidas. Tabla 1 Rendimiento de aceite a partir de diferentes fuentes. Producción de aceite a partir de diferentes fuentes. Rendimiento de Aceite (L/ha) Área necesaria de Cultivo (M ha)c Maíz Soya Canola Jatrofa Coco Aceite de Palma Microalgaa Microalgab Fuente: Chisti, Y., Biodiesel From Microalgae. Biotechnology Advances, pp En la tabla 2 se muestra el contenido de aceite de distintos tipos de algas para poder demostrar su potencial uso como fuente para la producción de biocombustible. 10

25 Tabla 2. Contenido de aceite de Distintos tipos de algas en base seca Microalga Contenido de Aceite (% masa en base seca) Botryococcus braunii Chlorella sp Crypthecodinium cohnii 20 Dunaliella primolecta Isochrysis sp Monallanthus salina >20 Nannochloris sp Nannochloropsis sp Neochloris oleoabundans Nitzschia sp Phaeodactylum tricornutum Schizochytrium sp Tetraselmis sueica Fuente: Xiaoling Miao, Q.W., Biodiesel Production From Heterotrophic Microalgal Oil. Bioresource Technology, pp De las algas con altos contenidos en lípidos se puede extraer aceite, del que se obtiene, mediante la transesterificación, metiléster, que es denominado comúnmente biodiesel. Por otro lado, de las algas con altos contenidos en azúcares, almidón o celulosa y otros carbohidratos se puede obtener bioetanol. Actualmente, en todo el mundo, se está considerando el uso de las algas para obtener biodiesel. Ello es debido a que las materias primas que se emplean ahora entran en competencia con los usos agrícolas y a que la productividad, medida en litros/ha, es más alta en los cultivos de algas que con cultivos agrícola. 11

26 2. MARCO EXPERIMENTAL 2.1 Diseño experimental Cultivo de alga.- Para el diseño experimental se realizó el cultivo de las algas siguiendo las condiciones de crecimiento de la Figura 4. Figura 4. Condiciones de crecimiento de alga Chlorella Secado del alga.- Se tomaron dos diferentes variables de diseño: temperatura y cantidad de muestra. Para la temperatura se tomaron tres diferentes como son: T1 = Temperatura 1 = 60 C T2 = Temperatura 2 = 80 C T3 = Temperatura 3 = 100 C Para cada temperatura de trabajo con tres tipos de cantidad de muestra como son: M1 = cantidad de muestra 1 = 1,0 g M2 = cantidad de muestra 2 = 1,5 g M3 = cantidad de muestra 3 = 2,0 g Para cada temperatura y cantidad de muestra correspondiente se realizaron tres repeticiones bajo las mismas condiciones para poder demostrar la repetitividad del ensayo como son: R1 = repetición 1 R2 = repetición 2 R3 = repetición 3 Lo cual se puede apreciar en la siguiente tabla, obteniéndose un total de veinte y siete ensayos. 12

27 R1 M1 R2 R3 R1 T1 M2 R2 R3 R1 M3 R2 R3 R1 M1 R2 R3 R1 Cultivo de Algas Secado de Algas T2 M2 R2 R3 R1 M3 R2 R3 R1 M1 R2 R3 R1 T3 M2 R2 R3 R1 M3 R2 R3 Figura 5. Diseño experimental del secado de alga Chlorella 13

28 2.2 Materiales y equipos Termo balanza Rango= 0-5 kg Ap= ± 0,001 g Espátula Embudo Papel filtro Papel aluminio Pinzas Frascos plásticos Vasos de precipitación V= 500 ml Ap= ± 10 ml Balanza analítica Rango= g Ap= ±0,001 g 2.3 Sustancias y reactivos Agua Alga Chlorella 2.4 Procedimiento Cultivo de algas. Para el cultivo del alga chlorella se realizó el siguiente procedimiento: Con dos litros de agua se llenó una pecera. Se depositó en la pecera la muestra del alga proporcionada para realizar el crecimiento. Se controló diariamente que las condiciones óptimas de crecimiento sean las adecuadas. Se aplicó las siguientes condiciones de crecimiento para el alga: Temperatura entre 23 C a 24 C. Ph entre 8 a 9. Luminosidad de 1500 luxes 12 horas de luz y 12 horas de sombra. Agitación 24 horas Burbujeo de aire concentración de CO2 al 0,02 %. El cultivo se lo realizó durante 4 semanas, tiempo en el cual se obtuvo la cantidad de muestra necesaria para la experimentación. 14

29 2.4.2 Secado del alga Chlorella.- Para el secado en la termobalanza se realizaron los siguientes pasos: Se pesó una cantidad de muestra, la cual se colocó en el recipiente de la termo balanza a una temperatura determinada, siguiendo las condiciones del diseño experimental. Se distribuyó uniformemente la muestra en un área de contacto conocida. Posterior a esto se registró los pesos cada treinta segundos hasta tener un peso constante lo cual indicó que la muestra ya está seca, con lo que se obtuvo datos de pérdida de peso con el transcurso del tiempo. 15

30 3. DATOS 3.1 Variables operacionales En la Tabla 3 se puede apreciar las diferentes condiciones a las que se realizó el secado. Tabla 3. Variables operacionales Temp. 1, C 60 Masa 1, g Masa 2, g Masa 3, g 1,0 1,5 2,0 Temp. 2, C 80 Masa 1, g Masa 2, g Masa 3, g 1,0 1,5 2,0 Temp. 3, C 100 Masa 1, g Masa 2, g Masa 3, g 1,0 1,5 2,0 3.2 Datos obtenidos a partir del secado. En las siguientes tablas: Tabla 4, Tabla 5, Tabla 6, Tabla 7, Tabla 8, Tabla 9, Tabla 10, Tabla 11, Tabla 12; se presenta la pérdida de peso conforme pasa el tiempo producto del secado en la termobalanza, realizándose tres replicas para cada experimentación. Tabla 4. Experimentación N 1 T=60 C y M1=1,0 g TIEMPO θ, min 16 M1,g R1 R2 R3 0,0 1,010 1,005 1,002 0,5 0,969 0,969 0,949 1,0 0,880 0,887 0,832 1,5 0,836 0,851 0,821 2,0 0,805 0,814 0,795 2,5 0,772 0,785 0,764 3,0 0,740 0,757 0,731 3,5 0,708 0,729 0,697 4,0 0,678 0,701 0,668 4,5 0,648 0,674 0,636 5,0 0,620 0,648 0,610 5,5 0,593 0,615 0,582

31 Continuación Tabla 4. TIEMPO θ, min M1,g R1 R2 R3 6,0 0,566 0,597 0,554 6,5 0,538 0,561 0,526 7,0 0,510 0,546 0,497 7,5 0,483 0,520 0,469 8,0 0,455 0,488 0,441 8,5 0,429 0,465 0,414 9,0 0,401 0,447 0,388 9,5 0,374 0,422 0,360 10,0 0,349 0,399 0,336 10,5 0,324 0,376 0,311 11,0 0,298 0,354 0,287 11,5 0,274 0,332 0,263 12,0 0,250 0,311 0,241 12,5 0,226 0,290 0,220 13,0 0,202 0,270 0,200 13,5 0,183 0,246 0,181 14,0 0,162 0,233 0,163 14,5 0,141 0,216 0,144 15,0 0,126 0,199 0,134 15,5 0,110 0,183 0,120 16,0 0,096 0,168 0,111 16,5 0,084 0,154 0,104 17,0 0,074 0,143 0,097 17,5 0,065 0,132 0,090 18,0 0,060 0,124 0,084 18,5 0,056 0,115 0,079 19,0 0,052 0,109 0,076 19,5 0,051 0,102 0,073 20,0 0,050 0,098 0,071 20,5 0,093 0,070 21,0 0,089 0,069 17

32 Tabla 5. Experimentación N 2 T=60 C y M2=1,5 g TIEMPO θ, min M2,g R1 R2 R3 0,0 1,497 1,500 1,499 0,5 1,487 1,490 1,489 1,0 1,464 1,460 1,462 1,5 1,434 1,433 1,434 2,0 1,410 1,412 1,411 2,5 1,387 1,390 1,389 3,0 1,376 1,372 1,374 3,5 1,351 1,350 1,351 4,0 1,327 1,329 1,328 4,5 1,308 1,311 1,310 5,0 1,295 1,291 1,293 5,5 1,275 1,274 1,275 6,0 1,252 1,254 1,253 6,5 1,232 1,235 1,234 7,0 1,220 1,216 1,218 7,5 1,198 1,197 1,198 8,0 1,176 1,178 1,177 8,5 1,156 1,159 1,158 9,0 1,144 1,140 1,142 9,5 1,121 1,120 1,121 10,0 1,099 1,101 1,100 10,5 1,079 1,082 1,081 11,0 1,063 1,059 1,061 11,5 1,045 1,044 1,045 12,0 1,024 1,026 1,025 12,5 1,002 1,005 1,004 13,0 0,992 0,988 0,990 13,5 0,971 0,970 0,971 14,0 0,950 0,952 0,951 14,5 0,930 0,933 0,932 15,0 0,922 0,918 0,920 15,5 0,898 0,897 0,898 16,0 0,876 0,878 0,877 16,5 0,858 0,861 0,860 17,0 0,847 0,843 0,845 17,5 0,826 0,825 0,826 18

33 TIEMPO θ, min Continuación Tabla 5. M2,g R1 R2 R3 18,0 0,806 0,808 0,807 18,5 0,786 0,789 0,788 19,0 0,775 0,771 0,773 19,5 0,757 0,756 0,757 20,0 0,737 0,739 0,738 20,5 0,716 0,719 0,718 21,0 0,707 0,703 0,705 21,5 0,688 0,687 0,688 22,0 0,670 0,672 0,671 22,5 0,652 0,655 0,654 23,0 0,626 0,622 0,624 23,5 0,608 0,607 0,608 24,0 0,589 0,591 0,590 24,5 0,572 0,575 0,574 25,0 0,562 0,558 0,560 25,5 0,545 0,544 0,545 26,0 0,526 0,528 0,527 26,5 0,510 0,513 0,512 27,0 0,503 0,499 0,501 27,5 0,484 0,483 0,484 28,0 0,467 0,469 0,468 28,5 0,451 0,454 0,453 29,0 0,444 0,440 0,442 29,5 0,427 0,426 0,427 30,0 0,408 0,410 0,409 30,5 0,395 0,398 0,397 31,0 0,389 0,385 0,387 31,5 0,370 0,369 0,370 32,0 0,357 0,359 0,358 32,5 0,343 0,346 0,345 33,0 0,336 0,332 0,334 33,5 0,322 0,321 0,322 34,0 0,307 0,309 0,308 34,5 0,295 0,298 0,297 35,0 0,291 0,287 0,289 35,5 0,276 0,275 0,276 19

34 Continuación Tabla 5. TIEMPO θ, min M2,g R1 R2 R3 36,0 0,264 0,266 0,265 36,5 0,252 0,255 0,254 37,0 0,249 0,245 0,247 37,5 0,237 0,236 0,237 38,0 0,225 0,227 0,226 38,5 0,215 0,218 0,217 39,0 0,214 0,210 0,212 39,5 0,204 0,203 0,204 40,0 0,193 0,195 0,194 40,5 0,185 0,188 0,187 41,0 0,186 0,182 0,184 41,5 0,178 0,177 0,178 42,0 0,169 0,171 0,170 42,5 0,162 0,165 0,164 43,0 0,163 0,159 0,161 43,5 0,154 0,153 0,154 44,0 0,142 0,144 0,143 44,5 0,132 0,135 0,134 Tabla 6. Experimentación N 3 T=60 C y M3=2,0 g TIEMPO θ, min M3,g R1 R2 R3 0,0 2,000 2,000 2,000 0,5 1,951 1,968 1,933 1,0 1,908 1,927 1,889 1,5 1,869 1,888 1,851 2,0 1,844 1,862 1,825 2,5 1,821 1,839 1,802 3,0 1,799 1,817 1,781 3,5 1,777 1,795 1,759 4,0 1,754 1,773 1,735 4,5 1,735 1,753 1,717 5,0 1,713 1,731 1,696 5,5 1,694 1,712 1,677 20

35 Continuación Tabla 6. TIEMPO θ, min M3,g R1 R2 R3 6,0 1,674 1,692 1,656 6,5 1,656 1,673 1,638 7,0 1,636 1,653 1,619 7,5 1,615 1,633 1,596 8,0 1,596 1,613 1,580 8,5 1,576 1,593 1,560 9,0 1,556 1,573 1,540 9,5 1,537 1,553 1,520 10,0 1,517 1,533 1,501 10,5 1,497 1,513 1,481 11,0 1,478 1,494 1,462 11,5 1,453 1,469 1,438 12,0 1,435 1,450 1,420 12,5 1,417 1,432 1,402 13,0 1,399 1,414 1,383 13,5 1,379 1,394 1,364 14,0 1,360 1,374 1,345 14,5 1,341 1,355 1,326 15,0 1,322 1,336 1,307 15,5 1,299 1,312 1,286 16,0 1,283 1,297 1,269 16,5 1,264 1,278 1,250 17,0 1,246 1,259 1,233 17,5 1,228 1,240 1,216 18,0 1,207 1,216 1,197 18,5 1,190 1,199 1,181 19,0 1,174 1,183 1,164 19,5 1,155 1,164 1,145 20,0 1,135 1,145 1,125 20,5 1,116 1,127 1,105 21,0 1,095 1,105 1,085 21,5 1,079 1,090 1,068 22,0 1,058 1,068 1,049 22,5 1,041 1,051 1,031 23,0 1,024 1,034 1,014 23,5 1,002 1,011 0,992 24,0 0,987 0,998 0,977 24,5 0,970 0,980 0,959 25,0 0,951 0,961 0,941 25,5 0,932 0,943 0,921 21

36 TIEMPO θ, min Continuación Tabla 6. M3,g R1 R2 R3 26,0 0,914 0,926 0,903 26,5 0,898 0,908 0,887 27,0 0,880 0,890 0,869 27,5 0,863 0,873 0,853 28,0 0,845 0,855 0,836 28,5 0,827 0,838 0,816 29,0 0,809 0,820 0,799 29,5 0,789 0,802 0,776 30,0 0,775 0,786 0,764 30,5 0,750 0,767 0,732 31,0 0,735 0,752 0,718 31,5 0,719 0,734 0,704 32,0 0,705 0,718 0,692 32,5 0,685 0,701 0,669 33,0 0,664 0,684 0,645 33,5 0,643 0,669 0,617 34,0 0,625 0,653 0,597 34,5 0,608 0,636 0,581 35,0 0,593 0,621 0,565 35,5 0,576 0,603 0,548 36,0 0,560 0,589 0,531 36,5 0,544 0,572 0,517 37,0 0,531 0,559 0,503 37,5 0,516 0,544 0,488 38,0 0,500 0,527 0,473 38,5 0,487 0,514 0,460 39,0 0,473 0,500 0,446 39,5 0,459 0,486 0,432 40,0 0,445 0,472 0,418 40,5 0,432 0,458 0,405 41,0 0,418 0,444 0,392 41,5 0,405 0,431 0,379 42,0 0,392 0,418 0,367 42,5 0,378 0,405 0,352 43,0 0,367 0,392 0,342 43,5 0,357 0,382 0,332 44,0 0,344 0,368 0,319 44,5 0,332 0,356 0,307 45,0 0,321 0,346 0,296 45,5 0,311 0,335 0,287 22

37 Continuación Tabla 6. TIEMPO θ, min M3,g R1 R2 R3 46,0 0,301 0,325 0,277 46,5 0,291 0,315 0,267 47,0 0,282 0,306 0,257 47,5 0,272 0,296 0,248 48,0 0,263 0,287 0,238 48,5 0,255 0,279 0,231 49,0 0,245 0,269 0,222 49,5 0,237 0,261 0,214 50,0 0,230 0,253 0,206 50,5 0,223 0,246 0,200 51,0 0,215 0,238 0,193 51,5 0,209 0,231 0,187 52,0 0,203 0,225 0,181 52,5 0,198 0,219 0,176 53,0 0,190 0,210 0,170 53,5 0,184 0,203 0,166 54,0 0,178 0,196 0,161 54,5 0,173 0,189 0,157 55,0 0,167 0,182 0,153 55,5 0,160 0,174 0,146 56,0 0,153 0,167 0,139 56,5 0,146 0,160 0,132 57,0 0,139 0,153 0,125 57,5 0,133 0,146 0,120 58,0 0,138 58,5 0,131 59,0 0,124 23

38 Tabla 7. Experimentación N 4 T=80 C y M1=1,0 g TIEMPO θ, min M1,g R1 R2 R3 0,0 1,100 1,099 1,099 0,5 1,040 1,043 1,043 1,0 0,951 0,950 0,947 1,5 0,894 0,895 0,893 2,0 0,846 0,848 0,848 2,5 0,795 0,798 0,798 3,0 0,767 0,766 0,763 3,5 0,743 0,744 0,742 4,0 0,720 0,722 0,722 4,5 0,681 0,684 0,684 5,0 0,650 0,649 0,646 5,5 0,609 0,610 0,608 6,0 0,569 0,571 0,571 6,5 0,533 0,536 0,536 7,0 0,504 0,503 0,500 7,5 0,466 0,467 0,465 8,0 0,423 0,425 0,425 8,5 0,393 0,396 0,396 9,0 0,364 0,363 0,360 9,5 0,330 0,331 0,329 10,0 0,294 0,296 0,296 10,5 0,253 0,256 0,256 11,0 0,239 0,238 0,235 11,5 0,208 0,209 0,207 12,0 0,177 0,179 0,179 12,5 0,151 0,154 0,154 13,0 0,136 0,135 0,132 13,5 0,114 0,115 0,113 14,0 0,095 0,097 0,097 14,5 0,083 0,086 0,086 15,0 0,083 0,082 0,079 15,5 0,076 0,077 0,075 16,0 0,073 0,075 16,5 0,072 24

39 Tabla 8. Experimentación N 5 T=80 C y M2=1,5 g TIEMPO θ, min M2,g R1 R2 R3 0,0 1,504 1,500 1,489 0,5 1,402 1,405 1,408 1,0 1,306 1,302 1,298 1,5 1,241 1,240 1,239 2,0 1,191 1,193 1,195 2,5 1,144 1,147 1,15 3,0 1,104 1,100 1,096 3,5 1,055 1,054 1,053 4,0 1,010 1,012 1,014 4,5 0,967 0,970 0,973 5,0 0,933 0,929 0,925 5,5 0,890 0,889 0,888 6,0 0,848 0,850 0,852 6,5 0,799 0,802 0,805 7,0 0,763 0,759 0,755 7,5 0,732 0,731 0,73 8,0 0,690 0,692 0,694 8,5 0,651 0,654 0,657 9,0 0,620 0,616 0,612 9,5 0,580 0,579 0,578 10,0 0,541 0,543 0,545 10,5 0,504 0,507 0,51 11,0 0,477 0,473 0,469 11,5 0,44 0,439 0,438 12,0 0,403 0,405 0,407 12,5 0,371 0,374 0,377 13,0 0,347 0,343 0,339 13,5 0,316 0,315 0,314 14,0 0,285 0,287 0,289 14,5 0,258 0,261 0,264 15,0 0,242 0,238 0,234 15,5 0,22 0,219 0,218 16,0 0,201 0,203 0,205 16,5 0,187 0,190 0,193 17,0 0,184 0,180 0,176 17,5 0,172 0,171 0,17 18,0 0,162 0,164 0,166 18,5 0,155 0,158 0,161 19,0 0,158 0,154 0,15 25

40 Continuación Tabla 8. TIEMPO θ, min M2,g R1 R2 R3 19,5 0,151 0,150 0,149 20,0 0,146 0,148 0,15 20,5 0,143 0,146 0,149 21,0 0,145 0,141 Tabla 9. Experimentación N 6 T=80 C y M3=2,0 g TIEMPO θ, min M3,g R1 R2 R3 0,0 2,000 1,997 1,9985 0,5 1,915 1,919 1,917 1,0 1,807 1,808 1,8075 1,5 1,740 1,738 1,739 2,0 1,687 1,684 1,6855 2,5 1,636 1,640 1,638 3,0 1,585 1,586 1,5855 3,5 1,538 1,536 1,537 4,0 1,495 1,492 1,4935 4,5 1,453 1,457 1,455 5,0 1,409 1,410 1,4095 5,5 1,368 1,366 1,367 6,0 1,326 1,323 1,3245 6,5 1,284 1,288 1,286 7,0 1,243 1,244 1,2435 7,5 1,202 1,200 1,201 8,0 1,161 1,158 1,1595 8,5 1,121 1,125 1,123 9,0 1,081 1,082 1,0815 9,5 1,041 1,039 1,04 10,0 1,002 0,999 1, ,5 0,961 0,965 0,963 11,0 0,923 0,924 0, ,5 0,885 0,883 0,884 12,0 0,848 0,845 0, ,5 0,810 0,814 0,812 13,0 0,774 0,775 0,

41 Continuación Tabla 9. TIEMPO θ, min M3,g R1 R2 R3 13,5 0,738 0,736 0,737 14,0 0,702 0,699 0, ,5 0,667 0,671 0,669 15,0 0,633 0,634 0, ,5 0,599 0,597 0,598 16,0 0,565 0,562 0, ,5 0,532 0,536 0,534 17,0 0,501 0,502 0, ,5 0,458 0,456 0,457 18,0 0,439 0,436 0, ,5 0,409 0,413 0,411 19,0 0,379 0,380 0, ,5 0,350 0,348 0,349 20,0 0,323 0,320 0, ,5 0,298 0,302 0,3 21,0 0,273 0,274 0, ,5 0,248 0,246 0,247 22,0 0,228 0,225 0, ,5 0,207 0,211 0,209 23,0 0,188 0,189 0, ,5 0,175 0,173 0,174 24,0 0,163 0,160 0, ,5 0,154 0,158 0,156 25,0 0,146 0,147 0, ,5 0,138 0,136 0,132 26,0 0,130 Tabla 10.. Experimentación N 7 T=100 C y M1=1,0 g TIEMPO θ, min M1,g R1 R2 R3 0,0 1,002 0,920 0,961 0,5 0,824 0,846 0,835 1,0 0,659 0,699 0,679 1,5 0,554 0,612 0,583 2,0 0,461 0,526 0,494 2,5 0,362 0,439 0,401 3,0 0,304 0,381 0,343 3,5 0,236 0,316 0,276 27

42 Continuación Tabla 10. TIEMPO θ, min M1,g R1 R2 R3 4,0 0,175 0,253 0,214 4,5 0,126 0,197 0,162 5,0 0,090 0,147 0,119 5,5 0,073 0,104 0,089 6,0 0,067 0,071 0,069 6,5 0,066 0,056 0,061 7,0 0,065 0,051 0,059 7,5 0,050 0,058 Tabla 11. Experimentación N 8 T=100 C y M2=1,5 g TIEMPO θ, min M2,g R1 R2 R3 0,0 1,5 1,500 1,500 0,5 1,375 1,460 1,290 1,0 1,304 1,375 1,233 1,5 1,212 1,298 1,126 2,0 1,1395 1,226 1,053 2,5 1,0765 1,159 0,994 3,0 1,0115 1,093 0,930 3,5 0,9465 1,030 0,863 4,0 0,885 0,967 0,803 4,5 0,827 0,908 0,746 5,0 0,743 0,850 0,636 5,5 0,7005 0,792 0,609 6,0 0,6575 0,732 0,583 6,5 0,6055 0,679 0,532 7,0 0,5525 0,623 0,482 7,5 0,501 0,569 0,433 8,0 0,4515 0,517 0,386 8,5 0,4035 0,466 0,341 9,0 0,357 0,418 0,296 9,5 0,3175 0,373 0,262 10,0 0,2695 0,312 0,227 10,5 0,244 0,290 0,198 11,0 0,2125 0,253 0,172 11,5 0,1855 0,219 0,152 12,0 0,1615 0,188 0,135 12,5 0,1425 0,163 0,122 28

43 Continuación Tabla 11. TIEMPO θ, min M2,g R1 R2 R3 13,0 0,127 0,142 0,112 13,5 0,118 0,128 0,108 14,0 0,1115 0,119 0,104 14,5 0,108 0,113 0,103 15,0 0,106 0,110 0,102 15,5 0,108 16,0 0,106 Tabla 12. Experimentación N 9 T=100 C y M3=2,0 g TIEMPO θ, min M3,g R1 R2 R3 0,0 2,000 2,000 2,000 0,5 1,884 1,860 1,872 1,0 1,710 1,695 1,703 1,5 1,614 1,589 1,602 2,0 1,528 1,516 1,522 2,5 1,448 1,439 1,444 3,0 1,376 1,367 1,371 3,5 1,303 1,297 1,300 4,0 1,236 1,229 1,233 4,5 1,167 1,163 1,165 5,0 1,103 1,100 1,102 5,5 1,040 1,035 1,038 6,0 0,998 0,978 0,988 6,5 0,910 0,916 0,913 7,0 0,854 0,857 0,856 7,5 0,794 0,796 0,795 8,0 0,734 0,736 0,735 8,5 0,677 0,680 0,679 9,0 0,620 0,622 0,621 9,5 0,567 0,568 0,568 10,0 0,514 0,514 0,514 10,5 0,464 0,462 0,463 11,0 0,415 0,413 0,414 11,5 0,369 0,366 0,368 12,0 0,326 0,320 0,323 29

44 Continuación Tabla 12. TIEMPO θ, min M3,g R1 R2 R3 12,5 0,284 0,280 0,282 13,0 0,246 0,238 0,242 13,5 0,210 0,208 0,209 14,0 0,176 0,181 0,179 14,5 0,153 0,160 0,157 15,0 0,133 0,145 0,139 15,5 0,121 0,137 0,129 16,0 0,111 0,130 0,121 16,5 0,105 0,128 0,117 17,0 0,101 0,126 0,114 17,5 0,098 18,0 0,096 30

45 4. CÁLCULOS 4.1 Cálculos del secado Promedio de replicas Se realizó el promedio de las réplicas de las diferentes experimentaciones. (Todos los cálculos modelo se realizan para la condición de experimentación T=60 C y M=1 g) donde: M prom = peso promedio de las réplicas. R1 =Réplica 1, (1,010 g) R2 =Réplica 2, (1,005 g) R3 =Réplica 3, (1,002 g) Cálculo de la humedad La humedad se calculó para poder construir la curva de secado del alga. donde: X = Humedad referida al sólido seco m muestra = Peso de la muestra húmeda, (1,006 g) m sólido seco = Peso de la muestra sólida seca, (0,069 g) 31

46 4.1.3 Cálculo de la derivada de X en función del tiempo θ. Al obtener la gráfica X=f(θ), se realiza la regresión dx/dθ. X = 0,0232θ 2-1,1267θ + 13,039 (7) Al reemplazar el valor de tiempo respectivo se tiene: Cálculo de la velocidad de secado ( ) donde: W= Velocidad de secado, (g agua / cm 2 min) S = Masa del sólido seco, (0,069 g) A = área del sólido expuesto al secado, (19,635 cm 2 ) Derivada de la humedad con respecto al tiempo, (1,127) W=0,004 g agua / cm 2 min Cálculo del tiempo de secado El tiempo de secado se calculó para poder determinar si una cierta cantidad de muestra con una humedad conocida se la quiere llevar a una humedad menor también conocida se pueda conocer el tiempo que llevaría realizar dicho proceso. donde: θ= tiempo de secado, (min) S = Masa del sólido seco, (0,069 g) 32

47 A = área del sólido expuesto al secado, (19,635 cm 2 ) Integral de la velocidad de secado en función de la humedad A partir de la ecuación de la gráfica W=f(X). X i = Humedad inicial de la experimentación. X f = Humedad final de la experimentación. θ min 4.2 Dimensionamiento del secador prototipo Cálculos del secador modelo (10) donde: A= Área de contacto del sólido, (cm 2 ) r = Radio del sólido, (2,402 cm) h = altura o espesor del sólido, (0,1 cm) A= 19,635 cm 2 (11) donde: V = Volumen del sólido, (cm 3 ) h = altura o espesor del sólido, (0,1 cm) r = Radio del sólido, (2,402 cm) h = altura o espesor del sólido, (0,1 cm) V= 1,8126 cm 3 En el secador modelo se calculó la densidad del sólido a secar para ser utilizada posteriormente en los cálculos del secador prototipo. 33 (12)

48 donde: ρ = densidad del sólido, (g/cm 3 ) m= masa del sólido, (1,0 g) V = Volumen del sólido, (1,8126 cm 3 ) ρ= 0,552 g/cm 3 Figura 6. Dimensiones del secador modelo. donde: D= Diámetro del secador modelo = 10,0 cm d = Diámetro del sólido = 4,8 cm H= Altura del secador modelo = 3,0 cm h = Altura sobre la bandeja = 1,0 cm h = Altura bajo la bandeja = 2,0 cm m = Masa del sólido = 1,0 g Para el dimensionamiento por semejanzas geométricas es necesario sacar las relaciones entre las diferentes dimensiones del secador modelo. En la Tabla 13 se puede apreciar las relaciones entre las diferentes dimensiones del secador modelo que serán utilizadas para el diseño del secador prototipo. 34

49 Tabla 13. Relaciones de proporción entre dimensiones del secador modelo. RELACIONES ENTRE FACTORES DIMESIONES D/H 3,333 d/h 1,601 h /H 0,333 h /H 0,667 e/h 0, Cálculos del secador prototipo Para el prototipo se desea secar 3 kg de algas. (13) donde: V 2 = Volumen del sólido en el secador prototipo, (cm 3 ) m 2 = Masa del sólido en el secador prototipo, (3000 g) ρ = densidad del sólido, (0,552 g/cm 3 ) V 2 = 5434,783 cm 3 Para realizar el diseño del secador prototipo mediante semejanza geométrica es necesario mantener los mismos factores de proporción que se tienen en el secador modelo, para esto es necesario realizar varias iteraciones hasta encontrar dichas proporciones, lo cual se realizó en una hoja de cálculo hasta que las proporciones de dimensiones del secador modelo sean las mismas en el secador prototipo. Las iteraciones se hicieron en función del espesor del sólido, encontrándose que el espesor es: e 2 = 1,444 cm donde: e 2 = espesor del sólido en el secador prototipo, (cm) 35

50 Se calculó el diámetro del sólido a secar utilizando el nuevo espesor conocido, para poder seguir calculando las nuevas dimensiones del secador prototipo. ( ) (14) donde: d 2 = Diámetro del sólido en el secador prototipo, (cm) V 2 = Volumen del sólido en el secador prototipo, (5434,783 cm 3 ) e 2 = espesor del sólido en el secador prototipo, ( 1,444 cm) d 2 = 69,263 cm (15) donde: H 2 = Altura del equipo en el secador prototipo, (cm) d 2 = Diámetro del sólido en el secador prototipo, (69,263 cm) factor d/h = Relación de proporción del secador. (1,601) H 2 = 43,254 cm (16) donde: D 2 = Diámetro del secador prototipo, (cm) H 2 = Altura del equipo en el secador prototipo, (43,254 cm) factor D/H = Relación de proporción del secador, (3,333) D 2 = 144,179 cm (17) donde: h 2= altura sobre la bandeja en el secador prototipo, (cm) H 2 = Altura del equipo en el secador prototipo, (43,254 cm) 36

51 factor h /H = Relación de proporción del secador, (0,333) h 2= 14,418 cm (18) donde: h 2= = altura bajo la bandeja en el secador prototipo, (cm) H 2 = Altura del equipo en el secador prototipo, (43,254 cm) factor h /H = Relación de proporción del secador, (0,667) h 2= 28,836 cm En la Tabla 25 se puede encontrar las dimensiones que debe tener el secador prototipo. 4.3 Cálculo del rendimiento de obtención de aceite proveniente del alga Chlorella. Los cálculos se realizaron con los datos de las condiciones óptimas de secado, 60 C y 2,0 g (19) donde: %R = Porcentaje de Rendimiento, (%) g. ob. = Gramos obtenidos de aceite de alga después del secado, (0,00112 g) g. in. = Gramos ingresados de muestra previo al secado, (2,0 g) %R= 0,057 % en base humeda. 4.4 Proyección de producción de aceite a partir de alga expresada en L / año Para la realización de este cálculo se utilizó la ecuación del crecimiento microbiano. Estos cálculos se realizaron en base a datos obtenidos experimentalmente del cultivo del alga, ya que el cultivo se inició con 3,5 g de alga en 3,5 L de agua, hasta llegar a una cantidad final de algas de 40 g. 37

52 (20) donde: X= relación peso/volumen final (21) Xo= relación peso/volumen inicial (22) t D = tiempo de duplicación, (10 h) t= tiempo de crecimiento del alga, (h) t= 118,88 h = 4,95 días 5,0 días Entonces se tardaría 5 días en obtener una saturación del alga de 16 g/l ó 16 kg/m 3. Así en una piscina de 30 m 3 se obtendría 480 kg de alga en 5 días, temiendo en cuenta el tiempo muerto para limpieza de piscina después de cada batch al año se obtendría: kg de alga/año. Utilizando el porcentaje de grasas obtenido de la experimentación (0,057 %), se obtuvo: 17 kg de aceite de alga/año. Empleando la densidad del aceite de alga obtenido de la bibliografía ρ= 0,898 kg/m 3 tenemos que: V=m/ρ (23) donde: V= volumen de aceite de alga por año, (m 3 ) m= masa de aceite de alga por año, (518,06 kg) ρ= densidad del aceite de alga, (0,898 kg/m 3 ) V= 19 L de aceite de alga / año. En una piscina de 30m 3. Teniendo al final un volumen de 7600 L de aceite de alga / año* ha 38

53 5. RESULTADOS 5.1 Resultados del secado En las Tablas 14 a 22 se presentan los resultados de Promedio de repeticiones de pesos (M prom), Porcentaje de Humedad (X), derivada de la Humedad en función del tiempo (-dx/dθ), Velocidad de Secado (W); para los datos obtenidos del secado. Las tablas se presentan para las diferentes condiciones de secado expuestas en el diseño experimental. TIEMPO θ, min Tabla 14. Secado a las condiciones de T1=60 C y M1=1,0 g M1,g R1 R2 R3 M1 prom, g X -dx/dθ W 0,0 1,010 1,005 1,002 1,006 13,505 1,127 0,004 0,5 0,969 0,969 0,949 0,962 12,880 1,104 0,004 1,0 0,880 0,887 0,832 0,866 11,495 1,080 0,004 1,5 0,836 0,851 0,821 0,836 11,055 1,057 0,004 2,0 0,805 0,814 0,795 0,805 10,606 1,034 0,004 2,5 0,772 0,785 0,764 0,774 10,159 1,011 0,004 3,0 0,740 0,757 0,731 0,743 9,712 0,988 0,003 3,5 0,708 0,729 0,697 0,711 9,260 0,964 0,003 4,0 0,678 0,701 0,668 0,682 8,841 0,941 0,003 4,5 0,648 0,674 0,636 0,653 8,413 0,918 0,003 5,0 0,620 0,648 0,610 0,626 8,029 0,895 0,003 5,5 0,593 0,615 0,582 0,597 7,606 0,872 0,003 6,0 0,566 0,597 0,554 0,572 7,255 0,848 0,003 6,5 0,538 0,561 0,526 0,542 6,813 0,825 0,003 7,0 0,510 0,546 0,497 0,518 6,466 0,802 0,003 7,5 0,483 0,520 0,469 0,491 6,077 0,779 0,003 8,0 0,455 0,488 0,441 0,461 5,654 0,756 0,003 8,5 0,429 0,465 0,414 0,436 5,288 0,732 0,003 9,0 0,401 0,447 0,388 0,412 4,942 0,709 0,003 9,5 0,374 0,422 0,360 0,385 4,558 0,686 0,002 10,0 0,349 0,399 0,336 0,361 4,212 0,663 0,002 10,5 0,324 0,376 0,311 0,337 3,861 0,640 0,002 11,0 0,298 0,354 0,287 0,313 3,514 0,616 0,002 11,5 0,274 0,332 0,263 0,290 3,178 0,593 0,002 12,0 0,250 0,311 0,241 0,267 2,856 0,570 0,002 39

54 humedad X TIEMPO θ, min M1,g R1 R2 R3 Continuación Tabla 14 M1 prom, g X -dx/dθ W 12,5 0,226 0,290 0,220 0,245 2,538 0,547 0,002 13,0 0,202 0,270 0,200 0,224 2,231 0,524 0,002 13,5 0,183 0,246 0,181 0,203 1,933 0,500 0,002 14,0 0,162 0,233 0,163 0,186 1,683 0,477 0,002 14,5 0,141 0,216 0,144 0,167 1,409 0,454 0,002 15,0 0,126 0,199 0,134 0,153 1,207 0,431 0,002 15,5 0,110 0,183 0,120 0,138 0,986 0,408 0,001 16,0 0,096 0,168 0,111 0,125 0,803 0,384 0,001 16,5 0,084 0,154 0,104 0,114 0,644 0,361 0,001 17,0 0,074 0,143 0,097 0,105 0,510 0,338 0,001 17,5 0,065 0,132 0,090 0,096 0,380 0,315 0,001 18,0 0,060 0,124 0,084 0,089 0,288 0,292 0,001 18,5 0,056 0,115 0,079 0,083 0,202 0,268 0,001 19,0 0,052 0,109 0,076 0,079 0,139 0,245 0,001 19,5 0,051 0,102 0,073 0,075 0,087 0,222 0,001 20,0 0,050 0,098 0,071 0,069 0,000 0,199 0,001 20,5 0,093 0,070 21,0 0,089 0,069 En los gráficos 2 a 19 se despliegan las curvas de secado: Humedad (X) en función de tiempo (θ); y las curvas de Velocidad de secado (W) en función de la Humedad (X) para las diferentes condiciones de secado expuestas en el diseño experimental. 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 X=f(θ) y = 0,0232x 2-1,1267x + 13,039 R² = 0,9979 0,000-2,000 0,0 5,0 10,0 15,0 20,0 25,0 Tiempo θ, min Gráfico 1. Humedad de la muestra en función del tiempo para T1=60 C y M1=1,0 g 40

55 Vel. secado W 0,005 0,004 W=f(X) y = -3E-07x 4 + 1E-05x 3-0,0001x 2 + 0,0007x + 0,0008 R² = 0,9981 0,003 0,002 0,001 0,000 0,000 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 Humedad X Gráfico 2. Velocidad de secado en función de la humedad para T1=60 C y M1=1,0 g TIEMPO θ, min Tabla 15. Secado a las condiciones de T1=60 C y M2=1,5 g M2,g R1 R2 R3 41 M2 prom, g X -dx/dθ W 0,0 1,497 1,500 1,499 1,499 10,225 0,346 0,002 0,5 1,487 1,490 1,489 1,489 10,150 0,344 0,002 1,0 1,464 1,460 1,462 1,462 9,951 0,341 0,002 1,5 1,434 1,433 1,434 1,434 9,738 0,339 0,002 2,0 1,410 1,412 1,411 1,411 9,569 0,337 0,002 2,5 1,387 1,390 1,389 1,389 9,401 0,334 0,002 3,0 1,376 1,372 1,374 1,374 9,292 0,332 0,002 3,5 1,351 1,350 1,351 1,351 9,116 0,329 0,002 4,0 1,327 1,329 1,328 1,328 8,948 0,327 0,002 4,5 1,308 1,311 1,310 1,310 8,809 0,325 0,002 5,0 1,295 1,291 1,293 1,293 8,685 0,322 0,002 5,5 1,275 1,274 1,275 1,275 8,547 0,320 0,002 6,0 1,252 1,254 1,253 1,253 8,386 0,317 0,002 6,5 1,232 1,235 1,234 1,234 8,240 0,315 0,002 7,0 1,220 1,216 1,218 1,218 8,124 0,313 0,002 7,5 1,198 1,197 1,198 1,198 7,970 0,310 0,002 8,0 1,176 1,178 1,177 1,177 7,816 0,308 0,002 8,5 1,156 1,159 1,158 1,158 7,670 0,305 0,002 9,0 1,144 1,140 1,142 1,142 7,554 0,303 0,002 9,5 1,121 1,120 1,121 1,121 7,393 0,301 0,002 10,0 1,099 1,101 1,100 1,100 7,240 0,298 0,002 10,5 1,079 1,082 1,081 1,081 7,094 0,296 0,002 11,0 1,063 1,059 1,061 1,061 6,948 0,293 0,002 11,5 1,045 1,044 1,045 1,045 6,824 0,291 0,002 12,0 1,024 1,026 1,025 1,025 6,678 0,289 0,002 12,5 1,002 1,005 1,004 1,004 6,517 0,286 0,002

56 TIEMPO θ, min M2,g R1 R2 R3 Continuación Tabla M2 prom, g X -dx/dθ W 13,0 0,992 0,988 0,990 0,990 6,416 0,284 0,002 13,5 0,971 0,970 0,971 0,971 6,270 0,281 0,002 14,0 0,950 0,952 0,951 0,951 6,124 0,279 0,002 14,5 0,930 0,933 0,932 0,932 5,978 0,277 0,002 15,0 0,922 0,918 0,920 0,920 5,891 0,274 0,002 15,5 0,898 0,897 0,898 0,898 5,723 0,272 0,002 16,0 0,876 0,878 0,877 0,877 5,569 0,269 0,002 16,5 0,858 0,861 0,860 0,860 5,438 0,267 0,002 17,0 0,847 0,843 0,845 0,845 5,330 0,265 0,002 17,5 0,826 0,825 0,826 0,826 5,184 0,262 0,002 18,0 0,806 0,808 0,807 0,807 5,045 0,260 0,002 18,5 0,786 0,789 0,788 0,788 4,899 0,257 0,002 19,0 0,775 0,771 0,773 0,773 4,790 0,255 0,002 19,5 0,757 0,756 0,757 0,757 4,667 0,253 0,002 20,0 0,737 0,739 0,738 0,738 4,528 0,250 0,002 20,5 0,716 0,719 0,718 0,718 4,375 0,248 0,002 21,0 0,707 0,703 0,705 0,705 4,281 0,245 0,002 21,5 0,688 0,687 0,688 0,688 4,150 0,243 0,002 22,0 0,670 0,672 0,671 0,671 4,026 0,241 0,002 22,5 0,652 0,655 0,654 0,654 3,895 0,238 0,002 23,0 0,626 0,622 0,624 0,624 3,674 0,236 0,002 23,5 0,608 0,607 0,608 0,608 3,551 0,233 0,002 24,0 0,589 0,591 0,590 0,590 3,419 0,231 0,002 24,5 0,572 0,575 0,574 0,574 3,296 0,229 0,002 25,0 0,562 0,558 0,560 0,560 3,195 0,226 0,002 25,5 0,545 0,544 0,545 0,545 3,079 0,224 0,002 26,0 0,526 0,528 0,527 0,527 2,948 0,221 0,002 26,5 0,510 0,513 0,512 0,512 2,831 0,219 0,001 27,0 0,503 0,499 0,501 0,501 2,753 0,217 0,001 27,5 0,484 0,483 0,484 0,484 2,622 0,214 0,001 28,0 0,467 0,469 0,468 0,468 2,506 0,212 0,001 28,5 0,451 0,454 0,453 0,453 2,390 0,209 0,001 29,0 0,444 0,440 0,442 0,442 2,311 0,207 0,001 29,5 0,427 0,426 0,427 0,427 2,195 0,205 0,001 30,0 0,408 0,410 0,409 0,409 2,064 0,202 0,001 30,5 0,395 0,398 0,397 0,397 1,970 0,200 0,001 31,0 0,389 0,385 0,387 0,387 1,899 0,197 0,001 31,5 0,370 0,369 0,370 0,370 1,768 0,195 0,001 32,0 0,357 0,359 0,358 0,358 1,682 0,193 0,001 32,5 0,343 0,346 0,345 0,345 1,581 0,190 0,001 33,0 0,336 0,332 0,334 0,334 1,502 0,188 0,001

57 Humedad X TIEMPO θ, min M2,g R1 R2 R3 Continuación Tabla 15 M2 prom, g X -dx/dθ W 33,5 0,322 0,321 0,322 0,322 1,408 0,185 0,001 34,0 0,307 0,309 0,308 0,308 1,307 0,183 0,001 34,5 0,295 0,298 0,297 0,297 1,221 0,181 0,001 35,0 0,291 0,287 0,289 0,289 1,165 0,178 0,001 35,5 0,276 0,275 0,276 0,276 1,064 0,176 0,001 36,0 0,264 0,266 0,265 0,265 0,985 0,173 0,001 36,5 0,252 0,255 0,254 0,254 0,899 0,171 0,001 37,0 0,249 0,245 0,247 0,247 0,850 0,169 0,001 37,5 0,237 0,236 0,237 0,237 0,772 0,166 0,001 38,0 0,225 0,227 0,226 0,226 0,693 0,164 0,001 38,5 0,215 0,218 0,217 0,217 0,622 0,161 0,001 39,0 0,214 0,210 0,212 0,212 0,588 0,159 0,001 39,5 0,204 0,203 0,204 0,204 0,524 0,157 0,001 40,0 0,193 0,195 0,194 0,194 0,453 0,154 0,001 40,5 0,185 0,188 0,187 0,187 0,397 0,152 0,001 41,0 0,186 0,182 0,184 0,184 0,378 0,149 0,001 41,5 0,178 0,177 0,178 0,178 0,330 0,147 0,001 42,0 0,169 0,171 0,170 0,170 0,273 0,145 0,001 42,5 0,162 0,165 0,164 0,164 0,225 0,142 0,001 43,0 0,163 0,159 0,161 0,161 0,206 0,140 0,001 43,5 0,154 0,153 0,154 0,154 0,150 0,137 0,001 44,0 0,142 0,144 0,143 0,143 0,071 0,135 0,001 44,5 0,132 0,135 0,134 0,134 0,000 0,133 0,001 12,000 10,000 X=f(θ) y = 0,0024x 2-0,3462x + 10,384 R² = 0,999 8,000 6,000 4,000 2,000 0,000 0,0-2,000 10,0 20,0 30,0 40,0 50,0 Tiempo θ, min Gráfico 3. Humedad de la muestra en función dl tiempo para T1=60 C y M2=1,5 g 43

58 Vel. Secado W 0,003 0,002 Gráfico 4 W=f(X) y = -2E-07x 4 + 6E-06x 3-5E-05x 2 + 0,0003x + 0,0009 R² = 0,9997 0,002 0,001 0,001 0,000 0,000 2,000 4,000 6,000 8,000 10,000 12,000 Humedad X Gráfico 4. Velocidad de secado en función de la humedad para T1=60 C y M2=1,5 g TIEMPO θ, min Tabla 16. Secado a las condiciones de T1=60 C y M3=2,0 g M3,g R1 R2 R3 M3 prom, g X -dx/dθ W 0,0 2,000 2,000 2,000 2,000 14,917 0,385 0,002 0,5 1,951 1,968 1,933 1,951 14,523 0,383 0,002 1,0 1,908 1,927 1,889 1,908 14,183 0,381 0,002 1,5 1,869 1,888 1,851 1,869 13,877 0,379 0,002 2,0 1,844 1,862 1,825 1,844 13,672 0,376 0,002 2,5 1,821 1,839 1,802 1,821 13,489 0,374 0,002 3,0 1,799 1,817 1,781 1,799 13,316 0,372 0,002 3,5 1,777 1,795 1,759 1,777 13,141 0,370 0,002 4,0 1,754 1,773 1,735 1,754 12,958 0,368 0,002 4,5 1,735 1,753 1,717 1,735 12,806 0,365 0,002 5,0 1,713 1,731 1,696 1,713 12,635 0,363 0,002 5,5 1,694 1,712 1,677 1,694 12,484 0,361 0,002 6,0 1,674 1,692 1,656 1,674 12,323 0,359 0,002 6,5 1,656 1,673 1,638 1,656 12,176 0,357 0,002 7,0 1,636 1,653 1,619 1,636 12,018 0,354 0,002 7,5 1,615 1,633 1,596 1,615 11,849 0,352 0,002 8,0 1,596 1,613 1,580 1,596 11,704 0,350 0,002 8,5 1,576 1,593 1,560 1,576 11,545 0,348 0,002 9,0 1,556 1,573 1,540 1,556 11,386 0,346 0,002 9,5 1,537 1,553 1,520 1,537 11,229 0,343 0,002 10,0 1,517 1,533 1,501 1,517 11,071 0,341 0,002 10,5 1,497 1,513 1,481 1,497 10,914 0,339 0,002 11,0 1,478 1,494 1,462 1,478 10,763 0,337 0,002 11,5 1,453 1,469 1,438 1,453 10,566 0,335 0,002 12,0 1,435 1,450 1,420 1,435 10,419 0,332 0,002 12,5 1,417 1,432 1,402 1,417 10,277 0,330 0,002 44

59 TIEMPO θ, min M3,g R1 R2 R3 Continuación Tabla M3 prom, g X -dx/dθ W 13,0 1,399 1,414 1,383 1,399 10,130 0,328 0,002 13,5 1,379 1,394 1,364 1,379 9,975 0,326 0,002 14,0 1,360 1,374 1,345 1,360 9,820 0,324 0,002 14,5 1,341 1,355 1,326 1,341 9,669 0,321 0,002 15,0 1,322 1,336 1,307 1,322 9,517 0,319 0,002 15,5 1,299 1,312 1,286 1,299 9,336 0,317 0,002 16,0 1,283 1,297 1,269 1,283 9,211 0,315 0,002 16,5 1,264 1,278 1,250 1,264 9,060 0,313 0,002 17,0 1,246 1,259 1,233 1,246 8,915 0,310 0,002 17,5 1,228 1,240 1,216 1,228 8,771 0,308 0,002 18,0 1,207 1,216 1,197 1,207 8,602 0,306 0,002 18,5 1,190 1,199 1,181 1,190 8,471 0,304 0,002 19,0 1,174 1,183 1,164 1,174 8,340 0,302 0,002 19,5 1,155 1,164 1,145 1,155 8,188 0,299 0,002 20,0 1,135 1,145 1,125 1,135 8,031 0,297 0,002 20,5 1,116 1,127 1,105 1,116 7,882 0,295 0,002 21,0 1,095 1,105 1,085 1,095 7,713 0,293 0,002 21,5 1,079 1,090 1,068 1,079 7,587 0,291 0,002 22,0 1,058 1,068 1,049 1,058 7,422 0,288 0,002 22,5 1,041 1,051 1,031 1,041 7,285 0,286 0,002 23,0 1,024 1,034 1,014 1,024 7,148 0,284 0,002 23,5 1,002 1,011 0,992 1,002 6,971 0,282 0,002 24,0 0,987 0,998 0,977 0,987 6,858 0,280 0,002 24,5 0,970 0,980 0,959 0,970 6,716 0,277 0,002 25,0 0,951 0,961 0,941 0,951 6,567 0,275 0,002 25,5 0,932 0,943 0,921 0,932 6,416 0,273 0,002 26,0 0,914 0,926 0,903 0,914 6,276 0,271 0,002 26,5 0,898 0,908 0,887 0,898 6,143 0,269 0,002 27,0 0,880 0,890 0,869 0,880 6,000 0,266 0,002 27,5 0,863 0,873 0,853 0,863 5,866 0,264 0,002 28,0 0,845 0,855 0,836 0,845 5,727 0,262 0,002 28,5 0,827 0,838 0,816 0,827 5,582 0,260 0,002 29,0 0,809 0,820 0,799 0,809 5,441 0,258 0,002 29,5 0,789 0,802 0,776 0,789 5,279 0,255 0,002 30,0 0,775 0,786 0,764 0,775 5,166 0,253 0,002 30,5 0,750 0,767 0,732 0,750 4,965 0,251 0,002 31,0 0,735 0,752 0,718 0,735 4,850 0,249 0,002 31,5 0,719 0,734 0,704 0,719 4,722 0,247 0,002 32,0 0,705 0,718 0,692 0,705 4,609 0,244 0,002 32,5 0,685 0,701 0,669 0,685 4,452 0,242 0,002 33,0 0,664 0,684 0,645 0,664 4,287 0,240 0,002

60 TIEMPO θ, min M3,g R1 R2 R3 Continuación Tabla 16 M3 prom, g X -dx/dθ W 33,5 0,643 0,669 0,617 0,643 4,115 0,238 0,002 34,0 0,625 0,653 0,597 0,625 3,974 0,236 0,002 34,5 0,608 0,636 0,581 0,608 3,841 0,233 0,001 35,0 0,593 0,621 0,565 0,593 3,720 0,231 0,001 35,5 0,576 0,603 0,548 0,576 3,580 0,229 0,001 36,0 0,560 0,589 0,531 0,560 3,457 0,227 0,001 36,5 0,544 0,572 0,517 0,544 3,332 0,225 0,001 37,0 0,531 0,559 0,503 0,531 3,224 0,222 0,001 37,5 0,516 0,544 0,488 0,516 3,107 0,220 0,001 38,0 0,500 0,527 0,473 0,500 2,977 0,218 0,001 38,5 0,487 0,514 0,460 0,487 2,874 0,216 0,001 39,0 0,473 0,500 0,446 0,473 2,762 0,214 0,001 39,5 0,459 0,486 0,432 0,459 2,653 0,211 0,001 40,0 0,445 0,472 0,418 0,445 2,542 0,209 0,001 40,5 0,432 0,458 0,405 0,432 2,434 0,207 0,001 41,0 0,418 0,444 0,392 0,418 2,325 0,205 0,001 41,5 0,405 0,431 0,379 0,405 2,221 0,203 0,001 42,0 0,392 0,418 0,367 0,392 2,122 0,200 0,001 42,5 0,378 0,405 0,352 0,378 2,010 0,198 0,001 43,0 0,367 0,392 0,342 0,367 1,921 0,196 0,001 43,5 0,357 0,382 0,332 0,357 1,839 0,194 0,001 44,0 0,344 0,368 0,319 0,344 1,734 0,192 0,001 44,5 0,332 0,356 0,307 0,332 1,638 0,189 0,001 45,0 0,321 0,346 0,296 0,321 1,555 0,187 0,001 45,5 0,311 0,335 0,287 0,311 1,473 0,185 0,001 46,0 0,301 0,325 0,277 0,301 1,394 0,183 0,001 46,5 0,291 0,315 0,267 0,291 1,314 0,181 0,001 47,0 0,282 0,306 0,257 0,282 1,241 0,178 0,001 47,5 0,272 0,296 0,248 0,272 1,163 0,176 0,001 48,0 0,263 0,287 0,238 0,263 1,089 0,174 0,001 48,5 0,255 0,279 0,231 0,255 1,027 0,172 0,001 49,0 0,245 0,269 0,222 0,245 0,952 0,170 0,001 49,5 0,237 0,261 0,214 0,237 0,888 0,167 0,001 50,0 0,230 0,253 0,206 0,230 0,827 0,165 0,001 50,5 0,223 0,246 0,200 0,223 0,773 0,163 0,001 51,0 0,215 0,238 0,193 0,215 0,713 0,161 0,001 51,5 0,209 0,231 0,187 0,209 0,663 0,159 0,001 52,0 0,203 0,225 0,181 0,203 0,616 0,156 0,001 52,5 0,198 0,219 0,176 0,198 0,572 0,154 0,001 53,0 0,190 0,210 0,170 0,190 0,514 0,152 0,001 46

61 Humedad X TIEMPO θ, min M3,g R1 R2 R3 Continuación Tabla 16 M3 prom, g X -dx/dθ W 53,5 0,184 0,203 0,166 0,184 0,468 0,150 0,001 54,0 0,178 0,196 0,161 0,178 0,419 0,148 0,001 54,5 0,173 0,189 0,157 0,173 0,376 0,145 0,001 55,0 0,167 0,182 0,153 0,167 0,333 0,143 0,001 55,5 0,160 0,174 0,146 0,160 0,275 0,141 0,001 56,0 0,153 0,167 0,139 0,153 0,219 0,139 0,001 56,5 0,146 0,160 0,132 0,146 0,162 0,137 0,001 57,0 0,139 0,153 0,125 0,139 0,106 0,134 0,001 57,5 0,133 0,146 0,120 0,126 0,000 0,132 0,001 58,0 0,138 58,5 0,131 59,0 0,124 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 X=f(θ) y = 0,0022x 2-0,3852x + 14,675 R² = 0,9987 0,000-2,000 0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 Tiempo θ, min Gráfico 5. Humedad de la muestra en función dl tiempo para T1=60 C y M3=2,0 g 47

62 Vel. Secado W 0,003 0,003 W=f(X) y = -8E-08x 4 + 3E-06x 3-3E-05x 2 + 0,0003x + 0,0009 R² = 0,9997 0,002 0,002 0,001 0,001 0,000 0,000 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 Humedad X Gráfico 6. Velocidad de secado en función de la humedad para T1=60 C y M3=2,0 g TIEMPO θ, min Tabla 17. Secado a las condiciones de T2=80 C y M1=1,0 g M1,g R1 R2 R3 M1 prom, g X -dx/dθ W 0,0 1,100 1,099 1,099 1,099 13,856 1,301 0,005 0,5 1,040 1,043 1,043 1,042 13,079 1,274 0,005 1,0 0,951 0,950 0,947 0,949 11,829 1,247 0,005 1,5 0,894 0,895 0,893 0,894 11,079 1,220 0,005 2,0 0,846 0,848 0,848 0,847 10,450 1,193 0,004 2,5 0,795 0,798 0,798 0,797 9,768 1,166 0,004 3,0 0,767 0,766 0,763 0,765 9,342 1,140 0,004 3,5 0,743 0,744 0,742 0,743 9,038 1,113 0,004 4,0 0,720 0,722 0,722 0,721 8,748 1,086 0,004 4,5 0,681 0,684 0,684 0,683 8,227 1,059 0,004 5,0 0,650 0,649 0,646 0,648 7,761 1,032 0,004 5,5 0,609 0,610 0,608 0,609 7,227 1,005 0,004 6,0 0,569 0,571 0,571 0,570 6,707 0,978 0,004 6,5 0,533 0,536 0,536 0,535 6,227 0,951 0,004 7,0 0,504 0,503 0,500 0,502 5,788 0,924 0,003 7,5 0,466 0,467 0,465 0,466 5,295 0,897 0,003 8,0 0,423 0,425 0,425 0,424 4,734 0,871 0,003 8,5 0,393 0,396 0,396 0,395 4,336 0,844 0,003 9,0 0,364 0,363 0,360 0,362 3,896 0,817 0,003 9,5 0,330 0,331 0,329 0,330 3,457 0,790 0,003 10,0 0,294 0,296 0,296 0,295 2,991 0,763 0,003 10,5 0,253 0,256 0,256 0,255 2,444 0,736 0,003 11,0 0,239 0,238 0,235 0,237 2,207 0,709 0,003 11,5 0,208 0,209 0,207 0,208 1,809 0,682 0,003 48

63 Vel. secado W Humedad X TIEMPO θ, min M1,g R1 R2 R3 Continuación Tabla 17 M1 prom, g X -dx/dθ W 12,0 0,177 0,179 0,179 0,178 1,410 0,655 0,002 12,5 0,151 0,154 0,154 0,153 1,065 0,628 0,002 13,0 0,136 0,135 0,132 0,134 0,815 0,602 0,002 13,5 0,114 0,115 0,113 0,114 0,538 0,575 0,002 14,0 0,095 0,097 0,097 0,096 0,302 0,548 0,002 14,5 0,083 0,086 0,086 0,085 0,146 0,521 0,002 15,0 0,083 0,082 0,079 0,081 0,099 0,494 0,002 15,5 0,076 0,077 0,075 0,074 0,000 0,467 0,002 16,0 0,073 0,075 16,5 0,072 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0,000-2,000 X=f(θ) y = 0,0269x 2-1,3009x + 13,353 R² = 0,9965 0,0 5,0 10,0 15,0 20,0 Tiempo θ, min Gráfico 7. Humedad de la muestra en función dl tiempo para T2=80 C y M1=1,0 g 0,006 0,005 W=f(X) y = -3E-07x 4 + 7E-06x 3-7E-05x 2 + 0,0005x + 0,0019 R² = 0,9986 0,004 0,003 0,002 0,001 0,000 0,000 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 Humedad X Gráfico 8. Velocidad de secado en función de la humedad para T2=80 C y M1=1,0 g 49

64 TIEMPO θ, min Tabla 18. Secado a las condiciones de T2=80 C y M2=1,5 g M2,g 50 M2 prom, g R1 R2 R3 X -dx/dθ W 0,0 1,504 1,500 1,489 1,498 9,473 0,824 0,006 0,5 1,402 1,405 1,408 1,405 8,825 0,806 0,006 1,0 1,306 1,302 1,298 1,302 8,105 0,788 0,006 1,5 1,241 1,240 1,239 1,240 7,671 0,770 0,006 2,0 1,191 1,193 1,195 1,193 7,343 0,752 0,005 2,5 1,144 1,147 1,15 1,147 7,021 0,734 0,005 3,0 1,104 1,100 1,096 1,100 6,692 0,715 0,005 3,5 1,055 1,054 1,053 1,054 6,371 0,697 0,005 4,0 1,010 1,012 1,014 1,012 6,077 0,679 0,005 4,5 0,967 0,970 0,973 0,970 5,783 0,661 0,005 5,0 0,933 0,929 0,925 0,929 5,497 0,643 0,005 5,5 0,890 0,889 0,888 0,889 5,217 0,625 0,005 6,0 0,848 0,850 0,852 0,850 4,944 0,607 0,004 6,5 0,799 0,802 0,805 0,802 4,608 0,589 0,004 7,0 0,763 0,759 0,755 0,759 4,308 0,571 0,004 7,5 0,732 0,731 0,73 0,731 4,112 0,553 0,004 8,0 0,690 0,692 0,694 0,692 3,839 0,534 0,004 8,5 0,651 0,654 0,657 0,654 3,573 0,516 0,004 9,0 0,620 0,616 0,612 0,616 3,308 0,498 0,004 9,5 0,580 0,579 0,578 0,579 3,049 0,480 0,003 10,0 0,541 0,543 0,545 0,543 2,797 0,462 0,003 10,5 0,504 0,507 0,51 0,507 2,545 0,444 0,003 11,0 0,477 0,473 0,469 0,473 2,308 0,426 0,003 11,5 0,44 0,439 0,438 0,439 2,070 0,408 0,003 12,0 0,403 0,405 0,407 0,405 1,832 0,390 0,003 12,5 0,371 0,374 0,377 0,374 1,615 0,372 0,003 13,0 0,347 0,343 0,339 0,343 1,399 0,353 0,003 13,5 0,316 0,315 0,314 0,315 1,203 0,335 0,002 14,0 0,285 0,287 0,289 0,287 1,007 0,317 0,002 14,5 0,258 0,261 0,264 0,261 0,825 0,299 0,002 15,0 0,242 0,238 0,234 0,238 0,664 0,281 0,002 15,5 0,22 0,219 0,218 0,219 0,531 0,263 0,002 16,0 0,201 0,203 0,205 0,203 0,420 0,245 0,002 16,5 0,187 0,190 0,193 0,190 0,329 0,227 0,002 17,0 0,184 0,180 0,176 0,180 0,259 0,209 0,002 17,5 0,172 0,171 0,17 0,171 0,196 0,191 0,001 18,0 0,162 0,164 0,166 0,164 0,147 0,172 0,001 18,5 0,155 0,158 0,161 0,158 0,105 0,154 0,001 19,0 0,158 0,154 0,15 0,154 0,077 0,136 0,001 19,5 0,151 0,150 0,149 0,150 0,049 0,118 0,001 20,0 0,146 0,148 0,15 0,148 0,035 0,100 0,001 20,5 0,143 0,146 0,149 0,143 0,000 0,082 0,001

65 Vel. secado W Humedad X 10,000 8,000 6,000 X=f(θ) y = 0,0181x 2-0,824x + 9,1213 R² = 0,9978 4,000 2,000 0,000 0,0 5,0 10,0 15,0 20,0 25,0-2,000 Tiempo θ, min Gráfico 9. Humedad de la muestra en función dl tiempo para T2=80 C y M2=1,5 g 0,007 0,006 0,005 0,004 0,003 0,002 0,001 W=f(X) y = -3E-06x 4 + 6E-05x 3-0,0004x 2 + 0,0016x + 0,001 R² = 0,9947 0,000 0,000 2,000 4,000 6,000 8,000 10,000 Humedad X Gráfico 10. Velocidad de secado en función de la humedad para T2=80 C y M2=1,5 g 51

66 TIEMPO θ, min Tabla 19. Secado a las condiciones de T2=80 C y M3=2,0 g M3,g R1 R2 R3 M3 prom, g X -dx/dθ W 0,0 2,000 1,997 1,999 1,999 14,064 0,817 0,006 0,5 1,915 1,919 1,917 1,917 13,450 0,806 0,005 1,0 1,807 1,808 1,808 1,808 12,624 0,795 0,005 1,5 1,740 1,738 1,739 1,739 12,108 0,784 0,005 2,0 1,687 1,684 1,686 1,686 11,705 0,773 0,005 2,5 1,636 1,640 1,638 1,638 11,347 0,762 0,005 3,0 1,585 1,586 1,586 1,586 10,951 0,751 0,005 3,5 1,538 1,536 1,537 1,537 10,585 0,740 0,005 4,0 1,495 1,492 1,494 1,494 10,258 0,730 0,005 4,5 1,453 1,457 1,455 1,455 9,967 0,719 0,005 5,0 1,409 1,410 1,410 1,410 9,624 0,708 0,005 5,5 1,368 1,366 1,367 1,367 9,304 0,697 0,005 6,0 1,326 1,323 1,325 1,325 8,984 0,686 0,005 6,5 1,284 1,288 1,286 1,286 8,693 0,675 0,005 7,0 1,243 1,244 1,244 1,244 8,373 0,664 0,004 7,5 1,202 1,200 1,201 1,201 8,053 0,653 0,004 8,0 1,161 1,158 1,160 1,160 7,740 0,642 0,004 8,5 1,121 1,125 1,123 1,123 7,465 0,631 0,004 9,0 1,081 1,082 1,082 1,082 7,152 0,621 0,004 9,5 1,041 1,039 1,040 1,040 6,839 0,610 0,004 10,0 1,002 0,999 1,001 1,001 6,541 0,599 0,004 10,5 0,961 0,965 0,963 0,963 6,259 0,588 0,004 11,0 0,923 0,924 0,924 0,924 5,961 0,577 0,004 11,5 0,885 0,883 0,884 0,884 5,663 0,566 0,004 12,0 0,848 0,845 0,847 0,847 5,381 0,555 0,004 12,5 0,810 0,814 0,812 0,812 5,121 0,544 0,004 13,0 0,774 0,775 0,775 0,775 4,838 0,533 0,004 13,5 0,738 0,736 0,737 0,737 4,555 0,522 0,004 14,0 0,702 0,699 0,701 0,701 4,280 0,512 0,003 14,5 0,667 0,671 0,669 0,669 4,043 0,501 0,003 15,0 0,633 0,634 0,634 0,634 3,775 0,490 0,003 15,5 0,599 0,597 0,598 0,598 3,508 0,479 0,003 16,0 0,565 0,562 0,564 0,564 3,247 0,468 0,003 16,5 0,532 0,536 0,534 0,534 3,025 0,457 0,003 17,0 0,501 0,502 0,502 0,502 2,780 0,446 0,003 17,5 0,458 0,456 0,457 0,457 2,445 0,435 0,003 18,0 0,439 0,436 0,438 0,438 2,298 0,424 0,003 18,5 0,409 0,413 0,411 0,411 2,098 0,413 0,003 19,0 0,379 0,380 0,380 0,380 1,861 0,403 0,003 19,5 0,350 0,348 0,349 0,349 1,631 0,392 0,003 52

67 Humedad X TIEMPO θ, min M3,g R1 R2 R3 Continuación Tabla 19 M3 prom, g X -dx/dθ W 20,0 0,323 0,320 0,322 0,322 1,423 0,381 0,003 20,5 0,298 0,302 0,300 0,300 1,261 0,370 0,002 21,0 0,273 0,274 0,274 0,274 1,062 0,359 0,002 21,5 0,248 0,246 0,247 0,247 0,862 0,348 0,002 22,0 0,228 0,225 0,227 0,227 0,707 0,337 0,002 22,5 0,207 0,211 0,209 0,209 0,575 0,326 0,002 23,0 0,188 0,189 0,189 0,189 0,421 0,315 0,002 23,5 0,175 0,173 0,174 0,174 0,312 0,304 0,002 24,0 0,163 0,160 0,162 0,162 0,217 0,294 0,002 24,5 0,154 0,158 0,156 0,156 0,176 0,283 0,002 25,0 0,146 0,147 0,147 0,147 0,104 0,272 0,002 25,5 0,138 0,136 0,132 0,133 0,000 0,261 0,002 26,0 0,130 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 X=f(θ) y = 0,0109x 2-0,8167x + 13,523 R² = 0,9988 0,000-2,000 0,0 5,0 10,0 15,0 20,0 25,0 30,0 Tiempo θ, min Gráfico 11. Humedad de la muestra en función dl tiempo para T2=80 C y M3=2,0 g 53

68 Ve. Secado W 0,006 0,005 W=f(X) y = -2E-07x 4 + 6E-06x 3-7E-05x 2 + 0,0006x + 0,0019 R² = 0,9994 0,004 0,003 0,002 0,001 0,000 0,000 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 Humedad X Gráfico 12. Velocidad de secado en función de la humedad para T2=80 C y M3=2,0 g Tabla 20. Secado a las condiciones de T3=100 C y M1=1,0 g TIEMPO θ, min M1,g R1 R2 R3 M1 prom, g X -dx/dθ W 0,0 1,002 0,920 0,961 0,961 15,713 4,590 0,013 0,5 0,824 0,846 0,835 0,835 13,522 4,249 0,012 1,0 0,659 0,699 0,679 0,679 10,809 3,908 0,011 1,5 0,554 0,612 0,583 0,583 9,139 3,567 0,010 2,0 0,461 0,526 0,494 0,494 7,583 3,226 0,009 2,5 0,362 0,439 0,401 0,401 5,965 2,885 0,008 3,0 0,304 0,381 0,343 0,343 4,957 2,544 0,007 3,5 0,236 0,316 0,276 0,276 3,800 2,203 0,006 4,0 0,175 0,253 0,214 0,214 2,722 1,861 0,005 4,5 0,126 0,197 0,162 0,162 1,809 1,520 0,004 5,0 0,090 0,147 0,119 0,119 1,061 1,179 0,003 5,5 0,073 0,104 0,089 0,089 0,539 0,838 0,002 6,0 0,067 0,071 0,069 0,069 0,200 0,497 0,001 6,5 0,066 0,056 0,061 0,061 0,061 0,156 0,000 7,0 0,065 0,051 0,059 0,058 0,000-0,185-0,001 7,5 0,050 0,058 54

69 Vel. Secado W Humedad X 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0,000 X=f(θ) y = 0,3411x 2-4,5902x + 15,487 R² = 0,9987 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 Tiempo θ, min Gráfico 13. Humedad de la muestra en función del tiempo para T3=100 C y M1=1,0 g 0,016 0,014 0,012 0,010 0,008 0,006 0,004 0,002 W=f(X) y = -8E-07x 4 + 3E-05x 3-0,0004x 2 + 0,0027x + 0,0005 R² = 0,9915 0,000-0,0020,000 5,000 10,000 15,000 20,000 Humedad X Gráfico 14. Velocidad de secado en función de la humedad para T3=100 C y M1=1,0 g 55

70 Tabla 21. Secado a las condiciones de T3=100 C y M2=1,5 g TIEMPO θ, min M2,g R1 R2 R3 M2 prom, g X -dx/dθ W 0,0 1,500 1,500 1,500 1,500 13,331 1,629 0,009 0,5 1,375 1,460 1,290 1,375 12,137 1,580 0,008 1,0 1,304 1,375 1,233 1,304 11,459 1,530 0,008 1,5 1,212 1,298 1,126 1,212 10,580 1,481 0,008 2,0 1,140 1,226 1,053 1,140 9,887 1,431 0,008 2,5 1,077 1,159 0,994 1,077 9,285 1,382 0,007 3,0 1,012 1,093 0,930 1,012 8,664 1,332 0,007 3,5 0,947 1,030 0,863 0,947 8,043 1,283 0,007 4,0 0,885 0,967 0,803 0,885 7,455 1,233 0,007 4,5 0,827 0,908 0,746 0,827 6,901 1,184 0,006 5,0 0,743 0,850 0,636 0,743 6,099 1,134 0,006 5,5 0,701 0,792 0,609 0,701 5,693 1,085 0,006 6,0 0,658 0,732 0,583 0,658 5,282 1,035 0,006 6,5 0,606 0,679 0,532 0,606 4,785 0,986 0,005 7,0 0,553 0,623 0,482 0,553 4,279 0,936 0,005 7,5 0,501 0,569 0,433 0,501 3,787 0,887 0,005 8,0 0,452 0,517 0,386 0,452 3,314 0,837 0,004 8,5 0,404 0,466 0,341 0,404 2,855 0,788 0,004 9,0 0,357 0,418 0,296 0,357 2,411 0,738 0,004 9,5 0,318 0,373 0,262 0,318 2,033 0,689 0,004 10,0 0,270 0,312 0,227 0,270 1,575 0,639 0,003 10,5 0,244 0,290 0,198 0,244 1,331 0,590 0,003 11,0 0,213 0,253 0,172 0,213 1,030 0,540 0,003 11,5 0,186 0,219 0,152 0,186 0,772 0,491 0,003 12,0 0,162 0,188 0,135 0,162 0,543 0,441 0,002 12,5 0,143 0,163 0,122 0,143 0,361 0,392 0,002 13,0 0,127 0,142 0,112 0,127 0,213 0,342 0,002 13,5 0,118 0,128 0,108 0,118 0,127 0,293 0,002 14,0 0,112 0,119 0,104 0,112 0,065 0,243 0,001 14,5 0,108 0,113 0,103 0,108 0,032 0,194 0,001 15,0 0,106 0,110 0,102 0,105 0,000 0,144 0,001 15,5 0,108 16,0 0,106 56

71 Vel. Secado w Humedad X 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 X=f(θ) y = 0,0495x 2-1,6293x + 13,098 R² = 0,9991 0,000-2,000 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 Tiempo θ Gráfico 15. Humedad de la muestra en función del tiempo para T3=100 C y M2=1,5 g 0,010 0,009 0,008 0,007 0,006 0,005 0,004 0,003 0,002 0,001 0,000 W=f(X) y = -9E-07x 4 + 3E-05x 3-0,0003x 2 + 0,0017x + 0,0013 R² = 0,9954 0,000 2,000 4,000 6,000 8,000 10,000 12,000 14,000 Humedad X Gráfico 16. Velocidad de secado en función de la humedad para T3=100 C y M2=1,5 g 57

72 Tabla 22. Secado a las condiciones de T3=100 C y M3=2,0 g TIEMPO θ, min M3,g R1 R2 R3 M3 prom, g X -dx/dθ W 0,0 2,000 2,000 2,000 2,000 16,884 1,693 0,010 0,5 1,884 1,860 1,872 1,872 15,739 1,651 0,009 1,0 1,710 1,695 1,703 1,703 14,224 1,608 0,009 1,5 1,614 1,589 1,602 1,602 13,320 1,566 0,009 2,0 1,528 1,516 1,522 1,522 12,610 1,523 0,009 2,5 1,448 1,439 1,444 1,444 11,908 1,481 0,008 3,0 1,376 1,367 1,371 1,371 11,262 1,438 0,008 3,5 1,303 1,297 1,300 1,300 10,624 1,396 0,008 4,0 1,236 1,229 1,233 1,233 10,021 1,353 0,008 4,5 1,167 1,163 1,165 1,165 9,417 1,311 0,007 5,0 1,103 1,100 1,102 1,102 8,849 1,268 0,007 5,5 1,040 1,035 1,038 1,038 8,277 1,226 0,007 6,0 0,998 0,978 0,988 0,988 7,835 1,183 0,007 6,5 0,910 0,916 0,913 0,913 7,164 1,141 0,006 7,0 0,854 0,857 0,856 0,856 6,650 1,098 0,006 7,5 0,794 0,796 0,795 0,795 6,109 1,056 0,006 8,0 0,734 0,736 0,735 0,735 5,572 1,013 0,006 8,5 0,677 0,680 0,679 0,679 5,067 0,971 0,006 9,0 0,620 0,622 0,621 0,621 4,553 0,928 0,005 9,5 0,567 0,568 0,568 0,568 4,075 0,886 0,005 10,0 0,514 0,514 0,514 0,514 3,596 0,843 0,005 10,5 0,464 0,462 0,463 0,463 3,140 0,801 0,005 11,0 0,415 0,413 0,414 0,414 2,702 0,758 0,004 11,5 0,369 0,366 0,368 0,368 2,286 0,716 0,004 12,0 0,326 0,320 0,323 0,323 1,888 0,673 0,004 12,5 0,284 0,280 0,282 0,282 1,522 0,631 0,004 13,0 0,246 0,238 0,242 0,242 1,164 0,588 0,003 13,5 0,210 0,208 0,209 0,209 0,869 0,546 0,003 14,0 0,176 0,181 0,179 0,179 0,596 0,503 0,003 14,5 0,153 0,160 0,157 0,157 0,399 0,461 0,003 15,0 0,133 0,145 0,139 0,139 0,243 0,418 0,002 15,5 0,121 0,137 0,129 0,129 0,154 0,376 0,002 16,0 0,111 0,130 0,121 0,121 0,077 0,333 0,002 16,5 0,105 0,128 0,117 0,117 0,042 0,291 0,002 17,0 0,101 0,126 0,114 0,112 0,000 0,248 0,001 17,5 0,098 18,0 0,096 58

73 Vel. Secado W Humedad X 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 X=f(θ) y = 0,0425x 2-1,6931x + 16,202 R² = 0,9978 0,000-2,000 0,0 5,0 10,0 15,0 20,0 Tiempo θ, min Gráfico 17. Humedad de la muestra en función del tiempo para T3=100 C y M3=2,0 g 0,012 0,010 W=f(X) y = -3E-07x 4 + 1E-05x 3-0,0002x 2 + 0,0012x + 0,0019 R² = 0,9964 0,008 0,006 0,004 0,002 0,000 0,000 5,000 10,000 15,000 20,000 Humedad X Gráfico 18. Velocidad de secado en función de la humedad para T3=100 C y M2=2,0 g 59

74 5.2 Ecuaciones de tiempo de secado y porcentajes de contenidos de grasa. En la Tabla 23 se presentan las ecuaciones de tiempo de secado (θ), para las diferentes condiciones de secado expuestas en el diseño experimental, así como, los porcentajes de grasa total contenidos en las muestras secas después de cada experimentación. Tabla 23. Ecuaciones de tiempo de secado y porcentajes de contenidos de grasa 5.3 Resultados de análisis de contenidos de grasas En la Tabla 24 se presentan los porcentajes de grasa obtenidos después del secado para la relación del (Peso de la muestra / Área Expuesta), para las diferentes temperaturas de trabajo. Tabla 24. Análisis de contenidos de grasas resultantes en función de la Masa sobre el Área T1 %Grasa M/A 0,8 0, ,3 0, ,07 0,

HOJA INFORMATIVA DE HORTICULTURA

HOJA INFORMATIVA DE HORTICULTURA HOJA INFORMATIVA DE HORTICULTURA COSECHA Y POST-COSECHA: Importancia y fundamentos Alejandro R. Puerta Ing. Agr. Agosto 2002 La cosecha y post - cosecha es una etapa de fundamental importancia en el proceso

Más detalles

Requisitos del semillero

Requisitos del semillero Requisitos del semillero La tarea de la cama de siembra es proporcionar a la semilla las condiciones idóneas para una germinación rápida y uniforme. Esto requiere agua, aire, calor y un ambiente libre

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire.

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. El proceso de secado es una de las operaciones más importantes en la industria

Más detalles

TRABAJO PRACTICO ESTERILIZACION

TRABAJO PRACTICO ESTERILIZACION TRABAJO PRACTICO ESTERILIZACION Introducción La esterilización es un proceso de suma importancia para la industria de las fermentaciones. Para comenzar la explicación de este tema es conveniente dejar

Más detalles

4. Materiales y Métodos. Los equipos que a continuación se mencionan se encuentran en el laboratorio de

4. Materiales y Métodos. Los equipos que a continuación se mencionan se encuentran en el laboratorio de 39 4. Materiales y Métodos 4.1 Equipos Los equipos que a continuación se mencionan se encuentran en el laboratorio de Ingeniería Ambiental de la Universidad de las Américas Puebla y en el Laboratorio de

Más detalles

Práctica II: DENSIDAD Y HUMEDAD DEL AIRE

Práctica II: DENSIDAD Y HUMEDAD DEL AIRE Física Ambiental, I.T. Agrícola Práctica II: DENSIDAD Y HUMEDAD DEL AIRE Universidad de Huelva. Dpto. de Física Aplicada. Prácticas de Física Ambiental, I.T. Agrícola 1 3. Densidad y humedad del aire 3.1.

Más detalles

Investigadores Buscan Producir Biodiésel Derivado de la Cosecha de Microalgas

Investigadores Buscan Producir Biodiésel Derivado de la Cosecha de Microalgas Fuente: Elizabeth Martínez, PetroQuiMex. Biodiésel Investigadores Buscan Producir Biodiésel Derivado de la Cosecha de Microalgas Los cultivos de microalgas pueden realizarse en áreas sumergidas, tierras

Más detalles

LA AGROINDUTRIA DE BIOCOMBUSTIBLES

LA AGROINDUTRIA DE BIOCOMBUSTIBLES LA AGROINDUTRIA DE BIOCOMBUSTIBLES Escuela de Ciencias Agropecuarias y ambientales FESAD Este material de autoestudio fue creado en el año 2007 para la asignatura de Fundamento de Agroindustria del programa

Más detalles

EVALUACION POSTERIOR A LA VISITA DE VEGETALISTA EVALUACIÓN SUMATIVA

EVALUACION POSTERIOR A LA VISITA DE VEGETALISTA EVALUACIÓN SUMATIVA Nivel: 7 Básico Unidad: Nutrición autótrofa EVALUACIÓN SUMATIVA 1-.Un agricultor quiere obtener el máximo nivel productivo de sus campos de trigo. Para ello ha averiguado que las plantas usan luz y que

Más detalles

LOS FERTILIZANTES: MITOS Y REALIDADES

LOS FERTILIZANTES: MITOS Y REALIDADES LABORATORIO DE ANALISIS Página 1 de 6 LOS FERTILIZANTES: MITOS Y REALIDADES Traducción y Adaptación: Diogenes E. Pérez R.; M. S. Artículo extraído de: FERTILIZAR Introducción: La mayoría de las personas

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la 34 CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO 4.1 Lecho fluidizado con vapor sobrecalentado Potter [10], ha demostrado en una planta piloto que materiales sensibles a la temperatura pueden

Más detalles

Ley de crecimiento de una mancha de aceite.

Ley de crecimiento de una mancha de aceite. Ley de crecimiento de una mancha de aceite. María Florencia Filadoro Alikhanoff E-mail: floty@hotmail.com Resumen Se realizaron mediciones del diámetro de una mancha de petróleo para determinar la tasa

Más detalles

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad)

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) CAPITULO 5. PROCESO DE SECADO. 5.1 Descripción general del proceso de secado. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) para producir un producto sólido y

Más detalles

CAPÍTULO III RESULTADOS Y ANÁLISIS DE RESULTADOS

CAPÍTULO III RESULTADOS Y ANÁLISIS DE RESULTADOS CAPÍTULO III RESULTADOS Y ANÁLISIS DE RESULTADOS Para el proceso de purificación del aceite, se pudo observar, en el momento del filtrado algunas partículas sólidas retenidas en los diferentes filtros

Más detalles

Ficha Técnica Secado Solar

Ficha Técnica Secado Solar Ficha Técnica Secado Solar 13 1. Consideraciones Generales El secado es uno de los métodos más comunes para preservar o conservar los alimentos. Este método consiste en reducir o disminuir el contenido

Más detalles

Capítulo 6. Valoración respiratoria

Capítulo 6. Valoración respiratoria 498 Capítulo 6. Valoración respiratoria 6.19. La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 6.19 La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 499

Más detalles

Autor: David Rodríguez Estupiñán. Tutores: Héctor Mendoza Guzmán Eduardo Portillo Hahnafeld Adelina de la Jara Valido

Autor: David Rodríguez Estupiñán. Tutores: Héctor Mendoza Guzmán Eduardo Portillo Hahnafeld Adelina de la Jara Valido Autor: David Rodríguez Estupiñán Tutores: Héctor Mendoza Guzmán Eduardo Portillo Hahnafeld Adelina de la Jara Valido Cultivos abiertos (raceways) Cultivos cerrados (fotobiorreactores) Comparativa cultivos

Más detalles

EQUIPO PORTÁTIL PARA LA DETERMINACIÓN DE CLORO DISPONIBLE EN SOLUCIONES CONCENTRADAS DE HIPOCLORITO

EQUIPO PORTÁTIL PARA LA DETERMINACIÓN DE CLORO DISPONIBLE EN SOLUCIONES CONCENTRADAS DE HIPOCLORITO UNIDAD DE APOYO TÉCNICO PARA EL SANEAMIENTO BÁSICO DEL ÁREA RURAL EQUIPO PORTÁTIL PARA LA DETERMINACIÓN DE CLORO DISPONIBLE EN SOLUCIONES CONCENTRADAS DE HIPOCLORITO Centro Panamericano de Ingeniería Sanitaria

Más detalles

Determinación del equivalente eléctrico del calor

Determinación del equivalente eléctrico del calor Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar

Más detalles

UNIVERSIDAD DE SUCRE FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA CIVIL ASIGNATURA: LAB. GEOTACNIA I INFORME

UNIVERSIDAD DE SUCRE FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA CIVIL ASIGNATURA: LAB. GEOTACNIA I INFORME GRUPO N : 1 ASISTIERON: FECHA: 22 de Mayo del 2012 ENSAYO: Determinación de la densidad seca en campo por el método del cono de arena NORMA: OBJETIVO GENERAL Determinar la densidad seca y el contenido

Más detalles

MODELOS DE INVENTARIO

MODELOS DE INVENTARIO MODELOS DE INVENTARIO Los modelos de inventarios son métodos que ayudan a reducir o minimizar los niveles de inventario requeridos en la producción. Existen varios métodos que nos ayudan a conseguir dicho

Más detalles

UNIVERSIDAD DE GUAYAQUIL

UNIVERSIDAD DE GUAYAQUIL UNIVERSIDAD DE GUAYAQUIL Facultad de Ciencias Económicas TESIS PARA OPTAR POR EL TÍTULO DE ECONOMISTA TEMA: EL DESEMPLEO JUVENIL EN EL ECUADOR EN EL PERIODO 2009-2010 AUTOR: SILVA JARRÍN CHRISTIAN FRANCISCO

Más detalles

Estudio de la evaporación

Estudio de la evaporación Estudio de la evaporación Volumen del líquido Tipo de líquido Superficie del recipiente Altura del recipiente Forma del recipiente Presencia de una sal disuelta Introducción Todos hemos observado que una

Más detalles

Noticia: Se extiende el servicio de recogida de aceites vegetales usados

Noticia: Se extiende el servicio de recogida de aceites vegetales usados Noticia: Se extiende el servicio de recogida de aceites vegetales usados El servicio de recogida de aceites vegetales usados se extiende a 35 municipios de Ávila, Burgos, León, Salamanca y Zamora, con

Más detalles

MÓDULO 3 CURVAS DE INFILTRACIÓN

MÓDULO 3 CURVAS DE INFILTRACIÓN MÓDULO 3 CURVAS DE INFILTRACIÓN Autores: Dr. Ing. Roberto Pizarro T. Ing. Juan Pablo Flores V. Ing. Claudia Sangüesa P. Ing. Enzo Martínez A. 1. INTRODUCCIÓN La infiltración el agua posee un rol fundamental

Más detalles

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos.

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos. PIRÓLISIS 1. Definición La pirólisis se define como un proceso termoquímico mediante el cual el material orgánico de los subproductos sólidos se descompone por la acción del calor, en una atmósfera deficiente

Más detalles

ENERGÍA ELÉCTRICA. Central térmica

ENERGÍA ELÉCTRICA. Central térmica ENERGÍA ELÉCTRICA. Central térmica La central térmica de Castellón (Iberdrola) consta de dos bloques de y 5 MW de energía eléctrica, y utiliza como combustible gas natural, procedente de Argelia. Sabiendo

Más detalles

UNIVERSIDAD AUTONOMA DE CHIHUAHUA

UNIVERSIDAD AUTONOMA DE CHIHUAHUA UNIVERSIDAD AUTONOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUIMICAS OPERACIONES UNITARIAS ll Ensayo Integrantes: Areli Prieto Velo 232644 Juan Carlos Calderón Villa 232654 Víctor Gutiérrez 245369 Fernando

Más detalles

CURSO INTERNACIONAL: PRODUCCION Y APROVECHAMIENTO ENERGETICO DE BIOMASA

CURSO INTERNACIONAL: PRODUCCION Y APROVECHAMIENTO ENERGETICO DE BIOMASA 1 CURSO INTERNACIONAL: PRODUCCION Y APROVECHAMIENTO ENERGETICO DE BIOMASA INFLUENCIA DEL SECADO DEL BAGAZO EN LA EFICIENCIA TERMICA DE GENERADORES DE VAPOR Ing. Rodolfo Santillán Heredia., M.S. CONTENIDO:

Más detalles

Las energías alternativas.

Las energías alternativas. Se denomina energía alternativa, o más propiamente fuentes de energía alternativas, a aquellas fuentes de energía planteadas como alternativa a las tradicionales o clásicas. No obstante, no existe consenso

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Tema I. Mercados de energías renovables. 1. Mercado energético. 2. Desarrollo sostenible, producción limpia y sistemas de gestión Ambiental. Tema II. Eficiencia y energías renovables.

Más detalles

UNA NUTRICIÓN SANA Los nutrientes son: hidratos de carbono proteína grasa

UNA NUTRICIÓN SANA Los nutrientes son: hidratos de carbono proteína grasa UNA NUTRICIÓN SANA La alimentación se compone de varios nutrientes, vitaminas, minerales y agua. Los nutrientes son: Hidratos de carbono Proteínas Grasas Los hidratos de carbono son la glucosa y los almidones

Más detalles

2. Redes de Medición de la Calidad del Aire

2. Redes de Medición de la Calidad del Aire 2. Redes de Medición de la Calidad del Aire Una red de medición de la calidad del aire es parte de un Sistema de Medición de Calidad del aire, SMCA. Es importante mencionar que un SMCA puede incluir una

Más detalles

Auditorías Energéticas

Auditorías Energéticas Auditorías Energéticas IMPORTANTES RESULTADOS SE OBTIENEN CON LA REALIZACION DE AUDITORIAS ENERGETICAS APLICADAS A LOS SISTEMAS DE GENERACION, DISTRIBUCION Y CONSUMO DE VAPOR. LA REDUCCION DE COSTOS ES

Más detalles

ACTIVIDAD 3: NUTRICIÓN EQUILIBRADA

ACTIVIDAD 3: NUTRICIÓN EQUILIBRADA ACTIVIDAD 3: NUTRICIÓN EQUILIBRADA Los seres vivos estamos constituidos por determinadas sustancias tanto orgánicas como inorgánicas. Para poder obtenerlas necesitamos alimentarnos. Es de los alimentos

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

CAPITULO 6 ANALISIS Y ESTUDIO DE SECADO. El secado de sólidos se puede definir de distintas maneras, según el enfoque que se

CAPITULO 6 ANALISIS Y ESTUDIO DE SECADO. El secado de sólidos se puede definir de distintas maneras, según el enfoque que se 52 CAPITULO 6 ANALISIS Y ESTUDIO DE SECADO 6.1 Definición de secado El secado de sólidos se puede definir de distintas maneras, según el enfoque que se desee adoptar. En los estudios más teóricos se pone

Más detalles

Laboratorio de Biotecnología Energética ECUADOR

Laboratorio de Biotecnología Energética ECUADOR Laboratorio de Biotecnología Energética ECUADOR El Laboratorio de Biotecnología Energética, BIOTEC forma parte de la Corporación para la Investigación Energética, creado en mayo del 2013 conjuntamente

Más detalles

UBICACIÓN DE LA PLANTA

UBICACIÓN DE LA PLANTA SECCIÓN II UBICACIÓN DE LA PLANTA La adecuada ubicación de la planta industrial, es tan importante para su éxito posterior, como lo es la elección del proceso mismo, y por lo tanto para lograr esto, se

Más detalles

FERMENTACION ALCOHOLICA BIOETANOL

FERMENTACION ALCOHOLICA BIOETANOL FERMENTACION ALCOHOLICA BIOETANOL 1. Definición La fermentación puede definirse como un proceso de biotransformación en el que se llevan a cabo cambios químicos en un sustrato orgánico por la acción de

Más detalles

Catalizadores. Posible relación con el incendio de vehículos. calor generado en su interior.

Catalizadores. Posible relación con el incendio de vehículos. calor generado en su interior. J. A. Rodrigo Catalizadores En general, los fabricantes de automóviles y de catalizadores suelen aconsejar o recomendar a los usuarios a través del Manual de Instrucciones del vehículo, advertencias como:

Más detalles

El plan de clase sobre el efecto invernadero y el sistema climático global

El plan de clase sobre el efecto invernadero y el sistema climático global Para los docentes El plan de clase sobre el efecto invernadero y el sistema climático global El siguiente plan de clase se diseñó para ser usado con la sección de Cambio Climático del sitio web La evidencia

Más detalles

satisfechas cuando el consumo de alimentos es adecuado para mantener un buen desarrollo del cuerpo y una actividad física que le permita mantenerse

satisfechas cuando el consumo de alimentos es adecuado para mantener un buen desarrollo del cuerpo y una actividad física que le permita mantenerse La energía es el combustible que el cuerpo humano necesita para vivir y ser productivo. Todos los procesos que se realizan en las células y los tejidos producen y requieren de la energía para llevarse

Más detalles

LÍQUIDOS DE FRENOS. favorezca corrosiones en partes metálicas y congelaciones a bajas temperaturas. Una cantidad de humedad

LÍQUIDOS DE FRENOS. favorezca corrosiones en partes metálicas y congelaciones a bajas temperaturas. Una cantidad de humedad LÍQUIDOS DE FRENOS El líquido de freno es un líquido hidráulico que gracias al principio de Pascal permite la transmisión de fuerza entre el pedal de freno y los dispositivos de freno. Se trata de un aceite

Más detalles

Sesión 5: Incline la Balanza de Calorías

Sesión 5: Incline la Balanza de Calorías Sesión 5: Incline la Balanza de Calorías El Grupo del Programa de Equilibrio de Estilo de Vida comprende 2 cambios de estilo de vida: 1. Comer sano. Esto incluye comer menos grasa y más granos integrales,

Más detalles

EL MAÍZ. Lee el siguiente artículo de periódico UN HOLANDÉS USA EL MAÍZ COMO COMBUSTIBLE

EL MAÍZ. Lee el siguiente artículo de periódico UN HOLANDÉS USA EL MAÍZ COMO COMBUSTIBLE EL MAÍZ Lee el siguiente artículo de periódico UN HOLANDÉS USA EL MAÍZ COMO COMBUSTIBLE En la estufa de Auke Ferwerda arden suavemente unos cuantos troncos con pequeñas llamas. Ferwerda coge un puñado

Más detalles

Procesos científicos básicos: Comunicar (Cómo trabajar en la sala de clases), 2ª. Parte

Procesos científicos básicos: Comunicar (Cómo trabajar en la sala de clases), 2ª. Parte Profesores Básica / Media / Recursos Procesos científicos básicos: Comunicar (Cómo trabajar en la sala de clases), 2ª. Parte 1 [Nota: material previsto para 8º básico y enseñanza media] Cómo construir

Más detalles

SÍNTESIS Y PERSPECTIVAS

SÍNTESIS Y PERSPECTIVAS SÍNTESIS Y PERSPECTIVAS Los invitamos a observar, a identificar problemas, pero al mismo tiempo a buscar oportunidades de mejoras en sus empresas. REVISIÓN DE CONCEPTOS. Esta es la última clase del curso.

Más detalles

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N EXPONENCIALES Y LOGARITMOS FUNCIÓN EXPONENCIAL Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. Potencias de eponente natural: a n = a. a. a... a n N n veces Potencias

Más detalles

Calibración del termómetro

Calibración del termómetro Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas

Más detalles

Aire. energías Alternativas. e-mail: cel: 644 1151714 CIUDAD OBREGÓN

Aire. energías Alternativas. e-mail: cel: 644 1151714 CIUDAD OBREGÓN FORO DE ANÁLISIS DE INVESTIGACIÓN, DESARROLLOO Y GESTIÓN TECNOLÓGICA EN ITESCA Aire acondicionado por absorción utilizando energías Alternativas EJE TEMÁTICO: Experiencias de investigación y desarrollo

Más detalles

PROCESO DE FABRICACIÓN DE BIODIESEL

PROCESO DE FABRICACIÓN DE BIODIESEL MEMORIA BIONORTE S.A. es una industria química que transforma el aceite vegetal usado, residuo sin utilidad y con gran potencial contaminante, en un combustible ecológico para motores diesel. Este combustible,

Más detalles

1.1 EL ESTUDIO TÉCNICO

1.1 EL ESTUDIO TÉCNICO 1.1 EL ESTUDIO TÉCNICO 1.1.1 Definición Un estudio técnico permite proponer y analizar las diferentes opciones tecnológicas para producir los bienes o servicios que se requieren, lo que además admite verificar

Más detalles

LA ENERGÍA MUEVE AL MUNDO

LA ENERGÍA MUEVE AL MUNDO LA ENERGÍA MUEVE AL MUNDO La historia del hombre siempre ha estado condicionada por la energía, pero Qué es la energía? Dónde esta? Empezando por los seres Vivos quienes son capaces de convertir los alimentos

Más detalles

ALTERACIÓN DE LOS ALIMENTOS

ALTERACIÓN DE LOS ALIMENTOS ALTERACIÓN DE LOS ALIMENTOS Introducción Un alimento está alterado cuando en él se presentan cambios que limitan su aprovechamiento. El alimento alterado tiene modificadas sus características organolépticas

Más detalles

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Por Mitsuaki Tada Traducido por ENTESIS technology Este artículo describe la combinación de

Más detalles

Sesión 7: Visón general

Sesión 7: Visón general Sesión 7: Visón general Hablemos de las calorías Comemos calorías por una razón: nuestros cuerpos las necesitan para sobrevivir. Proporcionan el combustible para todo lo que hacemos, incluso para nuestra

Más detalles

DETERMINACIÓN DEL VOLUMEN DE PEDIDO.

DETERMINACIÓN DEL VOLUMEN DE PEDIDO. Lote económico de compra o Lote Optimo DETERMINACIÓN DEL VOLUMEN DE PEDIDO. Concepto que vemos en casi todos libros de aprovisionamiento, habitualmente la decisión de la cantidad a reaprovisionar en las

Más detalles

LOS FERTILIZANTES MINERALES AYUDAN A COMBATIR EL CAMBIO CLIMÁTICO. 24 de Noviembre de 2014

LOS FERTILIZANTES MINERALES AYUDAN A COMBATIR EL CAMBIO CLIMÁTICO. 24 de Noviembre de 2014 LOS FERTILIZANTES MINERALES AYUDAN A COMBATIR EL CAMBIO CLIMÁTICO 24 de Noviembre de 2014 INDICE I. INTRODUCCIÓN II. BENEFICIOS DE LOS FERTILIZANTES PARA LA HUMANIDAD III. BENEFICIOS DE LOS FERTILIZANTES

Más detalles

Biocombustibles: energía del futuro

Biocombustibles: energía del futuro Biocombustibles: energía del futuro El ser humano, como todo ser vivo, depende del entorno para obtener energía. Previo al desarrollo industrial, el hombre utilizaba los animales, los vegetales, la fuerza

Más detalles

ESTIMACIÓN DE LA RADIACIÓN SOLAR

ESTIMACIÓN DE LA RADIACIÓN SOLAR UNIDAD DE APOYO TÉCNICO PARA EL SANEAMIENTO BÁSICO DEL ÁREA RURAL OPS/CEPIS/03.89 ESTIMACIÓN DE LA RADIACIÓN SOLAR Auspiciado por: Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente Área

Más detalles

MANEJO DE RESIDUOS INDUSTRIALES Y DOMÉSTICOS

MANEJO DE RESIDUOS INDUSTRIALES Y DOMÉSTICOS GUÍA N 7 DE OPERACIÓN PARA LA PEQUEÑA MINERÍA MANEJO DE RESIDUOS INDUSTRIALES Y DOMÉSTICOS Mediante Decreto Supremo N 34 del Ministerio de Minería, de fecha 14 de junio de 2013, se modificó el Reglamento

Más detalles

LUBRICANTES VOLVO MÁXIMA POTENCIA Y EFICIENCIA EN SU MOTOR

LUBRICANTES VOLVO MÁXIMA POTENCIA Y EFICIENCIA EN SU MOTOR LUBRICANTES VOLVO MÁXIMA POTENCIA Y EFICIENCIA EN SU MOTOR LUBRICANTES RECAMBIO GENUINO VOLVO Qué nos hace diferente del resto de lubricantes del mercado? La exclusividad y la dedicación a los equipos

Más detalles

Informe Técnico de Estandarización para la adquisición de cartuchos de tóner para las impresoras del Tribunal Constitucional

Informe Técnico de Estandarización para la adquisición de cartuchos de tóner para las impresoras del Tribunal Constitucional Informe Técnico de Estandarización para la adquisición de cartuchos de tóner para las impresoras del Tribunal Constitucional I. Nombre del Área : Oficina de Tecnologías de la Información. II. Responsable

Más detalles

Tendencias de Consumo Saludable para Deportistas

Tendencias de Consumo Saludable para Deportistas Las necesidades alimenticias y nutricionales son diferentes según la constitución física, metabólica y actividades de cada persona. En el caso de los deportistas, nos referimos a personas que hacen ejercicio

Más detalles

6 CONCLUSIONES Y RECOMENDACIONES

6 CONCLUSIONES Y RECOMENDACIONES 6 Conclusiones y recomendaciones 109 6 CONCLUSIONES Y RECOMENDACIONES 6.1 CONCLUSIONES La presente investigación se ha dedicado al estudio del ángulo de presión, radio de curvatura y presión de contacto

Más detalles

Fertilizar bien, un excelente negocio

Fertilizar bien, un excelente negocio Fertilizar bien, un excelente negocio 1 Importancia de la Fertilización Es una práctica vital en la producción de café porque con una buena fertilización se tienen plantas vigorosas sanas, y la producción

Más detalles

EXTRACCIÓN DE CAFEÍNA DEL CAFÉ

EXTRACCIÓN DE CAFEÍNA DEL CAFÉ 10-11-2010 EXTRACCIÓN DE CAFEÍNA DEL CAFÉ Colegio de San Francisco de Paula Enrique Jacobo Díaz Montaña José Antonio Vázquez de la Paz Enrique Gómez-Álvarez Hernández 1ºBACHILLERATO-B Índice: Objetivos

Más detalles

PN 05 Técnicas básicas de panadería I

PN 05 Técnicas básicas de panadería I 4. AMASAR. DEFINICIÓN Y TIPOS DE MAQUINARIA EM- PLEADA Podemos definir amasar como: Trabajar a mano o máquina masas compuestas, fundamentalmente de harina, agua, sal y levadura, además de otros elementos

Más detalles

Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor

Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor 1. Generalidades 2. Qué se necesita para comenzar? 3. Qué hacer para sistemas opacos y translúcidos? 4. Qué hacer

Más detalles

La crisis de la Energía

La crisis de la Energía La crisis de la Energía Por Renato IRALDI Modelos de consumo energético bpe = bep= Barriles de petróleo equivalente = Energia producida por un barril de petróleo Suposiciones: Suponemos que los combustibles

Más detalles

Estudio de los mohos del pan

Estudio de los mohos del pan Estudio de los mohos del pan Científicos del Moho del Pan Carrasco Sánchez, A., García García, J.J., Otero Castellón, N., Rodríguez Rivada, A., Romero Alcedo, R., Zarco Rosado, D. 1. INTRODUCCIÓN Nuestro

Más detalles

PROYECTO: INGENIERIA DE DETALLE DE UN SISTEMA DE COLECTORES DE POLVOS PARA SU INSTALACION EN LA NUEVA PLANTA FORTEC GUANAJUATO

PROYECTO: INGENIERIA DE DETALLE DE UN SISTEMA DE COLECTORES DE POLVOS PARA SU INSTALACION EN LA NUEVA PLANTA FORTEC GUANAJUATO PROYECTO: INGENIERIA DE DETALLE DE UN SISTEMA DE COLECTORES DE POLVOS PARA SU INSTALACION EN LA NUEVA PLANTA FORTEC GUANAJUATO Planteamiento del problema La empresa Grupo Fortec S.A. de C.V.; Es una compañía

Más detalles

1. INTRODUCCIÓN 1.1 INGENIERÍA

1. INTRODUCCIÓN 1.1 INGENIERÍA 1. INTRODUCCIÓN 1.1 INGENIERÍA Es difícil dar una explicación de ingeniería en pocas palabras, pues se puede decir que la ingeniería comenzó con el hombre mismo, pero se puede intentar dar un bosquejo

Más detalles

GUÍA PARA LAS FAMILIAS

GUÍA PARA LAS FAMILIAS GUÍA PARA LAS FAMILIAS Para Obtener Asistencia Financiera Hacer de la educación independiente una realidad. Usted ha tomado la decisión de invertir en una educación independiente para su hijo. La educación

Más detalles

Completar: Un sistema material homogéneo constituido por un solo componente se llama.

Completar: Un sistema material homogéneo constituido por un solo componente se llama. IES Menéndez Tolosa 3º ESO (Física y Química) 1 Completar: Un sistema material homogéneo constituido por un solo componente se llama. Un sistema material homogéneo formado por dos o más componentes se

Más detalles

II. METODOLOGÍA. El proceso de elaboración del biodiesel se constituye de siete pasos fundamentales: 6.1. DETERMINACIÓN DE LOS GRAMOS DE CATALIZADOR

II. METODOLOGÍA. El proceso de elaboración del biodiesel se constituye de siete pasos fundamentales: 6.1. DETERMINACIÓN DE LOS GRAMOS DE CATALIZADOR II. METODOLOGÍA 6. PROCESO DE ELABORACIÓN El proceso de elaboración del biodiesel se constituye de siete pasos fundamentales: 1. Determinación de los gramos de catalizador 2. Preparación del Metóxido de

Más detalles

MEDIDA DEL CALOR ESPECÍFICO

MEDIDA DEL CALOR ESPECÍFICO Laboratorio de Física General Primer Curso (Termodinámica) MEDIDA DEL CALOR ESPECÍFICO Fecha: 07/02/05 1. Objetivo de la práctica Familiarizarse con las medidas calorimétricas mediante la medida del calor

Más detalles

CONTENIDO DE LA GUÍA OBJETIVO

CONTENIDO DE LA GUÍA OBJETIVO CONTENIDO DE LA GUÍA OBJETIVO Reconocer las características físicas y formas de emplear el material de laboratorio, con el cual se desarrollan diferentes actividades experimentales que permiten alcanzar

Más detalles

Dirección de Planificación Universitaria Dirección de Planificación Universitaria 0819-07289 Panamá, Rep. de Panamá 0819-07289 Panamá, Rep.

Dirección de Planificación Universitaria Dirección de Planificación Universitaria 0819-07289 Panamá, Rep. de Panamá 0819-07289 Panamá, Rep. Comparación de las tasas de aprobación, reprobación, abandono y costo estudiante de dos cohortes en carreras de Licenciatura en Ingeniería en la Universidad Tecnológica de Panamá Luzmelia Bernal Caballero

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA. Caso #09 - Chrysler. Administración de la Función de la Información

INSTITUTO TECNOLÓGICO DE COSTA RICA. Caso #09 - Chrysler. Administración de la Función de la Información INSTITUTO TECNOLÓGICO DE COSTA RICA Caso #09 - Chrysler Administración de la Función de la Información Álvaro Navarro Barquero 200944186 Alejandro Rodríguez Jiménez 200924533 09/05/2012 Contenido I Situación

Más detalles

LIMPIEZA Y DESINFECCIÓN EN LA INDUSTRIA LÁCTEA

LIMPIEZA Y DESINFECCIÓN EN LA INDUSTRIA LÁCTEA LIMPIEZA Y EN LA INDUSTRIA LÁCTEA LD EN LAS INDUSTRIAS DE ALIMENTOS La sanitización/higienización es un concepto general que comprende la creación y mantenimiento de las condiciones óptimas de higiene

Más detalles

CAPITILO 4 CASO. PRACTICO

CAPITILO 4 CASO. PRACTICO CAPITILO 4 CASO. PRACTICO DETERMINAR Qué?, Cuándo? y Cómo? Inspeccionar el inventario. 4.1 INTRODUCCIÓN: En el presente trabajo se determina la clasificación ABC de inventarios por cantidad y costos de

Más detalles

Guía para Entender y Aprender a Utilizar las Tablas de Datos de Nutrición en las Etiquetas de Alimentos.

Guía para Entender y Aprender a Utilizar las Tablas de Datos de Nutrición en las Etiquetas de Alimentos. Guía para Entender y Aprender a Utilizar las Tablas de Datos de Nutrición en las Etiquetas de Alimentos. Esta Guía le brindará los conceptos básicos que usted necesita para entender la información nutricional

Más detalles

AQUA-TERMO DE QUERETARO TEL. 4422825481 aquatermo.qro@gmail.com DISTRIBUIDOR AUTORIZADO

AQUA-TERMO DE QUERETARO TEL. 4422825481 aquatermo.qro@gmail.com DISTRIBUIDOR AUTORIZADO SUNSHINE SOLAR ES UNA EMPRESA DEDICADA 100% A LA FABRICACION DE CALENTADORES SOLARES EN MÉXICO, CON PLANTA EN JALISCO APOYANDO EL DESARROLLO DE NUESTRO PAÍS Y PREOCUPADA POR EL MEDIO AMBIENTE, PROMUEVE

Más detalles

Programa de Formación de Entrenadores de la ITF Curso de Nivel 2. Beber para ganar

Programa de Formación de Entrenadores de la ITF Curso de Nivel 2. Beber para ganar Programa de Formación de Entrenadores de la ITF Curso de Nivel 2 Beber para ganar Importancia (I) No se le da importancia a la correcta hidratación en el tenis Jugadores y entrenadores desconocen los aspectos

Más detalles

1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA

1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA 1. Cuenta de pérdidas y ganancias analítica 1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA La cuenta de pérdidas y ganancias que se recoge en el modelo normal del Plan General de Contabilidad se puede presentar,

Más detalles

DECLARACIONES NUTRICIONALES

DECLARACIONES NUTRICIONALES DECLARACIONES NUTRICIONALES Por declaración nutricional se entiende cualquier declaración que afirme, sugiera o dé a entender que un alimento posee propiedades nutricionales benéficas específicas por:

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

DECLARACIONES NUTRICIONALES

DECLARACIONES NUTRICIONALES DECLARACIONES NUTRICIONALES Por declaración nutricional se entiende cualquier declaración que afirme, sugiera o dé a entender que un alimento posee propiedades nutricionales benéficas específicas por:

Más detalles

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO LABORATORIO DE OPERACIONES UNITARIAS FACULTAD DE CS QUÍMICAS Y FARMACÉUTICAS UNIVERSIDAD DE CHILE GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO 1.- Una plancha de cartón de dimensiones 100 cm x

Más detalles

Limpieza de caña en seco y aprovechamiento de la materia extraña vegetal como combustible en Brasil

Limpieza de caña en seco y aprovechamiento de la materia extraña vegetal como combustible en Brasil 10 Revista Tecnicaña No. 26, Diciembre de 2010 Limpieza de caña en seco y aprovechamiento de la materia extraña vegetal como combustible en Brasil Carlos Vélez - Jefe de Molienda y Energía del Ingenio

Más detalles

RESIDUOS RESIDUOS URBANOS

RESIDUOS RESIDUOS URBANOS RESIDUOS Las sociedades modernas han registrado un incremento sustancial del volumen de residuos debido, en gran medida, al crecimiento demográfico y económico, así como a la generalización de determinados

Más detalles

PRACTICA No. 9 PREPARACION DE DISOLUCIONES

PRACTICA No. 9 PREPARACION DE DISOLUCIONES 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA ESCUELA DE QUÍMICA DEPARTAMENTO DE QUÍMICA GENERAL QUÍMICA GENERAL II PRACTICA No. 9 PREPARACION DE DISOLUCIONES INTRODUCCION:

Más detalles

Electrificación en zonas rurales mediante sistemas híbridos

Electrificación en zonas rurales mediante sistemas híbridos Electrificación en zonas rurales mediante sistemas híbridos Julio 2013 Pág. 1 de 6 Antecedentes y situación actual En los últimos años, el crecimiento y desarrollo del sector fotovoltaico ha sufrido un

Más detalles

COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas

COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas FUNDACION NEXUS CIENCIAS SOCIALES MEDIO AMBIENTE SALUD COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas Buenos Aires, julio 2010 Av. SANTA FE 1845 7º

Más detalles

CAPÍTULO 3. HERRAMIENTA DE SOFTWARE DE PLANEACIÓN DE

CAPÍTULO 3. HERRAMIENTA DE SOFTWARE DE PLANEACIÓN DE CAPÍTULO 3. HERRAMIENTA DE SOFTWARE DE PLANEACIÓN DE INVENTARIO Y PROCESO Objetivos del capítulo Desarrollar una herramienta de software de planeación de inventario con los datos obtenidos del capítulo

Más detalles

GUÍA PARA LAS FAMILIAS To Para Obtener Asistencia Financiera

GUÍA PARA LAS FAMILIAS To Para Obtener Asistencia Financiera GUÍA PARA LAS FAMILIAS To Para Obtener Asistencia Financiera sss.nais.org/parents GUÍA PARA LAS FAMILIAS Para obtener asistencia financiera Haciendo que la educación independiente sea una realidad. Usted

Más detalles

Bombeo de agua con sistemas fotovoltaicos

Bombeo de agua con sistemas fotovoltaicos Ficha Técnica Bombeo de agua con sistemas fotovoltaicos 4 1. Descripción del sistema En la figura número 1, se presenta un esquema general de un sistema de bombeo de agua con sistemas fotovoltaicos. En

Más detalles

Unidad 7 Aplicación de máximos y mínimos

Unidad 7 Aplicación de máximos y mínimos Unidad 7 Aplicación de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Interpretará el concepto de ingreso y costos marginal. Aplicará la función de ingresos en problemas de maimización. Aplicará

Más detalles