Lección 7 - Coordenadas rectangulares y gráficas
|
|
- José Luis Villalobos Ayala
- hace 6 años
- Vistas:
Transcripción
1 Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano podrás representar gráficamente una ecuación lineal en dos variables. También, dados cualesquiera dos puntos, podrás determinar la distancia entre ellos el punto medio entre ellos. En un curso elemental de álgebra aprendiste a representar los números reales como puntos en una línea recta que llamamos recta numérica. Ese hecho nos permite apreciar mejor algunas relaciones que eisten entre distintos números reales. Por ejemplo, si un número real es menor que un número real, sus puntos correspondientes están en la recta numérica de modo que el punto de está a la izquierda del punto de Más aún, aprendiste que eiste una correspondencia uno a uno entre los números reales los puntos de una recta. Por esa razón es a veces conveniente hablar del número de su punto correspondiente en la recta numérica como si fueran la misma cosa. En esta lección aprenderás cómo describir algebraicamente puntos que se encuentran en un plano. Recuerda que un plano puede imaginarse como una pared que se etiende infinitamente a lo ancho a lo alto. Para especificar un punto en un plano nos valdremos de un sistema de coordenadas rectangulares formado al intersecar perpendicularmente por el origen de ambas a dos rectas numéricas en el plano. A una de las rectas la representamos horizontalmente la llamamos el eje de abscisas o eje de. A la otra recta la representamos verticalmente la llamamos el eje de ordenadas o eje de.... (-, ) (, ) (, ) (-, -) (, -) Recomiendo la inserción de un applet que presente un sistema de coordenadas fijo un punto movible por el usuario con el ratón (o equivalente) de su computadora. Según se mueve el punto se mostrará a su lado el par ordenado que corresponde a la posición. Asociaremos a un punto A en el plano, un par ordenado de números reales (, ), de los cuales, el primero,, es el punto en el eje intersecado por una recta vertical que pasa por el punto A;
2 Lección 7 - Coordenadas rectangulares gráficas el segundo de los números,, es el punto en el eje, intersecado por una recta horizontal que pasa por el punto A. Al par ordenado (, ) lo llamamos las coordenadas de A a cada uno de los números en el par ordenado lo llamamos un componente o coordenada. Note que el orden en que escribimos los componentes del par ordenado es mu importante. En el dibujo previo puedes apreciar que las coordenadas (, ) corresponden a un punto distinto del que corresponde a las coordenadas (, ). Para cada par de números reales (, ), eiste sólamente un punto en el plano que le corresponde, recíprocamente, para cada punto en el plano eiste sólo un para ordenado (, ) que le corresponde. Por eso decimos que eiste una correspondencia uno a uno entre los puntos del plano los pares ordenados de números reales. El sistema de coordenadas rectangulares que estamos describiendo divide al plano en cuatro regiones o cuadrantes. Al cuadrante que está arriba del eje a la derecha del eje lo llamamos el cuadrante uno (cuadrante I). Al cuadrante a la izquierda del cuadrante uno lo llamamos el cuadrante dos (cuadrante II). Debajo del cuadrante dos está el cuadrante tres (cuadrante III). A la derecha del cuadrante III está el cuadrante cuatro (cuadrante IV). Puedes verificar que para todos los puntos del cuadrante I ambas coordenadas son positivas; para los puntos del cuadrante II, la coordenada es negativa la es positiva. En el cuadrante III ambas coordenadas son negativas en el cuadrante IV la coordenada es positiva la coordenada es negativa. El siguiente dibujo resume esas observaciones. Cuadrante II Cuadrante I (, +) (+, +) Cuadrante III Cuadrante IV (, ) (+, ) Ejercicio : Dibuje un sistema de coordenadas rectangulares especifique en él los puntos cuas coordenadas son (, ), (0, ), ( 0.5,.8), ( 0, 0), (, 5) Respuestas
3 Lección 7 - Coordenadas rectangulares gráficas Distancia entre dos puntos el punto medio El teorema de Pitágoras es un resultado mu importante en las matemáticas que establece que para un triágulo rectángulo, la suma de los cuadrados de las longitudes de los dos lados menores equivale al cuadrado de la longitud del tercer lado. En un triángulo rectángulo, el lado maor es el que está opuesto al ángulo recto lo llamamos hipotenusa del triángulo. Usaremos el teorema de Pitágoras para hallar la distancia entre los puntos, Considere la siguiente ilustración: (, ) ( ) (, ). d (, ) Hemos representado dos puntos, (, ) (, ), además del segmento que los conecta, podemos ver otros dos segmentos que junto con el primero forman un triángulo rectángulo. d es el largo de la hipotenusa. Aplicando el teorema de Pitágoras a este triángulo obtenemos d = ( ) + ( ). Como d es un número positivo, al sacar la raíz cuadrada a ambos lados de la ecuación, obtenemos d = ( ) + ( ), que es la fórmula de distancia entre dos puntos en el plano. En el dibujo mostramos al punto (, ) arriba a la derecha de (, ). Si estuviera en otra posición la longitud del lado horizontal podría ser en vez de. Pero al cuadrarse, producen el mismo valor. Una observación similar con respecto a la longitud del lado vertical nos lleva a concluir que la fórmula previa es válida para cualesquiera dos puntos en el plano.
4 Lección 7 - Coordenadas rectangulares gráficas Ejemplo La distancia entre los puntos (, -) (-, ) está dada por ( ) + ( ( )) = 9 +6 = 5. Usando la fórmula de distancia podemos verificar que la distancia entre (, ) es igual a la distancia entre (, ) el punto medio entre los puntos (, ), +, + +, +. Por esa razón llamamos a +, + ( ). Ejemplo El punto medio entre (, -) (-4, 5) es + ( 4), + 5 =, ( ). Ejercicios ) Calcule la distancia entre los siguientes pares de puntos: a) (, 0) (0, ) b) (-, -) (4, 5) c), ( ) (0, 0) ( ) está a distancia 8 del punto ) Halle los posibles valores de si el punto, (4, ). 4) Determine el punto medio del segmento cuos etremos son (.5,.) (.4, 8.08). Gráficas de ecuaciones Una solución a una ecuación en las variables es una pareja de un valor a para un valor b para, que al sustituir a a en la ecuación, producen un enunciado cierto. A esa pareja de valores la podemos representar con un par ordenado (a, b). Por ejemplo, la ecuación + 5 = 0 tiene entre sus soluciones a (5, ) pues si =5 =, la ecuación se convierte en = 0, lo cual es un enunciado cierto. También (0, 0) es una solución, e infinidad de otros pares ordenados son solución a la ecuación. Como un par ordenado puede representarse con un punto, la colección de todas las soluciones de una ecuación puede ser representada con un conjunto de puntos en un sistema de coordenadas rectangulares. A tal colección de puntos la llamamos la gráfica de la ecuación. Ejemplo Para hacer la gráfica de la ecuación = + comenzaremos determinando un conjunto de pares ordenados, ( ) que satisfacen la ecuación, lo cual es fácil para esta ecuación si asignamos valores a determinamos el correspondiente valor de como en la siguiente tabla.
5 Lección 7 - Coordenadas rectangulares gráficas A la derecha de la tabla hemos representado con un punto a cada pareja (, ) dada por cada fila en la tabla. Nótese que todos los puntos se encuentran en una línea recta que dibujamos con trazo punteado en rojo. Si determináramos más soluciones a la ecuación las representáramos en el sistema de coordenadas a la derecha, encontraremos que todas ellas se encuentran en la recta dibujada. Por otra parte, podremos verificar que las coordenadas (, ) de cada punto en la recta satisfacen la ecuación = +. Esto sugiere que la recta dibujada contiene eactamente todos los puntos que corresponden a una solución de la ecuación. Entonces concluimos que la gráfica de la ecuación es la línea recta que sugerimos con el trazo punteado. En general, la gráfica de toda ecuación de la forma = m + b, donde m b son cualesquiera constantes reales, es una línea recta. Conviene recordar que para trazar una recta sólo necesitamos dos puntos. Por lo tanto, para este tipo de ecuaciones no necesitamos hacer una tabla con tantos puntos como la del ejemplo previo. Basta determinar dos puntos que satisfagan la ecuación (de una recta) para construir su gráfica. No olvidemos que ecuaciones de otras clases tienen diferentes gráficas. Por ejemplo, la gráfica de la ecuación =4 no es una recta sino un círculo cuo centro está en (-,) cuo radio es. Ejemplo 4 Haga la gráfica de la ecuación = +. Solución: Primero determinamos dos puntos que satisfagan la ecuación. Para hallar esos dos puntos podemos usar cualesquiera dos valores para determinar los
6 Lección 7 - Coordenadas rectangulares gráficas correspondientes valores de. Si = 0, = 0 (0, ) es un punto de la gráfica. Si Si =, = punto (, -) también es un punto de la gráfica. La gráfica es ( ) + =. Por lo tanto el punto ( ) + =. Por lo tanto el (0, ) (, -) Las rectas verticales las horizontales tienen ecuaciones especialmente sencillas. Note que todos los puntos en una recta vertical tienen el mismo componente, por lo tanto su ecuación será de la forma = c. En las rectas horizontales, los puntos tienen un mismo componente en, por lo tanto su ecuación será de la forma = c. Ejemplo 5 Bosqueje las gráficas de las ecuaciones = =. Solución: = = - -
7 Lección 7 - Coordenadas rectangulares gráficas Si la ecuación no es lineal en ni en, entonces la gráfica podrá ser un trazo no recto. Considere la ecuación =. La siguiente tabla muestra varios puntos en la gráfica de la ecuación. La curva sugerida por los puntos es llamada una parábola (-, 9) (-, 4) (-, ) (, 9) (, 4) (, ) (0, 0) Este es un buen lugar para insertar un applet que permite al usuario proveer una definición de curva =... obtener al instante su gráfica. En general, la gráfica de cualquier ecuación de la forma = a + b + c,donde a 0, es una parábola. Si a > 0, la parábola abrirá hacia arriba, como la del ejemplo previo. Si a < 0, la parábola abrirá hacia abajo. Una clase de ecuaciones importantes es la que corresponde a círculos. Posiblemente recuerdas que un círculo cuo centro es el punto P cuo radio es r es la colección de todos los puntos que están a una distancia r de P. Si P tiene coordenadas (h, k) un punto cualquiera del círculo es denotado con (, ), entonces usando la fórmula de distancia obtenemos la siguiente ecuación: ( h) + k ( ) + k ( ) = r. Cuadrando en ambos lados de esta ecuación obtenemos h que es menos fea a la que llamaremos ecuación estándar del círculo. ( ) = r, Ejemplo 6 La ecuación ( ) + ( + ) = 4 tiene la forma de la ecuación estándar del círculo con h =, k = -, r =. Por lo tanto su gráfica es un círculo con centro en (, -) radio.
8 Lección 7 - Coordenadas rectangulares gráficas (, -) Recomiendo insertar un applet que permite al usuario trasladar dilatar el círculo, de una forma intuitiva obtener al instante su ecuación. Ejercicios: Bosqueja la gráfica de las siguientes ecuaciones 5) = 6) =0 (Sugerencia: Es más fácil construir una tabla de pares ordenados si despejas en la ecuación antes de llenar la tabla.) 7) = 8) = + 9) = + 0) ( ) + ( +) = 9 Respuestas Asignación: Leer del teto las páginas Hacer los problemas - 9 (impares) en la página 65, los problemas -9 de la pág. 98
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).
SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL
SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,
Transformación de gráfica de funciones
Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
Funciones polinomiales de grados 3 y 4
Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
6. VECTORES Y COORDENADAS
6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA
. NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA CONTENIDO Sistema de coordenadas rectangulares o cartesianas Coordenadas cartesianas de un punto Distancia entre dos
Traslación de puntos
LECCIÓN CONDENSADA 9.1 Traslación de puntos En esta lección trasladarás figuras en el plano de coordenadas definirás una traslación al describir cómo afecta un punto general (, ) Una regla matemática que
Concepto de función y funciones elementales
Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante
Profr. Efraín Soto Apolinar. Función Inversa
Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.
ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física
ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
1. Funciones y sus gráficas
FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 0 Lic. Manuel
Álgebra y Trigonometría CNM-108
Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:
Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
INSTITUCIÓN EDUCATIVA SAN PEDRO CLAVER DEPARTAMENTO DE INGLÉS FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015
DOCENTE: Juan de Dios Varelas GRADO: 5º A-B-C-D- E - F TEMA: EL CUBO Y ORTOEDRO FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015 ESTANDAR: construyo y descompongo figuras y sólidos a partir de condiciones
ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.
ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental
Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009
Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................
COORDENADAS CURVILINEAS
CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un
2. GRAFICA DE FUNCIONES
. GRAFICA DE FUNCIONES En vista de que el comportamiento de una función puede, en general, apreciarse mu bien en su gráfica, vamos a describir algunas técnicas con auda de las cuales podremos hacer un
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
Actividades con GeoGebra
Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde
Movimientos en el plano
7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA
UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA CALCULO AVANZADO SEGUNDO CUATRIMESTRE 8 TRABAJO PRÁCTICO 4 Campos escalares Límite continuidad Página de Cálculo Avanzado http://www.uca.edu.ar Ingeniería
TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)
1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.
Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque
Caracterización geométrica
Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda
ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.
ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.
I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }
I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
Lección 24: Lenguaje algebraico y sustituciones
LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce
PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables
Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver
Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)
Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
3. Operaciones con funciones.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente
De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.
3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
Funciones. 2.6 Tipos de funciones CAPÍTULO. 2.6.1 Funciones monótonas
CAPÍTULO Funciones.6 Tipos de funciones Definimos ahora algunos tipos de funciones que tienen comportamientos mu particulares que son importantes en el estudio del cálculo..6. Funciones monótonas Una función
_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano
24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
Problemas de Cinemática 1 o Bachillerato
Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
Departamento de Matemáticas
MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente
Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.
Nivelación de Matemática MTHA UNLP 1 1. Desigualdades 1.1. Introducción. Intervalos Los números reales se pueden representar mediante puntos en una recta. 1 0 1 5 3 Sean a y b números y supongamos que
164 Ecuaciones diferenciales
64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación
Geometría Analítica. Efraín Soto Apolinar
Geometría Analítica Efraín Soto Apolinar TÉRMINOS DE USO Derechos Reservados c 010. Todos los derechos reservados a favor de Efraín Soto Apolinar. Soto Apolinar, Efraín. Geometría Analítica 010 edición.
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
Ejemplos y problemas resueltos de análisis complejo (2014-15)
Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
VECTORES. Abel Moreno Lorente. February 3, 2015
VECTORES Abel Moreno Lorente February 3, 015 1 Aspectos grácos. 1.1 Deniciones. Un vector entre dos puntos A y B es el segmento de recta orientado que tiene su origen en A y su extremo en B. A este vector
Funciones polinomiales de grados cero, uno y dos
Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,
SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).
SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el
FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables
FUNCION LINEAL TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables Toda ecuación de primer grado suele designarse como una ecuación lineal. Toda ecuación
Lección 18: Plano car tesiano. Mapas y planos
GUÍA DE MATEMÁTICAS II 9 Lección 8: Plano car tesiano. Mapas y planos Mapas y planos La siguiente figura es un plano de una porción del Centro Histórico de la Ciudad de México. En él se ha utilizado la
ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.
ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Unidad: Representación gráfica del movimiento
Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce
Ejercicios de Análisis propuestos en Selectividad
Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa
Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales
Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento
Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b
La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente
Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos
MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que
Traslaciones, Homotecias, Giros y Simetrías
Traslaciones, Homotecias, Giros y Simetrías Traslaciones Nombre e indicación Comando equivalente Vector entre Dos puntos Vector [A, B] Seleccionamos el icono correspondiente a la herramienta Vector entre
Funciones de dos variables. Gráficas y superficies.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Funciones de dos variables. Gráficas y superficies. Puede ser conveniente la visualización en pantalla
UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.
FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución
Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.
Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por
1. Producto escalar, métrica y norma asociada
1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la
TIPOS DE RESTRICCIONES
RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de ádiz Departamento de Matemáticas MATEMÁTIAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 5 La circunferencia Elaborado por la Profesora Doctora María Teresa González
Ecuaciones de segundo grado
3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver
En la siguiente gráfica se muestra una función lineal y lo que representa m y b.
FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son
VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.
VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman
Ministerio de Educación Nuevo Bachillerato Ecuatoriano. Programación lineal
Ministerio de Educación Nuevo Bachillerato Ecuatoriano Programación lineal Con el fin de motivar a sus estudiantes, un profesor de Matemática decide proporcionarles dos paquetes de golosinas: uno con 2
DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR
DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR a las personas jóvenes y adultas que requieren presentar el examen de OPERACIONES AVANZADAS 1 NÚMEROS CON SIGNO. Los
Unidad 6 Cálculo de máximos y mínimos
Unidad 6 Cálculo de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Utilizará la derivada para decidir cuándo una función es creciente o decreciente. Usará la derivada para calcular los etremos
Matemática I Extremos de una Función. Definiciones-Teoremas
Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas
+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.
ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores
Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1
. ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio
Descripción: dos. función. decreciente. Figura 1. Figura 2
Descripción: En éste tema se utiliza la primera derivada para encontrar los valores máximo y mínimo de una función, así como para determinar los intervalos en donde la función es creciente o decreciente,