SEPTIEMBRE 2003 PRUEBA A

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEPTIEMBRE 2003 PRUEBA A"

Transcripción

1 PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región limitada por la gráfica de la función f (x) (x ) (x + ), el eje OX y las rectas x 3 y x. CUESTIONES C.1. Se consideran las matrices: A B m m donde m es un número real. Encontrar los valores de m para los que AB es inversible. C.. Hallar un vector de módulo uno que sea ortogonal a los vectores (,, 1) y (, 0, 1). C.3. Calcular Lim x (ln ( x + 1) ln x). C.4. Hallar los puntos de la gráfica de f (x) x 3 3x + x en los que la tangente a la curva es paralela a la recta y x. PROBLEMAS PRUEBA B 1.- Dadas las rectas r y s: r x z 0 x+ y 5 s y z x + z a a) Hallar el valor de a para que ambas rectas estén en el mismo plano. b) Hallar la ecuación de dicho plano..- a) Hallar las coordenadas del punto P de la gráfica de la función y cos x siendo 0 x π/ con la propiedad de que la suma de la ordenada y la abscisa es máxima. b) Calcular el área comprendida por la curva y cos x, y la recta y 1 en el intervalo [ π/, π/]. CUESTIONES C.1. Si A y B son dos matrices cuadradas que verifican AB B, cuándo se puede asegurar que A B? 1 / 9

2 C.. Cuál es el ángulo que forma la recta x y z con el eje OX? C.3. Utilizando la definición de derivada, estudiar la derivabilidad de la función f (x) x x 1 en x 1. C.4. Hallar la ecuación de la circunferencia cuyo centro es el punto (3, 5) y que es tangente a la recta 4x + 3y 0. / 9

3 PROBLEMAS SOLUCIONES PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior. a) Consideremos la matriz de los coeficientes A y la matriz ampliada A : A A m 1 m m Calculemos A y estudiemos su valor en función de los valores del parámetro m: 3 0 A m m m 7 1 m Se tiene que: A 0 m 7 0 m 7 Estudiemos los distintos casos que se presentan: Si m 7 rango (A) 3 rango ( A ). El sistema es compatible determinado. Si m 7 rango (A) pues y rango ( A ) 3 pues Por tanto, el sistema es incompatible. b) En el caso m 7 el sistema es compatible determinado y por tanto tiene solución única. Apliquemos la regla de Cramer para resolver el sistema: x m m 3m 3 0 m m y m m m 3 0 m m z m m 3 0 m m.- Calcular el área de la región limitada por la gráfica de la función f (x) (x ) (x + ), el eje OX y las rectas x 3 y x. En primer lugar, veamos si la función dada f (x) corta al eje OX en algún punto, o por el contrario, 3 / 9

4 se mantiene siempre por encima o por debajo de este. Para ello, calculemos los puntos de corte de la misma con dicho eje: Corte con OX f (x) 0 (x ) (x + ) 0 x y x (doble) Entre las rectas x 3 y x la gráfica de f corta al eje OX en un único punto que es x. A la izquierda de este punto la gráfica de f se mantiene por debajo del eje OX ya que si x <, entonces f (x) < 0 (como se puede ver fácilmente). Si embargo, si < x <, entonces la gráfica de f se mantiene por encima del eje OX (lo cual también se puede ver fácilmente). Así pues, el área pedida vendrá dada por: Área x [( x ) ( x + )] dx + [( x ) ( x + )] d x ( x x 4x + 8) dx + ( x x 4x + 8) d x x x x x + 8x x 8x u 4 CUESTIONES C.1. Se consideran las matrices: A B m m donde m es un número real. Encontrar los valores de m para los que AB es inversible. Calculemos AB: m 1+ m 3+ m AB m m 1 AB será invertible si su determinante es distinto de cero. Calculemos AB : AB 1 + m 3 + m 1 + m (3 + m) (1 m) m + 3m 1 m 1 Veamos para qué valores de m se anula: AB 0 m + 3m 0 m y m 1 Por tanto, AB será invertible si m y m 1. C.. Hallar un vector de módulo uno que sea ortogonal a los vectores (,, 1) y (, 0, 1). Un vector ortogonal a los vectores dados es el que resulta de calcular el producto vectorial de ambos. Si además dicho vector lo dividimos entre su módulo, obtenemos el vector pedido, u n. Procedamos. Un vector perpendicular a los dados es: 4 / 9

5 i j k El módulo de n 1 es: n n El vector pedido es pues: 0 1 u n 1 6 n i + 4 j 4 k n (, 4, 4) ( ) ( 4) ,,,, ( 1,, ) C.3. Calcular Lim x (ln ( x + 1) ln x). Calculemos el límite directamente: Lim x (ln ( x + 1) ln x) [ ] No llegamos a ningún resultado concreto. Cambiemos un poco de forma este límite aplicando las propiedades de los logaritmos: x + 1 Lim x (ln ( x + 1) ln x) Lim x ln x 0 Sigamos cambiando la forma de este límite: x + 1 ln x + 1 Lim x ln x x Lim 0 1/ x 0 Obtenemos entonces una indeterminación que podemos resolver aplicando la regla de L Hopital: x + 1 ( 1/ x ) ln x Lim ( x+ 1)/ x x Lim Lim 1/ x 1/ x x Por tanto: Lim x (ln ( x + 1) ln x) 1 C.4. Hallar los puntos de la gráfica de f (x) x 3 3x + x en los que la tangente a la curva es paralela a la recta y x. La pendiente de la recta tangente viene dada por el valor de la derivada de f en el punto de tangencia. Dicho valor ha de ser igual a la pendiente de la recta y x, es decir 1, ya que ambas son paralelas. Por tanto se ha de cumplir que f (x) 1: f (x) 3x 6x + 1 3x 6x x 6x 0 x 0 y x Por tanto los puntos de la gráfica de f (x) x 3 3x + x en los que la tangente a la curva es paralela a la recta y x son los puntos de abscisa x 0 y x. Las rectas tangentes en cada uno de estos casos es: En x 0 Recta tangente: y x. En x Recta tangente: y x 4. 5 / 9

6 PROBLEMAS PRUEBA B 1.- Dadas las rectas r y s: r x z 0 x+ y 5 s y z x + z a a) Hallar el valor de a para que ambas rectas estén en el mismo plano. b) Hallar la ecuación de dicho plano. a) Para que las rectas r y s estén contenidas en un plano, se ha de cumplir que: rango A 3 rango A o bien rango A y rango A 3 siendo A la matriz de los coeficientes de las ecuaciones de los planos que determinan a r y s y A la matriz ampliada con los términos independientes. En el primer caso, el sistema es compatible determinado, esto es, tiene solución única, que es el punto de corte de las dos rectas. Las rectas son secantes. En el segundo de los casos, el sistema es incompatible. Las dos rectas no tienen ningún punto en común pero son coplanarias. Por tanto las rectas son paralelas. Estudiemos los rangos de las matrices A y A : A A a 1 0 Se tiene que rango A 3 ya que: Por tanto el segundo caso queda descartado. Se debe cumplir por tanto que el rango de A sea 3, esto es, A 0: A ( 1) ( 1) a 1 a 1 0 a ( a) + ( 1) (a ) 3a +1 0 Por tanto, para que A sea nulo, es decir, rango A 3 rango A, las rectas se corten en un punto y sean coplanarias, ha de cumplirse que a 4. Otra forma de hacer este problema sería la siguiente: Las rectas r y s serán coplanarias si el determinante de la matriz formada con los vectores v r, v s y RS es nulo, siendo v r y v s los vectores directores de r y s respectivamente y RS un vector formado a partir de un punto R de r y otro punto S de s. Si este determinante es nulo, significa que alguno de estos tres vectores es combinación lineal de los otros dos, y por tanto los tres vectores están contenidos en un plano, y como consecuencia, las rectas serán coplanarias. Calculamos v r, v s, R y S. Para ello escribamos las ecuaciones paramétricas de r y s respectivamente: r x λ y λ s x a µ + y 5 a+ µ z λ z µ 6 / 9

7 De aquí se deduce que: v r (, 1, 1) v s (,, 1) R (0,, 0) S (a, 5 a, 0) RS (a, 3 a, 0) Por tanto: a 3 a a + a a 6 + a 3a 1 0 a 4 b) La ecuación de dicho plano vendrá determinada, por ejemplo, por la terna (R, v r, v s ), siendo R un punto de la recta r y vr y v s los vectores directores de r y s respectivamente. Tenemos que: v r (, 1, 1) v s (,, 1) R (0,, 0) Por tanto, la ecuación del plano que contiene a r y a s es: x y z x 4y + 6z a) Hallar las coordenadas del punto P de la gráfica de la función y cos x siendo 0 x π/ con la propiedad de que la suma de la ordenada y la abscisa es máxima. b) Calcular el área comprendida por la curva y cos x, y la recta y 1 en el intervalo [ π/, π/]. a) El punto P buscado tiene por coordenadas (x, y) (x, cos x), con 0 x π/. Este punto ha de cumplir que la suma de sus coordenadas sea máxima, y por tanto, debemos maximizar la función: S (x) x + cos x Calculemos los puntos singulares: S (x) 1 sen x S (x) 0 1 sen x 0 sen x 1/ x π/6 Veamos si este punto es un máximo a través del estudio de la derivada segunda: 3 S (x) cos x S (π/6) cos (π/6) 3 < 0 Máximo El punto P buscado es por tanto: π π π P,cos, b) Debemos calcular el área comprendida por la curva y cos x, y la recta y 1 en el intervalo [ π/, π/]. Calculemos los puntos de corte en este intervalo: cos x 1 cos x 1/ x π/3 y x π/3 En el intervalo [ π/3, π/3] la función y cos x siempre es positiva y mayor que 1, por tanto el área pedida viene dada por: π π π π π π π u π /3 π /3 Área [ ] (cos x 1) dx sen x x sen sen π /3 + π /3 7 / 9

8 CUESTIONES C.1. Si A y B son dos matrices cuadradas que verifican AB B, cuándo se puede asegurar que A B? Si AB B, cuando multiplicamos esta expresión por la derecha por B 1, obtenemos que: AB B AB B 1 B B 1 A B Por tanto, se puede asegurar que A B cuando existe B 1, esto es, cuando la matriz B tenga inversa. C.. Cuál es el ángulo que forma la recta x y z con el eje OX? El ángulo,α, que forman dichas rectas es igual al menor de los ángulos que forman sus vectores directores. Veamos cuál es: Vector director de la recta: v r (1, 1, 1) Vector director del eje OX: i (1, 0, 0) cos ( v, r i vr i) cos α v r i Por tanto, α 54º 44 8 C.3. Utilizando la definición de derivada, estudiar la derivabilidad de la función f (x) x x 1 en x 1. Escribamos la función f como una función definida a trozos: x x si x < 1 f (x) x x si x 1 Esta función es continua en todo ya que para x 1, tenemos funciones polinómicas y para x 1, se cumple que: f (1) Lim x x 0 Lim x x 0 x 1 Estudiemos la derivabilidad de f utilizando la definición de derivada. Para que sea derivable en x 1, las derivadas laterales han de ser iguales, esto es, f (1 ) f (1 + ). Veamos si es así, para cualquier h > 0: f (1 f(1 h) f(1) [(1 h) (1 h) ] [1 1 ] h h ) Lim Lim Lim Lim( h 1) 1 h 0 h h 0 h h 0 h h 0 f (1 + f(1 + h) f(1) [(1 + h) (1 + h)] [1 1] h + h ) Lim Lim Lim Lim( h + 1) 1 h 0 h h 0 h h 0 h h 0 Por tanto, como f (1 ) f (1 + ), la función no es derivable en x 1. + x 1 C.4. Hallar la ecuación de la circunferencia cuyo centro es el punto (3, 5) y que es tangente a la recta 4x + 3y 0. La ecuación de una circunferencia viene dada por: 8 / 9

9 (x a) + (y b) r donde a y b son las coordenadas del centro, y r es el radio. En este caso, el radio viene dado por la distancia del centro, C, a la recta tangente, t, dada, ya que cualquier recta tangente es perpendicular al radio que une el centro y el punto de tangencia. Calculemos pues el radio, teniendo en cuanta que con ceñimos a un problema en el plano: r d (C, t) Por tanto: (x 3) + (y 5) 5 9 / 9

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 01 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular

Más detalles

SEPTIEMBRE 2005 PRUEBA A. b) Para a = 1, calcúlese la recta que pasa por (1, 1, 1) y se apoya en r y s.

SEPTIEMBRE 2005 PRUEBA A. b) Para a = 1, calcúlese la recta que pasa por (1, 1, 1) y se apoya en r y s. Selectividad Septiembre 5 SEPTIEMBRE 5 PRUEBA A PROBLEMAS - a) Calcúlense los valores de a para los cuales las rectas r x = λ y s y = 3+λ son perpendiculares z = + a λ b) Para a =, calcúlese la recta que

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 01 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y Pruebas de Aptitud para el Acceso a la Universidad. JUNIO 99. Matemáticas II. OPCIÓN A X Y 5. Las matrices X e Y son las soluciones del sistema de ecuaciones matriciales. Se pide hallar X Y 0 X e Y [ punto]

Más detalles

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables.

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables. Matemáticas II Curso 0/4 Opción A (ª evaluación) Ejercicio. (Puntuación máima: puntos) Estudia las características de la función = ln = ( 0, + ) ( + ) f Dom f y = ln ; con los datos obtenidos representa

Más detalles

, donde denota la matriz traspuesta de B.

, donde denota la matriz traspuesta de B. Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

a a a 1 1 a a a 2 0 a rg A rg B rg A rg B

a a a 1 1 a a a 2 0 a rg A rg B rg A rg B Pruebas de Aptitud para el Acceso a la Universidad. JUNIO 997. Matemáticas II. OPCIÓN A a y z 0. Discutir el sistema y az según los valores del parámetro a [,5 puntos]. Resolverlo en los casos en y que

Más detalles

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z San Blas, 4, entreplanta. 98 0 70 54 OPCIÓN A m + y + z = 0 E.-a) Discutir, en función del valor de m, el sistema de ecuaciones y my + mz = resolverlo para m = b) Para m = añadir una ecuación al sistema

Más detalles

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 2 de la opción A de sobrantes de 2001 Sea f: R R la función dada por f(x) = 8 x 2. (a) [1 punto] Esboza la gráfica y halla los extremos relativos de f (dónde se alcanzan y cuáles

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

Matemáticas II Curso

Matemáticas II Curso Matemáticas II Curso 03-04 Exámenes LÍMITES Y CONTINUIDAD. Límites y continuidad Ejercicio. Dada la función f(x) = x 3 + x cos πx, demostrar que existe un valor x = a positivo y menor que, que verifica

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

MATEMÁTICAS: EBAU 2017 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 7 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A Sean A = ( 4 ) y B = ( 3 ), a) Estudiar si A y B tienen inversa y calcularla cuando sea posible. ( punto) Una matriz cuadrada M tiene inversa

Más detalles

Examen de Matemáticas II (Junio 2016) Selectividad-Opción A Tiempo: 90 minutos. ln(1 x) 1 x. si x < 0 f(x) = xe x si x 0

Examen de Matemáticas II (Junio 2016) Selectividad-Opción A Tiempo: 90 minutos. ln(1 x) 1 x. si x < 0 f(x) = xe x si x 0 Examen de Matemáticas II (Junio 16) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dada la función: ln(1 x) si x < f(x) = 1 x xe x si x se pide: a) (1 punto). Estudiar la continuidad de

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

MATEMÁTICAS II (PAUU XUÑO 2011)

MATEMÁTICAS II (PAUU XUÑO 2011) MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades

Más detalles

Ejercicios de Funciones: derivadas y derivabilidad

Ejercicios de Funciones: derivadas y derivabilidad Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2003 [2'5 puntos] Sea la función f : R R definida por f(x) = 2x 3-6x + 4. Calcula el área del recinto limitado por la gráfica de f y su recta tangente en el punto

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES º BACHILLERATO EXAMEN DE MATRICES Y DETERMINANTES 8 7 m + Ejercicio. Considera las matrices A m (a) [,5 puntos] Determina, si existen, los valores de m para los que A I A (b) [ punto] Determina, si existen,

Más detalles

GEOMETRÍA (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016

GEOMETRÍA (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016 GEOMETRÍA (Selectividad 6) ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 6 Aragón, junio 6 ( puntos) a) ( punto) a) (,5 puntos) Si los vectores w y s verifican que w = s =,

Más detalles

Estudia la posición relativa de los planos siguientes según los distintos valores de m: ; A b = m 1 m 1

Estudia la posición relativa de los planos siguientes según los distintos valores de m: ; A b = m 1 m 1 Problema 1 Estudia la posición relativa de los planos siguientes según los distintos valores de m: π 1 x + y + z = m + 1 π 2 mx + y + ) z = m π 3 x + my + z = 1 Si vemos los tres planos como un sistema

Más detalles

EvAU 2018 Opción A. Comunidad de Madrid. 2x (m + 1)y + z = 1. x + (2m 1)y + (m + 2)z = 2 + 2m, 1 m 0. 2 m m 1 m + 2

EvAU 2018 Opción A. Comunidad de Madrid. 2x (m + 1)y + z = 1. x + (2m 1)y + (m + 2)z = 2 + 2m, 1 m 0. 2 m m 1 m + 2 } EvAU 28 Opción A Comunidad de Madrid } Ejercicio. Dado el sistema de ecuaciones + my m + )y + z se pide: + 2m )y + m + 2)z 2 + 2m, a) Discutir el sistema en función del parámetro m. b) Resolver el sistema

Más detalles

1. Examen de matrices y determinantes

1. Examen de matrices y determinantes 1 EXAMEN DE MATRICES Y DETERMINANTES 1 1. Examen de matrices y determinantes Ejercicio 1. Halla todas las matrices X no nulas de la forma [ ] a 1 X = 0 b tales que X = X. Puesto que: X = [ ] [ ] a 1 a

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2008 Sea f : R R la función definida por f(x) = (3x 2x 2 )e x. [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento de f. [1 punto] Calcula

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio 1. Valor: 2 puntos. Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento,

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A Corrección examen PAU. Junio 6. OPCIÓN A a) Si x { }, vemos que la función está perfectamente definida y por tanto es continua, x { } Así pues, el único problema que podría existir es en x =. Para que

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5)

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD. CURSO SOLUCIONES (Modelo 5) CURSO 04 05 SOLUCIONES (Modelo 5) JUNIO Opción A Ejercicio.- ['5 puntos] Se quiere vallar un campo rectangular que está junto a un camino. Si la valla del lado del camino cuesta 80 euros/metro y la de

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A

IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A Opción A Ejercicio n 1 de la opción A del modelo 1 del libro 96_97 De una función continua f : R R se sabe que si F : R R es una primitiva suya, entonces también lo es la función G dada por G(x) 3 - F(x).

Más detalles

Observaciones del profesor:

Observaciones del profesor: INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a los cuatro ejercicios de una de las dos opciones (A o B) que se le ofrecen. Nunca deberá contestar a unos ejercicios de una opción y a otros

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2004 Sea f : R R la función definida por f(x) = 2 x. x. (a) [0 75 puntos] Esboza la gráfica de f. (b) [1 punto] Estudia la derivabilidad de f en x = 0. (c) [0

Más detalles

OPCIÓN A. = en el punto ( ) b) Calcular el área de la región delimitada en el primer cuadrante por la gráfica de la función

OPCIÓN A. = en el punto ( ) b) Calcular el área de la región delimitada en el primer cuadrante por la gráfica de la función Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 05

Preparando Selectividad Solución Selectividad - Modelo 05 página 1/14 Preparando Selectividad Solución Selectividad - Modelo 05 Modelo 05. Opción A. Ejercicio 1 Sea la función a x si x 1 f b (x)={ } x +ln( x) si x >1 continua y derivable en x=1. a) Obtener a

Más detalles

2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1

2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1 CURSO 28-29. Primera parte. 2 de mayo de 29. ) (p) Calcula el siguiente límite: lím x (x e/x ) 2) (p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades de la función: f(x)= x- 3) (p)

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

b) Procedimiento: 0.25 puntos. Cálculos: 0.25 puntos.

b) Procedimiento: 0.25 puntos. Cálculos: 0.25 puntos. MATEMÁTICAS II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Todas las respuestas deberán estar debidamente justificadas. En todos los ejercicios, aunque el procedimiento seguido sea diferente al propuesto en el

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1 Ejercicio n º 1 de la opción A de junio de 2005 [2'5 puntos] De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1. [2 5 puntos] Calcula lim x 0 siendo Ln(1 + x) el logaritmo neperiano de 1 + x. Ln(1 + x) sen x, x sen x Ejercicio 2. Sea f : R R la función definida por f(x) = e x/3. (a) [1 punto]

Más detalles

Problemas de Geometría Analítica del Espacio

Problemas de Geometría Analítica del Espacio 1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2011 OPCIÓN A Ejercicio 1 (2 puntos) Hallar el valor o los valores del parámetro para los que el siguiente

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

CUESTIONES TEÓRICAS. Matemáticas II Curso

CUESTIONES TEÓRICAS. Matemáticas II Curso CUESTIONES TEÓRICAS Matemáticas II Curso 2013-14 1. Definición de función continua: Una función es continua en un punto a si existe el valor de la función en dicho punto, el límite de la función cuando

Más detalles

Entonces M(0) tiene inversa. Por Gauss o por determinant se calcula la inversa.

Entonces M(0) tiene inversa. Por Gauss o por determinant se calcula la inversa. OPCIÓN A Problema A.1. Para cada número real es la matriz Se pide: a) Obtener el determinante de la matriz, y justificar que para cualquier número real existe la matriz inversa de. (4 puntos). Veamos para

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

m m 7m 7 0 m 1, m m

m m 7m 7 0 m 1, m m 5 4 La matriz de los coeficientes es A 4 m El único menor de orden de A es: 5 4 0 y la matriz ampliada B 0 4 m m 5 4 5m 6 4 4 58m 7m 7 0 m, m 4 m Tenemos entonces: Para m y m : rga rgb nº de incógnitas

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Matemáticas II -.Global 2º Soluciones 2007/08

Matemáticas II -.Global 2º Soluciones 2007/08 1º.-Sabiendo que : 7 3 1 2A+ B 8 3 11 y que A+ 2B 7 3 1 1 2 1 1 4 2 calcular la matriz X que cumple AX B Para poder resolver la ecuación debemos calcular previamente A y B : 3 1 7 1 1 2A+ B C 2D C 1 B

Más detalles

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es Ejercicio n º 1 de la opción A de junio de 2004 (Modelo 6) De la función f : (-1,+ ) R se sabe que f '(x) = 3/(x +1) 2 y que f(2) = 0. (a) [1'25 puntos] Determina f. [1'25 puntos] Halla la primitiva de

Más detalles

EVAU. Junio matematiib.weebly.com

EVAU. Junio matematiib.weebly.com Propuesta A 1A. x + a si x f(x) = { x + bx 9 si x > a) Se trata de una función definida a trozos a partir de dos funciones polinómicas, por lo que el único punto donde la función podría no ser continua

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

SEPTIEMBRE b) (1 punto) Calcular el valor de a 0 para el cual se verifica la igualdad = 2

SEPTIEMBRE b) (1 punto) Calcular el valor de a 0 para el cual se verifica la igualdad = 2 SEPTIEMBRE INSTRUCCIONES: El eamen presenta dos opciones A B; el alumno deberá elegir una de ellas contestar raonadamente a los cuatro ejercicios de que consta dicha opción en h. min. OPCIÓN A Ejercicio.

Más detalles

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2 IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para

Más detalles

Departamento de matemáticas

Departamento de matemáticas Geometría con solución Problema 1: Sea r y s las rectas dadas por: a) Hállese el valor de m para que ambas rectas se corten. b) Para m = 1, hállese la ecuación del plano que contiene a r y s Problema 2:

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos) Isaac Musat Hervás 22 de mayo de 2013 Capítulo 5 Año 2004 5.1. Modelo 2004 - Opción A Problema 5.1.1 2 puntos) a) 1 punto) Calcular

Más detalles

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto:

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto: CURSO 2-22. 24 de mayo de 2. ) Calcula: sen lím cos - 2) Halla a y b para que la siguiente función sea continua y derivable en =. Calcula la ecuación de la recta tangente en dicho punto: f()= a 2 +b+b

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO - MATEMÁTICAS II Instrucciones: a) Duración: hora y minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la

Más detalles

OPCIÓN A. 1.- a) (1,5 puntos) Hallar el rango de la matriz. 2.- (2,5 puntos) Calcular, razonadamente, el valor de a para que:

OPCIÓN A. 1.- a) (1,5 puntos) Hallar el rango de la matriz. 2.- (2,5 puntos) Calcular, razonadamente, el valor de a para que: Nombre: Nota Curso: º Bachillerato Eamen X (Rec º Eval) Fecha: 4 de Marzo de 06 La mala o nula eplicación de cada ejercicio implica una penalización de hasta el 5% de la nota. OPCIÓN.- a) (,5 puntos) Hallar

Más detalles

EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 13/11/14 EXAMEN: 1º. ( Resuélvelo por el método de Gauss )

EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 13/11/14 EXAMEN: 1º. ( Resuélvelo por el método de Gauss ) EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 13/11/14 EXAMEN: 1º 1) a) Un especulador adquiere tres objetos de arte por un precio de 20 monedas de oro. Vendiéndolas espera obtener unas ganancias del 20 %, del

Más detalles

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS Curso INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS Curso INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDAD POLITÉCNICA DE MADRID PRUEBA DE ACCESO PARA MAYORES DE 5 AÑOS Curso 17-18 Ex. Modelo MATERIA: MATEMÁTICAS II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN Después de leer atentamente

Más detalles

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid)

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid) COLEGIO INTERNACIONAL SEK EL CASTILLO Departamento de Ciencias MODELOS DE EXÁMENES Pruebas de acceso a la universidad Matemáticas II Universidad Complutense (Madrid) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014 Opción A Ejercicio 1 opción A, modelo Junio Incidencias 014 Sea f la función definida por f(x) = 1 + ln(x) para x > 0 (ln denota el logaritmo x neperiano). (a) [1 75 puntos] Determina el punto de la gráfica

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Ejercicio 2.- [2 5 puntos] Sea f : ( 2, + ) R la función

Más detalles

S O L U C I O N E S O P C I Ó N A. PR1.- Nos dan 3 planos, dos de ellos determinan la recta. El problema se reduce a interpretar.

S O L U C I O N E S O P C I Ó N A. PR1.- Nos dan 3 planos, dos de ellos determinan la recta. El problema se reduce a interpretar. S O L U C I O N E S O P C I Ó N A PR.- Nos dan planos, dos de ellos determinan la recta. El problema se reduce a interpretar geométricamente las posibles soluciones del sistema m y m my a) Matri de los

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Unidad 7 Producto vectorial y mixto. Aplicaciones.

Unidad 7 Producto vectorial y mixto. Aplicaciones. Unidad 7 Producto vectorial y mixto. Aplicaciones. 5 SOLUCIONES 1. Al ser u v =(,5,11), se tiene que ( u v) w = ( 17,13, 9 ). Como v w =( 3,, 7), por tanto u ( v w) = ( 19,11, 5).. Se tiene que: 3. Queda:

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) Calculamos previamente los vectores directores de

Más detalles

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque.

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 203 OBSERVACIONES: FASE ESPECÍFICA MATEMÁTICAS El alumno deberá responder únicamente a una

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES EXAMEN DE MATRICES Y DETERMINANTES 14 10 16 Ejercicio 1. Tres personas, A, B, C, quieren comprar las siguientes cantidades de fruta: A: kg de peras, 1 kg de manzanas y 6 kg de naranjas. B: kg de peras,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso ) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso 00-003) MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES:

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II 2 CANTABRIA CNVCATRIA SEPTIEMBRE 2009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz Bloque I A a) El rango de la matriz de los coeficientes será 3 siempre que el

Más detalles

Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3 puntos).

Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3 puntos). PAU. CASTILLA Y LEON - 1998 a x + y z = z PR-1. Dado el sistema x + ay + z = x 3x + 3y + z = y Se pide: estudiar su compatibilidad según los valores del parámetro a, y resolverlo cuando sea compatible.(3

Más detalles

Matemáticas II Hoja 7: Problemas métricos

Matemáticas II Hoja 7: Problemas métricos Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 7: Problemas métricos Ejercicio : Se dan la recta r y el plano, mediante: x 4 y z x + y z 7 3 Obtener los puntos de la recta cuya

Más detalles

1 λ λ 2. λ λ 1 λ λ λ λ λ λ λ 2λ λ λ λ 2λ 1 λ λ 1 0 λ λ λ. rg A 2 pues el menor rg B SOLUCIÓN

1 λ λ 2. λ λ 1 λ λ λ λ λ λ λ 2λ λ λ λ 2λ 1 λ λ 1 0 λ λ λ. rg A 2 pues el menor rg B SOLUCIÓN a) La matriz A de los coeficientes la matriz B ampliada son: λ λ 4 λ λ 6 λ λ λ 3 λ El único menor de orden 3 en la matriz de los coeficientes es: λ λ 3 3 3 3 λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ Para

Más detalles

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Junio 2014) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Junio 04) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dadas las matrices α β γ x 0 A = γ 0 α ; X = y ; B = 0 O = 0 β γ z 0 se pide: (,5 puntos). Calcula α, β

Más detalles

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Septiembre 206) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dada la función f(x) = (6 x)e x/3, se pide: a) ( punto). Determinar su dominio, asíntotas y cortes

Más detalles