Prácticas Análisis Térmico por DSC

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Prácticas Análisis Térmico por DSC"

Transcripción

1 Prácticas Análisis Térmico por DSC 1.- Introducción Las técnicas termoanalíticas han sido y siguen siendo en la actualidad ampliamente utilizadas en la caracterización de materiales. El análisis térmico abarca todos los métodos de medida basados en el cambio, con la temperatura, de una propiedad física o mecánica del material. Las condiciones de fabricación de un producto, así como su historia y tratamientos térmicos, son decisivos en las propiedades finales del material, por lo que las técnicas termoanalíticas son imprescindibles en cualquier proceso de control sobre la fabricación de un material. 2.- Calorimetría diferencial de barrido (DSC) La calorimetría diferencial de barrido (DSC, Diferential Scaning Calorimetry) permite el estudio de aquellos procesos en los que se produce una variación entálpica, por ejemplo determinación de calores específicos, puntos de ebullición y fusión, pureza de compuestos cristalinos, entalpías de reacción y determinación de otras transiciones de primer y segundo orden. En general, el DSC puede trabajar en un intervalo de temperaturas que va desde la temperatura del nitrógeno líquido hasta unos 600 ºC. Por esta razón esta técnica de análisis se emplea para caracterizar aquellos materiales que sufren transiciones térmicas en dicho intervalo de temperaturas. La familia de materiales que precisamente presenta todas sus transiciones térmicas en ese intervalo es la de los polímeros. Por esta razón, el DSC se emplea fundamentalmente para la caracterización de estos materiales y es por lo que, de aquí en adelante, nos centraremos fundamentalmente en transiciones térmicas en polímeros estudiadas por DSC. En el campo de polímeros pueden determinarse transiciones térmicas como la temperatura de transición vítrea Tg, temperatura de fusión Tm; se pueden hacer estudios de compatibilidad de polímeros, reacciones de polimerización y procesos de curado Instrumentación Existen dos tipos de métodos para obtener datos en DSC: i) DSC de potencia compensada y ii) DSC de flujo de calor. En el primero, la muestra y el material de referencia se calientan mediante calentadores separados aunque sus temperaturas se mantienen iguales mientras las temperaturas se aumentan (o disminuyen) linealmente. En el segundo, se mide la diferencia de cantidad de calor de la muestra y de la referencia cuando la temperatura de la muestra se aumenta (o disminuye) linealmente. A pesar que los dos métodos proporcionan la misma información, sólo nos centraremos en el primero El DSC mide el flujo de calor en la muestra a estudiar y en un material inerte de referencia de forma independiente. En la figura 1 se muestra un esquema de un aparato de DSC. Ambas células que contienen la muestra y la referencia, están equipadas con un sensor para la medida de su temperatura, y una resistencia de calentamiento independiente para cada una de ellas. Estas resistencias mantienen ambas células a una temperatura programada T p. Las temperaturas instantáneas de cada célula (T m y T R ) se miden y comparan continuamente con el valor programado T p. El sistema trabaja de modo que la 1

2 energía suministrada en cada momento por cada resistencia de calentamiento, es función de la diferencia entre las temperaturas de cada célula y la temperatura programada, es decir: E m = W m (T m T p ) (1) E R = W R (T R T p ) Donde E m y E R son las energías eléctricas suministradas por las resistencias, y W m y W R son constantes del sistema, que dependen de las características de cada material, como la masa y su capacidad calorífica. La diferencia de energía, E = E m E R, requerida para mantener las dos células a la temperatura programada, es la cantidad que se representa en función de la temperatura (T p, T m ó T R ) o en función del tiempo a temperatura constante. A estas dos representaciones se las denomina termogramas. Figura 1.- Esquema de un aparato de DSC. Figura tomada de: ALBELLA, J.M.; CINTAS, A.M.; MIRANDA, T. y SERRATOSA, J.M.: "Introducción a la ciencia de materiales". C.S.I.C., En DSC las temperaturas que se miden son las de las propias células metálicas donde se introducen ambas muestras. Esto hace que sea necesario un calibrado previo, que generalmente, es diferente para cada velocidad de calentamiento o enfriamiento. Aunque los principios básicos en los que se basa esta técnica son muy sencillos, sin embargo, existen muchas variables que deben tenerse siempre muy presentes y que, muchas veces, son difíciles de controlar. Las más importantes se muestran a continuación: i) De tipo instrumental Velocidad de calentamiento (enfriamiento) Geometría de las células Tipo de sensor de temperatura Tipo de registro del termograma ii) De la muestra Tamaño de la muestra Grado de división de la muestra 2

3 Empaquetamiento Control atmósfera ambiente Tratamiento previo ii) Material de referencia Tipos de ensayo i) Dinámico La muestra se somete a procesos de calentamiento (enfriamiento) constante. Se obtiene la variación de flujo de calor en función de la temperatura. ii) Isotermo Se calienta inicialmente la muestra hasta una temperatura que se mantiene constante durante el resto del ensayo. Se obtiene la variación del flujo de calor en función del tiempo Preparación de muestras Las muestras se cargan en cápsulas (células) de aluminio con una capacidad entre µl. Normalmente estas cápsulas se sellan con una tapa de aluminio para impedir que por problemas de dilatación o descomposición de la muestra, ésta se proyecte fuera de la cápsula contaminando el pocillo. Existen casos en los que las cápsulas de aluminio no se sellan o bien se utilizan tapas especiales de cuarzo o de oro y platino en aquellos casos en que se detecten interacciones no deseables entre la sustancia problema y la superficie de la cápsula de aluminio. La cantidad de muestra utilizada puede ser variable, desde varios miligramos hasta 30 mg, así como el estado y forma de la misma. No obstante, la cantidad y forma de la muestra influyen bastante en la calidad y precisión de la medida. Debido a la baja conductividad térmica de la muestra, cuanto mayor sea la superficie de contacto entre la misma y el foco calefactor, más rápidamente se difundirá el calor a toda la masa de la muestra. Para mejorar la conductividad térmica de la muestra se emplean tapas de platino sobre los pocillos. En el pocillo de referencia se suele colocar una cápsula vacía de igual tipo y forma que la que contiene la muestra a analizar Calibración El calor total correspondiente a la transformación producida en una muestra ( H m ) se determina a partir del termograma obtenido en el DSC. El coeficiente de calibración, K H, es la constante de proporcionalidad que relaciona directamente el área A, que hay entre el pico de una curva y la línea base con el cambio de entalpía, es decir: H m = K H A (2) Para determinar K H es necesario utilizar un material con calores de fusión perfectamente conocidos como muestra patrón. Con frecuencia se suelen utilizar metales de alta pureza como patrones de calibración. Los metales más utilizados para este fin son el Indio (Tm = K, H m = 28.4 Jg -1 ) y el Zinc (Tm = K, H m = 6.2 Jg -1 ). 3

4 Determinando el área del pico de la muestra patrón se puede calcular K H. El valor de K H puede utilizarse entonces para determinar valores de entalpía de cualquier otra sustancia ya que no depende de la velocidad de calentamiento ni de la temperatura. Cuando se hace un barrido a una velocidad determinada dt/dt, la temperatura de la muestra aumenta (o desciende) linealmente, y el flujo de calor es: dh/dt = (dh/dt) (dt/dt) (3) es decir, el flujo de calor es proporcional a la velocidad de calentamiento (dt/dt) y a la capacidad calorífica (C p = dh/dt). Por tanto las curvas de DSC pueden representarse en función de la capacidad calorífica Aplicaciones comunes de DSC - Calor específico y propiedades en las que varía el calor específico como la temperatura de transición vítrea o la transición de Curie - Transiciones de fase - Polimorfismos - Determinación de puntos de fusión - Determinación de parte amorfa y cristalina - Cinéticas de reacción - Tiempo e inducción a la oxidación - Descomposición Transiciones en polímeros A continuación vamos a ver como cómo se manifiestan estos procesos en los termogramas que se obtienen por DSC. En la figura 2, se muestra la forma general de un termograma para un polímero semicristalino típico, que ha sido enfriado rápidamente hasta una temperatura inferior a su Tg, obteniéndose después el termograma a una cierta velocidad de calentamiento. Figura 2.- Termograma típico de un polímero semicristalino. Figura tomada de: LLORENTE UCETA, M.A. y HORTA ZUBIAGA, A.: "Técnicas de caracterización de polímeros". UNED,

5 i) Transición vítrea (transición isofásica) A temperaturas bajas, el polímero se encuentra en su estado vítreo, en el que los movimientos moleculares (saltos conformacionales) están congelados. La variación de la capacidad calorífica con la temperatura es de forma lineal. Al llegar a la transición vítrea comienzan ya a tener lugar movimientos de segmentos de las cadenas del polímero, aumenta el volumen libre, haciéndose el material más blando. La capacidad calorífica de este estado es diferente del correspondiente al estado vítreo, teniendo lugar un salto en C p a la temperatura de transición vítrea, Tg. Desde un punto de vista termodinámico, la transición vítrea, puede considerarse como una transición de segundo orden, ya que es la segunda derivada de la función característica termidinámica, la energía libre de Gibbs G, la que sufre un salto durante la transición [c p /T = ( 2 / T 2 ) p ]. Por tanto, la transición vítrea no lleva asociado ningún cambio de fase (transición isofásica). El factor más importante que determina el valor de la temperatura de transición vítrea, es la flexibilidad de la cadena polimérica considerada aisladamente y de las interacciones entre tales cadenas. La flexibilidad de la cadena viene determinada, pues, por la estructura química. Las cadenas formadas por enlaces C-C y C-O, son notablemente flexibles y así las poliolefinas tienen Tgs relativamente bajas. La rotación alrededor del enlace C-C viene limitada por la sustitución por grupos alquilo y, así, el polipropileno y otras poliolefinas ramificadas tienen una Tg más alta que la del polietileno. Estructuras poliméricas mucho más rígidas, como la del polimetacrilato de metilo y los policarbonatos, presentan Tg altas. ii) Cristalización Al seguir calentando la muestra (ver figura 2) puede que el polímero cristalice. Al enfriar rápidamente el polímero, quedaron impedidos los movimientos moleculares y no fue posible el que tuviera lugar la cristalización. Al calentar lentamente el polímero por encima de su Tg, las cadenas tienen ya suficiente movilidad para cristalizar a temperaturas por debajo de su punto de fusión. El proceso de cristalización es un proceso exotérmico, manifestándose en el termograma mediante un pico. iii) Fusión (transición bifásica) El proceso de fusión que ocurre al seguir aumentando la temperatura da lugar a un pico endotérmico a la temperatura Tm. Al igual que la cristalización, la fusión es una transición termodinámica de primer orden, ya que es la primera derivada de la función característica termodinámica la que sufre un salto durante el proceso. Los factores que determinan la temperatura de fusión de un polímero cristalino o parcialmente cristalino son dos: a) las fuerzas intermoleculares, que son las responsables de la agregación molecular y pueden expresarse como la energía cohesiva o la energía necesaria para separar una molécula del agregado sólido o líquido. Cuando los polímeros tienen valores de energía cohesiva por encima de 5 kcal/mol, son muy cristalinos; y b) la rigidez o flexibilidad de cadena, dependiendo ésta de la mayor o menor facilidad para la rotación alrededor de los enlaces covalentes de la cadena. Por tanto, un polímero será tanto más cristalino cuanto más rígidas sean sus cadenas y cuanto más fuertes sean las interacciones existentes entre ellas. 5

6 iv) Degradación A temperaturas muy altas tiene lugar la degradación del polímero. El termograma indicado el la figura 2 es un caso ideal ya que existen numerosos factores que alteran la forma de las diferentes transiciones. Una característica general de las mismas es que no ocurren a una temperatura fija, sino que cubren un amplio intervalo de temperaturas. Esto es debido a la naturaleza irregular de los sistemas poliméricos: polidispersidad, distinto tamaño de cristales, etc Medida experimental de Tg La mayoría de los estudios por DSC, en los polímeros amorfos, se refieren a la determinación de la transición vítrea y a la medida de los cambios de calor específico que tienen lugar durante la transición. El fenómeno de la transición vítrea es un proceso de no equilibrio y tiene un carácter cinético. Este hecho se manifiesta en las medidas de DSC, donde la Tg que se obtiene depende de la historia térmica de la muestra, particularmente de la velocidad de enfriamiento que es la que determina el estado inicial vítreo del polímero que se va a estudiar, así como la de la posterior velocidad de calentamiento del aparato durante la obtención del termograma. En la figura 3 se muestran unas curvas típicas de enfriamiento y posterior calentamiento, en un aparato DSC. Figura 3.- Curvas de DSC durante la transición vítrea. A) enfriamiento; b) calentamiento. Figura tomada de: LLORENTE UCETA, M.A. y HORTA ZUBIAGA, A.: "Técnicas de caracterización de polímeros". UNED,

7 Durante el enfriamiento, siempre se obtiene una curva simple (figura 3a), mientras que durante el posterior calentamiento pueden obtenerse picos, como el de la figura 3b, si el estado amorfo se ve perturbado por algunos factores como cristalinidad, diluyente, o en el caso de mezclas de polímeros. Como puede inferirse en la figura 3, es posible definir la temperatura de transición vítrea de varias formas; las más comunes son: T o, punto de corte de la línea extrapolada desde la zona vítrea con la bisectriz de la transición trazada por su punto medio; T(1/2 c p ), temperatura correspondiente a la mitad del incremento en el calor específico durante la transición y T inf, la temperatura del punto de inflexión del termograma. Por otro lado, la anchura de la transición T a T o puede dar información útil en los estudios de compatibilidad. Puesto que ambas curvas de la figura 3 se refieren al mismo estado vítreo, deberían dar los mismos valores para la temperatura de transición vítrea sin embargo, este no es el caso, pudiéndose obtener valores muy diferentes, dependiendo de las condiciones de medida. Para muchas aplicaciones industriales: rango de temperaturas de uso del material, control de calidad, etc., estas diferencias no son muy importantes, pero para estudios más precisos se hace necesario la utilización de un método de obtención de Tg independiente de las condiciones de medida Determinación de la fusión El fenómeno de la fusión de un polímero cristalino es un proceso termodinámico similar al que tiene lugar en sustancias de bajo peso molecular. Sin embargo, para la mayoría de los polímeros cristalinos, este hecho no es tan obvio debido a que experimentalmente se obtienen amplios intervalos de fusión y temperaturas aparentemente de no equilibrio. La temperatura de fusión, Tm, se puede definir como la correspondiente al máximo del pico de fusión, mientras que el incremento de entalpía del proceso puede calcularse del área del mismo. Como ya hemos indicado, existen muchos factores experimentales que afectan a los termogramas (tamaño de muestra, velocidad de calentamiento, etc.). En el caso de la fusión, existen algunos fenómenos adicionales que pueden complicar aún más los resultados, los más importantes son el sobrecalentamiento de la muestra y su reorganización durante el mismo. En el primer caso, porciones internas de la muestra, todavía sin fundir, pueden sobrecalentarse y fundir a temperaturas más altas. También es posible que una muestra de polímero, parcial o totalmente fundida, recristalice en una forma cristalina más estable que la anterior, fundiendo posteriormente a mayor temperatura Obtención del grado de cristalinidad de un polímero Si la entalpía de fusión de una muestra de un polímero semicristalino es Hm, la fracción de cristalinidad del mismo, χ c, puede expresarse mediante: χ c = Hm/ Hm 0 (4) donde Hm 0 es la entalpía de fusión de una muestra del mismo polímero totalmente cristalina. Sin embargo, esta última cantidad no puede ser determinada experimentalmente, por la dificultad de obtener muestras totalmente cristalinas. En el caso del polietileno, se empleará el valor correspondiente a la parafina C 32 H 66, puesto que el cristal de este compuesto puede considerarse idéntico a los cristales de polietileno. 7

8 2.9.- Estudio de la compatibilidad de polímeros por DSC La temperatura de transición vítrea de un copolímero al azar, que contiene dos monómeros, 1 y 2, puede esperarse que sea intermedia entre las temperaturas de transición vítrea de los correspondientes homopolímeros, Tg 1 y Tg 2 y, efectivamente, este es el caso más general. Si las fracciones en peso de los dos componentes son W 1 y W 2, entonces la Tg del copolímero, Tg, viene dada en buena aproximación por la relación de Fox: 1 Tg w Tg 1 2 = + (5) 1 w Tg 2 Donde los valores de los parámetros a 1 y a 2 dependen del tipo de comonómeros y pueden tomarse como la unidad en el caso de copolímeros ideales. Si los dos componentes se separan en fases diferentes, como ocurre en el caso de copolímeros en bloque, entonces no se detecta un solo valor de Tg sino dos, los correspondientes a cada homopolímero. En caso de sistemas multicomponentes o mezclas de polímeros ( blends ), también ocurre que puede presentarse una sola Tg o dos. Si la mezcla es homogénea tiene Tg intermedia entre las de los dos polímeros componentes, pero si no se da una mezcla a nivel molecular, aparecen dos Tg, correspondientes a los dos polímeros en la mezcla. 3.- Método operativo Materiales - Polímeros: Nylon (poliamida); Polietileno (PE); polióxido de etileno (PEO); polietilentereftalato (PET); poliestireno (PS); polimetilmetacrilato (PMMA), Resina epoxi (EPOX). - Cápsulas de aluminio 50 µl - Pinzas y espátula Equipo necesario - Perkin Elmer DSC 7 - Prensa selladora - Microbalanza Preparación de muestras Existen diferentes tipos de cápsulas para realizar las experiencias con DSC, de ahí que deba elegirse el más adecuado atendiendo al tipo de análisis o sustancia que se vaya a realizar. Debe tenerse en cuenta que deben ser inertes. Por ejemplo las cápsulas de aluminio reaccionan con sosa, cementos y pueden formar aleaciones con algunos metales como el mercurio. Las cápsulas de DSC más comunes son de materiales como: oro, vidrio, cobre, platino, zafiro. Estas cápsulas deben soportar las condiciones de presión y temperatura a que va a ser expuesto. El aluminio por ejemplo sólo puede utilizarse a temperaturas inferiores a 600ºC ya que funde. 8

9 Una vez elegida la cápsula, en nuestro caso aluminio de 50 µl, se recomienda tarar la cápsula y la tapa. Se pone una cantidad de muestra en la cápsula entre 3 y 10 mg y se anota el peso neto de la muestra. A continuación se realiza un pequeña perforación en la tapa para facilitar la salida de los posibles gases generados durante en ensayo y se cierra el crisol utilizando la prensa selladora. La muestra debe tener el mejor contacto posible con la base de la cápsula con objeto de favorecer la trasmisión de calor durante en ensayo, para ello puede prensarse y cuando sea posible realizar un tratamiento térmico previo que permita que la muestra fluya y se distribuya homogéneamente en la base de la cápsula. Cuando se investigan muestras desconocidas se debe anotar la masa total de la cápsula con muestra una vez cerrada, de esta forma se puede comparar con la masa después de la medida y detectar posibles cambios debidos a evaporación o descomposición, este dato puede ayudar mucho en la correcta interpretación de las curvas de DSC. Se debe preparar otra cápsula sin muestra de la misma forma que servirá como referencia Experiencias a desarrollar por el alumno Dado el conjunto de sistemas poliméricos formado por: nylon, PEO, PE, PET, PS, EPOX y resina epoxi saturada de agua (EPOXA): a) Obtener los correspondientes termogramas por calorimetría diferencial de barrido b) Determinar las temperaturas de transición para cada sistema polimérico y los cambios implicados en las propiedades termodinámicas que les correspondan. Rellene la tabla adjunta. c) Discutir en términos de la estructura molecular los resultados obtenidos, comparando unos sistemas poliméricos con otros. Polímero Tg (ºC) c s (cal g -1 K -1 ) Tc (ºC) Hc (cal g -1 ) Tm (ºC) Hm (cal g -1 ) Nylon PEO PE PET PS EPOX EPOXA Estudiar la compatibilidad del sistema formado por polimetilmetacrilato y poliestireno. Se preparan tres mezclas PMMA/PS de composiciones (w/w) 0.2, 0.5 y 0.8. Las muestras se prepararán en disolución (20 % de mezcla de polímeros, w/w) utilizando como disolvente tetrahidrofurano (buen disolvente tanto del PMMA como del PS). La disolución con la mezcla de polímeros de composición conocida se añadirá a una cápsula de aluminio hasta llenarla y posteriormente con calentamiento se evaporará el disolvente, quedando en la cápsula únicamente la mezcla de polímeros de composición conocida. Una vez evaporado el disolvente se pesa la cápsula con la mezcla de polímeros y por diferencia con 9

10 la masa de la cápsula sin muestra se obtendrá la masa de muestra a analizar. Posteriormente se sella la cápsula y se introduce e el equipo. Obtener los termogamas correspondientes y observar la presencia de una o dos Tg. En el supuesto de que aparezca sólo una Tg, estudiar la adecuación de la ecuación de Fox a los resultados experimentales. 10

ANÁLISIS TÉRMICO. Consultoría de Calidad y Laboratorio S.L. RPS-Qualitas

ANÁLISIS TÉRMICO. Consultoría de Calidad y Laboratorio S.L. RPS-Qualitas ANÁLISIS TÉRMICO Introducción. El término Análisis Térmico engloba una serie de técnicas en las cuales, algún parámetro físico del sistema es medido de manera continua en función de la temperatura, mientras

Más detalles

1.1.- Qué es el análisis térmico? 1.2.- Importancia del análisis térmico ANÁLISIS TÉRMICO. 1.- Introducción

1.1.- Qué es el análisis térmico? 1.2.- Importancia del análisis térmico ANÁLISIS TÉRMICO. 1.- Introducción ANÁLISIS TÉRMICO 1.- Introducción 1.1.- Qué es el análisis térmico? Todos aquellos métodos de medida basados en el cambio, con la temperatura (o en función del tiempo a temperatura constante), de una propiedad

Más detalles

LAS TRANSICIONES TÉRMICAS EN UN MATERIAL POLIMÉRICO ESTÁN ÍNTIMAMENTE LIGADAS A LA ESTRUCTURA

LAS TRANSICIONES TÉRMICAS EN UN MATERIAL POLIMÉRICO ESTÁN ÍNTIMAMENTE LIGADAS A LA ESTRUCTURA LAS PROPIEDADES DE LOS POLÍMEROS DEPENDEN FUERTEMENTE DE LA TEMPERATURA LAS TRANSICIONES TÉRMICAS EN UN MATERIAL POLIMÉRICO ESTÁN ÍNTIMAMENTE LIGADAS A LA ESTRUCTURA LAS TRANSICIONES TÉRMICAS TOMAN UNOS

Más detalles

EL ANÁLISIS TÉRMICO CALORIMETRIA DIFERENCIAL DE BARRIDO Y ANÁLISIS TERMOGRAVIMÉTRICO

EL ANÁLISIS TÉRMICO CALORIMETRIA DIFERENCIAL DE BARRIDO Y ANÁLISIS TERMOGRAVIMÉTRICO EL ANÁLISIS TÉRMICO CALORIMETRIA DIFERENCIAL DE BARRIDO Y ANÁLISIS TERMOGRAVIMÉTRICO Introducción Introducción Calorimetría diferencial de barrido (DSC) R M R=Referencia; W R (T R -T p ) W M (T M -T p

Más detalles

MÉTODOS DE ANÁLISIS TÉRMICO

MÉTODOS DE ANÁLISIS TÉRMICO MÉTODOS DE ANÁLISIS TÉRMICO Aplicaciones al Control de Calidad Farmacéutico Dra. Patricia M Castellano 2015 QUÍMICA DEL ESTADO SÓLIDO Cambio de dosis Biofarmacia Toxicología Investigación Control de calidad

Más detalles

CONTROL DE CALIDAD DE FARMACOS POR MEDIDAS DE CALORIMETRÍA DIFERENCIAL DE BARRIDO (DSC)

CONTROL DE CALIDAD DE FARMACOS POR MEDIDAS DE CALORIMETRÍA DIFERENCIAL DE BARRIDO (DSC) CONTROL DE CALIDAD DE FARMACOS POR MEDIDAS DE CALORIMETRÍA DIFERENCIAL DE BARRIDO (DSC) Introducción: Un material que experimenta un cambio de estado físico o químico, por ejemplo una fusión o una transición

Más detalles

Tema 10 MÉTODOS DE ANÁLISIS TÉRMICO

Tema 10 MÉTODOS DE ANÁLISIS TÉRMICO Tema 10 MÉTODOS DE ANÁLISIS TÉRMICO 1. Introducción La definición generalmente aceptada de análisis térmico abarca al grupo de técnicas en las que se mide una propiedad física de un sistema (sustancia

Más detalles

Estudio de polimorfismo en drogas farmacéuticas. Daniel Vega

Estudio de polimorfismo en drogas farmacéuticas. Daniel Vega Estudio de polimorfismo en drogas farmacéuticas. Daniel Vega Departamento Física de la Materia Condensada Comisión Nacional de Energía Atómica Escuela de Ciencia y Tecnología - UNSAM Polimorfismo afecta

Más detalles

Tema 6. Análisis térmico: TG y DTA

Tema 6. Análisis térmico: TG y DTA 1 Tema 6. Análisis térmico: TG y DTA 6.1 Introducción 6.2 Termogravimetria (TG) 6.2.1 La balanza 6.2.2 Calentamiento de la muestra 6.2.3 Preparación de la muestra, atmósfera de medida y control de temperatura.

Más detalles

CAPITULO IV RESULTADOS Y DISCUSIÓN. esquemas siguientes (4.1 y 4.2), en los que se representan los mecanismos de iniciación

CAPITULO IV RESULTADOS Y DISCUSIÓN. esquemas siguientes (4.1 y 4.2), en los que se representan los mecanismos de iniciación 66 CAPITULO IV 66 RESULTADOS Y DISCUSIÓN. 66 4.1 Mecanismos de Iniciación. 66 4.2 Cinéticas de reacción 68 4.2.1 Comparación de cinéticas por efecto de la temperatura. 68 4.2.2 Comparación de cinéticas

Más detalles

TEMA 5: MATERIALES COMPUESTOS DE MATRIZ ORGÁNICA:

TEMA 5: MATERIALES COMPUESTOS DE MATRIZ ORGÁNICA: TEMA 5: MATERIALES COMPUESTOS DE MATRIZ ORGÁNICA: CONTROL DE CALIDAD 5.1- Introducción El control de calidad de los materiales compuestos es muy importante debido a: a) la gran variedad de combinaciones

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL TRABAJO PRACTICO - PUNTO DE FUSION OBJETIVO: Determinar el punto de fusión (o solidificación)

Más detalles

TÉCNICAS DE DIFRACCIÓN Y TERMOGRAVIMETRIA PARA LA DETERMINACIÓN ESTRUCTURAL DE MATERIALES

TÉCNICAS DE DIFRACCIÓN Y TERMOGRAVIMETRIA PARA LA DETERMINACIÓN ESTRUCTURAL DE MATERIALES TÉCNICAS DE DIFRACCIÓN Y TERMOGRAVIMETRIA PARA LA DETERMINACIÓN ESTRUCTURAL DE MATERIALES AUTORÍA JORGE RODRIGUEZ FERNANDEZ TEMÁTICA ENSAYOS FÍSICOS DE MATERIALES ETAPA FORMACIÓN PROFESIONAL Resumen En

Más detalles

SERVICIO DE APOYO A LA INVESTIGACIÓN (SAI) SECCIÓN UNIVERSITARIA DE INSTRUMENTACIÓN CIENTÍFICA (SUIC)

SERVICIO DE APOYO A LA INVESTIGACIÓN (SAI) SECCIÓN UNIVERSITARIA DE INSTRUMENTACIÓN CIENTÍFICA (SUIC) SERVICIO DE APOYO A LA INVESTIGACIÓN (SAI) SECCIÓN UNIVERSITARIA DE INSTRUMENTACIÓN CIENTÍFICA (SUIC) Murcia, 30 de Octubre de 2013 http://suicsaiumu.wordpress.com/ 1 Análisis elemental CHNS Instrumentación:

Más detalles

LABORATORIO DE QUÍMICA FACULTAD DE FARMACIA CRISTALIZACIÓN.

LABORATORIO DE QUÍMICA FACULTAD DE FARMACIA CRISTALIZACIÓN. CRISTALIZACIÓN. Un compuesto orgánico cristalino está constituido por un empaquetamiento tridimensional de moléculas unidas principalmente por fuerzas de Van der Waals, que originan atracciones intermoleculares

Más detalles

1. Qué es el Polipropileno:

1. Qué es el Polipropileno: INFORMACION SOBRE POLIPROPILENO Y GENERALIDADES INDICE 1.Qué es el Polipropileno...... pg. 2 2. Qué es la Cristalinidad.....pg. 2 3. Qué es la Temperatura de fusión... pg. 4 4. Qué es la Temperatura de

Más detalles

CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD

CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD DE SUSTANCIAS QUE, AUNQUE A TEMPERATURA AMBIENTE TIENEN LA APARIENCIA

Más detalles

NTE INEN-ISO 11357-4 2015-XX

NTE INEN-ISO 11357-4 2015-XX Quito Ecuador NORMA TÉCNICA ECUATORIANA NTE INEN-ISO 11357-4 2015-XX PLÁSTICOS. CALORIMETRÍA DIFERENCIAL DE BARRIDO (DSC). PARTE 4: DETERMINACIÓN DE LA CAPACIDAD TÉRMICA ESPECÍFICA (ISO 11357-4:2014, IDT)

Más detalles

OBTENCIÓN DE CARBONATO DE SODIO (P 5)

OBTENCIÓN DE CARBONATO DE SODIO (P 5) OBTENCIÓN DE CARBONATO DE SODIO (P 5) Objetivos - Estudio descriptivo del carbonato de sodio y de sus usos industriales - Realización de la síntesis de carbonato de sodio y su comparación con el método

Más detalles

CARACTERÍSTICAS DE LA MATERIA

CARACTERÍSTICAS DE LA MATERIA LA MATERIA CARACTERÍSTICAS DE LA MATERIA - Todo lo que existe en el universo está compuesto de Materia. - La Materia se clasifica en Mezclas y Sustancias Puras. - Las Mezclas son combinaciones de sustancias

Más detalles

Propiedades térmicas de materiales poliméricos.

Propiedades térmicas de materiales poliméricos. Tema 1 Propiedades térmicas de materiales poliméricos. Materiales Poliméricos Conceptos generales. Transiciones térmicas: transición vítrea, cristalización y fusión. (R. Benavente) Introducción Transiciones

Más detalles

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia. INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA 1. Qué es la Química Física? "La química física estudia los principios que gobiernan las propiedades el comportamiento de los sistemas químicos" El estudio de los

Más detalles

CAPITULO 6 ANALISIS Y ESTUDIO DE SECADO. El secado de sólidos se puede definir de distintas maneras, según el enfoque que se

CAPITULO 6 ANALISIS Y ESTUDIO DE SECADO. El secado de sólidos se puede definir de distintas maneras, según el enfoque que se 52 CAPITULO 6 ANALISIS Y ESTUDIO DE SECADO 6.1 Definición de secado El secado de sólidos se puede definir de distintas maneras, según el enfoque que se desee adoptar. En los estudios más teóricos se pone

Más detalles

2. MATERIALES Y MÉTODOS

2. MATERIALES Y MÉTODOS 2. MATERIALES Y MÉTODOS Capitulo 2 31 2.1 INSTRUMENTACIÓN Si bien una descripción detallada de las técnicas experimentales utilizadas y de los aspectos teóricos relacionados con su funcionamiento puede

Más detalles

Cómo llevar a cabo una reacción química desde el punto de vista experimental

Cómo llevar a cabo una reacción química desde el punto de vista experimental Cómo llevar a cabo una reacción química desde el punto de vista experimental Para obtener un compuesto se pueden utilizar varias técnicas, que incluyen el aislamiento y la purificación del mismo. Pero

Más detalles

ANALISIS TÉRMICO. Bibliografía. Bibliografía

ANALISIS TÉRMICO. Bibliografía. Bibliografía ANALISIS TÉRMICO Curso Sólidos Inorgánicos Setiembre 2006 Dr. Jorge R. Castiglioni LAFIDESU, Cátedra de Fisicoquímica DETEMA Facultad de Química Bibliografía Peter J. Haines. Thermal Methods of Analysis.

Más detalles

TEMA 1 Conceptos básicos de la termodinámica

TEMA 1 Conceptos básicos de la termodinámica Bases Físicas y Químicas del Medio Ambiente TEMA 1 Conceptos básicos de la termodinámica La termodinámica es el estudio de la transformación de una forma de energía en otra y del intercambio de energía

Más detalles

Completar: Un sistema material homogéneo constituido por un solo componente se llama.

Completar: Un sistema material homogéneo constituido por un solo componente se llama. IES Menéndez Tolosa 3º ESO (Física y Química) 1 Completar: Un sistema material homogéneo constituido por un solo componente se llama. Un sistema material homogéneo formado por dos o más componentes se

Más detalles

Conductividad en disoluciones electrolíticas.

Conductividad en disoluciones electrolíticas. Conductividad en disoluciones electrolíticas. 1.- Introducción 2.- Conductores 3.- Definición de magnitudes 3.1- Conductividad específica 3.2 Conductividad molar " 4. Variación de la conductividad (, ")

Más detalles

Calibración del termómetro

Calibración del termómetro Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas

Más detalles

14. ENTALPÍA DE FUSIÓN DEL HIELO

14. ENTALPÍA DE FUSIÓN DEL HIELO 14. ENTALPÍA DE FUSIÓN DEL HIELO OBJETIVO Determinar la entalpía de fusión del hielo, H f, utilizando el método de las mezclas. Previamente, ha de determinarse el equivalente en agua del calorímetro, K,

Más detalles

CARACTERÍSTICAS TRANSITORIAS DEL PROCESO DE AUTONUCLEACIÓN DE POLÍMEROS SEMICRISTALINOS

CARACTERÍSTICAS TRANSITORIAS DEL PROCESO DE AUTONUCLEACIÓN DE POLÍMEROS SEMICRISTALINOS CARACTERÍSTICAS TRANSITORIAS DEL PROCESO DE AUTONUCLEACIÓN DE POLÍMEROS SEMICRISTALINOS Arnaldo T. Lorenzo *, María Luisa Arnal, Johan J. Sánchez, Alejandro J. Müller Grupo de Polímeros USB, Departamento

Más detalles

5.1 Síntesis de poliamida 6-10

5.1 Síntesis de poliamida 6-10 UNIDAD TEMÁTICA 5 MATERIALES 5.1 Síntesis de poliamida 6-10 La reacción de un ácido dicarboxílico, o de uno de sus derivados como puede ser el cloruro, con una diamina forma una poliamida lineal mediante

Más detalles

ANEXO 7: ANÁLISIS FÍSICO-QUÍMICO DE LA BIOMASA UTILIZADA

ANEXO 7: ANÁLISIS FÍSICO-QUÍMICO DE LA BIOMASA UTILIZADA ANEXO 7: ANÁLISIS FÍSICO-QUÍMICO DE LA BIOMASA UTILIZADA 93 1.7. ANÁLISIS FÍSICO-QUÍMICO DE LA BIOMASA UTILIZADA. SARMIENTO DE VID. 1.7.1 Análisis Químico: Ensayos experimentales - Celulosa---------------------

Más detalles

Contracciones y deformaciones en las piezas de plástico

Contracciones y deformaciones en las piezas de plástico Contracciones y deformaciones en las piezas de plástico Las contracciones en el diseño o del molde Juan de Juanes Márquez M Sevillano Contracción n y deformación Contracción: : cambio de volumen que sufre

Más detalles

Los Plásticos y su procedencia

Los Plásticos y su procedencia Los Plásticos y su procedencia Fernando Espada REPSOL QUÍMICA S.A Murcia Almería - Huelva 01/10/13 03/10/13 ÍNDICE 1. ORIGEN DE LOS PLÁSTICOS 2. EVOLUCIÓN HISTÓRICA DE LOS PLÁSTICOS 3. LOS TERMOPLÁSTICOS

Más detalles

CURSO BASICO DE ANALISIS TERMICO

CURSO BASICO DE ANALISIS TERMICO CURSO BASICO DE ANALISIS TERMICO Termogravimetría, cinética de reacciones y análisis térmico diferencial Juan A. Conesa Ferrer Profesor Titular de Ingeniería Química Universidad de Alicante Título: Curso

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

EFECTO JOULE-THOMSON

EFECTO JOULE-THOMSON PRACTICA nº 4 EFECTO JOULE-THOMSON Fundamentos teóricos El proceso de Joule-Thomson consiste en el paso de un gas desde un contenedor a presión constante a otro a presión también constante y menor (Pf

Más detalles

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL

CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL CONOCIMIENTO DEL MEDIO EN EDUCACIÓN INFANTIL Francisco Javier Navas Pineda javier.navas@uca.es Tema 5. Estados de agregación de la materia 1 ÍNDICE 1. Los Estados de la Materia 2. Estado Sólido. Tipos

Más detalles

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad)

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) CAPITULO 5. PROCESO DE SECADO. 5.1 Descripción general del proceso de secado. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) para producir un producto sólido y

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

Estudio de la evaporación

Estudio de la evaporación Estudio de la evaporación Volumen del líquido Tipo de líquido Superficie del recipiente Altura del recipiente Forma del recipiente Presencia de una sal disuelta Introducción Todos hemos observado que una

Más detalles

UTN-FRRo CATEDRA DE PROCESOS INDUSTRIALES PAG. 1

UTN-FRRo CATEDRA DE PROCESOS INDUSTRIALES PAG. 1 UTN-FRRo CATEDRA DE PROCESOS INDUSTRIALES PAG. 1 COQUIZACIÓN RETARDADA Objetivos: el procedimiento de coquización retardada se desarrolló para obtener por craqueo térmico (es decir, sin utilización de

Más detalles

TEMA 1 INTRODUCCIÓN AL ANÁLISIS QUÍMICO

TEMA 1 INTRODUCCIÓN AL ANÁLISIS QUÍMICO TEMA 1 INTRODUCCIÓN AL ANÁLISIS QUÍMICO Este tema aporta una revisión panorámica del Análisis Químico, sus distintas vertientes y su terminología básica. La importancia de la Química Analítica queda plasmada

Más detalles

Determinación del equivalente eléctrico del calor

Determinación del equivalente eléctrico del calor Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar

Más detalles

FUNDAMENTOS DEL ENFRIAMIENTO EVAPORATIVO PARA INSTALACIONES AVÍCOLAS José Antonio Frejo Fernández

FUNDAMENTOS DEL ENFRIAMIENTO EVAPORATIVO PARA INSTALACIONES AVÍCOLAS José Antonio Frejo Fernández CALOR FUNDAMENTOS DEL ENFRIAMIENTO EVAPORATIVO PARA INSTALACIONES AVÍCOLAS FUNDAMENTOS DEL ENFRIAMIENTO EVAPORATIVO PARA INSTALACIONES AVÍCOLAS José Antonio Frejo Fernández B.U. Manager Munters Spain S.A.U.

Más detalles

VALIDACIÓN DE LA METODOLOGÍA DE CONTENIDO QUÍMICO DE IBUPROFENO EN TABLETAS POR CALORIMETRÍA DIFERENCIAL DE BARRIDO

VALIDACIÓN DE LA METODOLOGÍA DE CONTENIDO QUÍMICO DE IBUPROFENO EN TABLETAS POR CALORIMETRÍA DIFERENCIAL DE BARRIDO PORTADA UNIVERSIDAD DE EL SALVADOR FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA ESCUELA DE QUIMICA MAESTRIA EN QUIMICA VALIDACIÓN DE LA METODOLOGÍA DE CONTENIDO QUÍMICO DE IBUPROFENO EN TABLETAS POR CALORIMETRÍA

Más detalles

UNIVERSIDAD AUTONOMA DE CHIHUAHUA

UNIVERSIDAD AUTONOMA DE CHIHUAHUA UNIVERSIDAD AUTONOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUIMICAS OPERACIONES UNITARIAS ll Ensayo Integrantes: Areli Prieto Velo 232644 Juan Carlos Calderón Villa 232654 Víctor Gutiérrez 245369 Fernando

Más detalles

Repaso de termodinámica química 7.51 Septiembre, 1999

Repaso de termodinámica química 7.51 Septiembre, 1999 Repaso de termodinámica química 7.51 Septiembre, 1999 Si no han estudiado nunca termodinámica, probablemente será necesario que lean antes un poco sobre el tema. Algunos libros de interés son: Moore, Walter

Más detalles

PRÁCTICA N 3 SOLUBILIDAD (CURVA DE SOLUBILIDAD Y CRISTALIZACIÓN FRACCIONADA)

PRÁCTICA N 3 SOLUBILIDAD (CURVA DE SOLUBILIDAD Y CRISTALIZACIÓN FRACCIONADA) PRÁCTICA N 3 SOLUBILIDAD (CURVA DE SOLUBILIDAD Y CRISTALIZACIÓN FRACCIONADA) I. OBJETIVO GENERAL Establecer de forma experimental, la dependencia de la solubilidad con la temperatura. Utilizar la variación

Más detalles

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 EBULLICIÓN La transferencia de calor a un líquido en ebullición es muy importante en la evaporación y destilación, así como en otros tipos

Más detalles

Tema 11: Materiales poliméricos: Plásticos.

Tema 11: Materiales poliméricos: Plásticos. Tema 11: Materiales poliméricos: Plásticos. 1. Microestructura y propiedades de los materiales poliméricos. 2. Los plásticos: tipos. 3. Procesos de fabricación y conformación. 4. Productos y compuestos

Más detalles

Tema 17 Deformación y falla de los materiales polímeros.

Tema 17 Deformación y falla de los materiales polímeros. Tema 17 Deformación y falla de los materiales polímeros. Las propiedades mecánicas de los materiales polímeros se especifican con muchos de los mismos parámetros usados en los metales. Se utiliza la prueba

Más detalles

2. TIPOS DE TERMÓMETROS

2. TIPOS DE TERMÓMETROS 1. DEFINICIÓN. El termómetro (del idioma griego, termo el cuál significa "caliente" y metro, "medir") es un instrumento que se usa para medir la temperatura. Su presentación más común es de vidrio, el

Más detalles

Estudio de diferentes técnicas de detección de la degradación de una grasa

Estudio de diferentes técnicas de detección de la degradación de una grasa Estudio de diferentes técnicas de detección de la degradación de una grasa Estíbaliz Aranzabe, Arrate Marcaide, Raquel Ferret 1. INTRODUCCIÓN Las grasas lubricantes se degradan entre otros efectos con

Más detalles

Capítulo 5. Estudio de la influencia de la relajación sobre el proceso de la cristalización eutéctica

Capítulo 5. Estudio de la influencia de la relajación sobre el proceso de la cristalización eutéctica Capítulo 5 Estudio de la influencia de la relajación sobre el proceso de la cristalización eutéctica Estudio de la influencia de la relajación sobre el proceso de la cristalización eutectica 5.1. Tratamiento

Más detalles

III. ESTADOS DE LA MATERIA

III. ESTADOS DE LA MATERIA III. ESTADOS DE LA MATERIA Fuerzas Intermoleculares Las fuerzas intermoleculares Son fuerzas de atracción entre las moléculas y son mas débiles que las fuerzas intramoleculares (enlaces químicos). Ejercen

Más detalles

Fundamentos de medición de temperatura

Fundamentos de medición de temperatura Fundamentos de medición de temperatura Termistores Termopares David Márquez Jesús Calderón Termistores Resistencia variable con la temperatura Construidos con semiconductores NTC: Coeficiente de temperatura

Más detalles

7) Métodos de Análisis Térmico Diferencial

7) Métodos de Análisis Térmico Diferencial 7) Métodos de Análisis Térmico Diferencial 1) Análisis Térmico Diferencial (DTA): Es una técnica en la cual se mide la diferencia de temperaturas entre una muestra y un material de referencia en función

Más detalles

05/08/2007. Reciclaje Mecánico. Se obtendrá una nueva materia prima para la posterior obtención de nuevas piezas.

05/08/2007. Reciclaje Mecánico. Se obtendrá una nueva materia prima para la posterior obtención de nuevas piezas. 1.- INTRODUCCIÓN Son materiales con múltiples aplicaciones con un lugar muy destacado en el desarrollo de sectores como: 1.-Materiales Plásticos 2.-Materiales Textiles 3.-Materiales Pétreos y Cerámicos

Más detalles

TEMA 8: PLÁSTICOS O POLÍMEROS Y OTROS MATERIALES.

TEMA 8: PLÁSTICOS O POLÍMEROS Y OTROS MATERIALES. PLÁSTICOS O POLÍMEROS TEMA 8: PLÁSTICOS O POLÍMEROS Y OTROS MATERIALES. Los plásticos son sustancias químicas sintéticas denominados polímeros, que puede ser moldeados mediante calor o presión y cuyo componente

Más detalles

PURIFICACION DE LOS SÓLIDOS POR CRISTALIZACION

PURIFICACION DE LOS SÓLIDOS POR CRISTALIZACION PURIFICACION DE LOS SÓLIDOS POR CRISTALIZACION I. OBJETIVOS Poder lograr la purificación de la muestra experimentales. utilizada reconociendo procedimientos Obtener cristales de acetanilida. II. FUNDAMENTO

Más detalles

[Trabajo práctico #4]

[Trabajo práctico #4] Hornos y tratamientos térmicos [Trabajo práctico #4] Materiales y Combustibles Nucleares 2008 Ingeniería Nuclear Instituto Balseiro, CNEA, UNCu 1 Autores: Bazzana Santiago Hegoburu Pablo Ordoñez Mariano

Más detalles

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 3 - CALORIMETRÍA Y TRANSMISIÓN DEL CALOR Capacidad calorífica y su medida. Calor específico. Calor latente. Transmisión del calor. Conductividad térmica. Ley de

Más detalles

Hidrosfera. 1) En las aguas epicontinentales se incluyen el mar Caspio, el Aral y el mar Muerto, además de lagos, ríos, etc.

Hidrosfera. 1) En las aguas epicontinentales se incluyen el mar Caspio, el Aral y el mar Muerto, además de lagos, ríos, etc. Hidrosfera Formación Cuando la Tierra se fue formando, hace unos 4600 millones de años, las altas temperaturas hacían que toda el agua estuviera en forma de vapor. Al enfriarse por debajo del punto de

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL ESTUDIO DE LA SOLUBILIDAD Y LOS FACTORES QUE LA AFECTAN OBJETIVOS 1. Interpretar

Más detalles

UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA

UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA MEZCLA DE GAS VAPOR UNEFM TERMODINAMICA APLICADA ING. ANA PEÑA GUIA DE PSICOMETRIA AIRE SECO Y ATMOSFÉRICO: El aire es una mezcla de Nitrógeno, Oxígeno y pequeñas cantidades de otros gases. Aire Atmosférico:

Más detalles

TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN

TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN 1. Destilación 2. Extracción 3. Sublimación 4. Cristalización 5. Cromatografía 6. Fórmulas empíricas y moleculares 2 Tema 11 TEMA 11. Métodos físicos

Más detalles

Destilación. Producto 1 más volátil que Producto 2 (P 0 1 > P0 2 ) Figura 1

Destilación. Producto 1 más volátil que Producto 2 (P 0 1 > P0 2 ) Figura 1 Destilación La destilación es una técnica que nos permite separar mezclas, comúnmente líquidas, de sustancias que tienen distintos puntos de ebullición. Cuanto mayor sea la diferencia entre los puntos

Más detalles

UNIDAD DE TRABAJO Nº5 CONCEPTO DE SOLDABILIDAD

UNIDAD DE TRABAJO Nº5 CONCEPTO DE SOLDABILIDAD UNIDAD DE TRABAJO Nº5 CONCEPTO DE SOLDABILIDAD 1.- Concepto de Soldabilidad Un material se considera soldable, por un procedimiento determinado y para una aplicación específica, cuando mediante una técnica

Más detalles

TERMODINAMICA 1 Conceptos Basicos

TERMODINAMICA 1 Conceptos Basicos TERMODINAMICA 1 Conceptos Basicos Prof. Carlos G. Villamar Linares Ingeniero Mecánico MSc. Matemáticas Aplicada a la Ingeniería 1 CONTENIDO DEFINICIONES BASICAS Definición de Termodinámica, sistema termodinámico,

Más detalles

Los refractarios están compuestos principalmente de óxidos o compuestos como carburo de silicio que son estables a temperaturas elevadas.

Los refractarios están compuestos principalmente de óxidos o compuestos como carburo de silicio que son estables a temperaturas elevadas. ASTM: define a los refractarios como materiales, generalmente no metálicos, utilizados para permanecer a altas temperaturas que proporcionan el revestimiento de hornos y reactores de alta temperatura.

Más detalles

TRANSFERENCIA DE MASA II SECADO

TRANSFERENCIA DE MASA II SECADO TRANSFERENCIA DE MASA II SECADO SECADO Constituye uno de los métodos que permite separar un líquido de un sólido. Se entiende por secado como la separación de humedad de los sólidos o de los líquidos por

Más detalles

1. Las propiedades de las sustancias

1. Las propiedades de las sustancias 1. Las propiedades de las sustancias Propiedades características Son aquellas que se pueden medir, que tienen un valor concreto para cada sustancia y que no dependen de la cantidad de materia de que se

Más detalles

Procesos de fabricación; Conformado por moldeo. Inyección de termoplásticos

Procesos de fabricación; Conformado por moldeo. Inyección de termoplásticos Procesos de fabricación; Conformado por moldeo. Inyección de termoplásticos DISEÑO PARA LA INYECCIÓN DE TERMOPLÁSTICOS 1. Introducción 2. Materiales para moldeo por inyección 3. Máquina de inyección 4.

Más detalles

As a consequence of their structure, glasses exhibit many properties that crystalline solids do not; most notably,

As a consequence of their structure, glasses exhibit many properties that crystalline solids do not; most notably, CARACTERÍSTICAS DEL ESTADO VÍTREOV VIDRIOS O CUERPOS VÍTREOS GRAN VARIEDAD DE SUSTANCIAS QUE, AUNQUE A TEMPERATURA AMBIENTE TIENEN LA APARIENCIA DE CUERPOS SÓLIDOS, QUE LES PROPORCIONA SU RIGIDEZ MECÁNICA,

Más detalles

CAPÍTULO 1 INTRODUCCIÓN Y OBJETIVOS

CAPÍTULO 1 INTRODUCCIÓN Y OBJETIVOS CAPÍTULO 1 INTRODUCCIÓN Y OBJETIVOS 1.1 Intoducción La transferencia de calor por convección es un proceso que tiene lugar entre una superficie sólida y un fluido adyacente en movimiento siempre que exista

Más detalles

PRACTICAS DE LABORATORIO PARA ALUMNADO DE SECUNDARIA

PRACTICAS DE LABORATORIO PARA ALUMNADO DE SECUNDARIA PRACTICAS DE LABORATORIO PARA ALUMNADO DE SECUNDARIA AUTORÍA ADELA CARRETERO LÓPEZ TEMÁTICA DENSIDAD DE LA MATERIA, TÉCNICAS DE SEPARACIÓN DE MEZCLAS ETAPA SECUNDARIA Resumen La realización de prácticas

Más detalles

JULIO 2012. FASE ESPECÍFICA. QUÍMICA.

JULIO 2012. FASE ESPECÍFICA. QUÍMICA. JULIO 2012. FASE ESPECÍFICA. QUÍMICA. OPCIÓN A 1. (2,5 puntos) Se añaden 10 mg de carbonato de estroncio sólido, SrCO 3 (s), a 2 L de agua pura. Calcule la cantidad de SrCO 3 (s) que queda sin disolver.

Más detalles

Diseño de una caja de refrigeración por termocélulas

Diseño de una caja de refrigeración por termocélulas Diseño de una caja de refrigeración por termocélulas Antonio Ayala del Rey Ingeniería técnica de telecomunicaciones especialidad en sist. electrónicos Resumen El diseño de un sistema refrigerante termoeléctrico

Más detalles

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura?

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? 9 ENERGÍA Y CALOR EJERCICIOS PROPUESTOS 9.1 Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? Al aumentar la temperatura, se mueven con mayor velocidad y

Más detalles

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) GUÍA N 1: DESTILACION DE DISOLUCIONES

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) GUÍA N 1: DESTILACION DE DISOLUCIONES I. Presentación de la guía: ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) GUÍA N 1: DESTILACION DE DISOLUCIONES Competencia: El alumno será capaz de ejecutar una técnica de separación y purificación de soluciones

Más detalles

Fallas por porosidad

Fallas por porosidad Fallas por porosidad Introducción La porosidad en componentes plásticos provoca que éstos sean más susceptibles a fallar ó pueden contribuir a una falla permanente La porosidad reduce la funcionalidad

Más detalles

UNIDAD III. ESTADO LIQUIDO.

UNIDAD III. ESTADO LIQUIDO. REPUBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD EXPERIMENTAL SUR DEL LAGO Jesús María Semprúm PROGRAMA DE INGENIERÌA DE ALIMENTOS UNIDAD CURRICULAR: QUIMICA GENERAL UNIDAD III. ESTADO LIQUIDO. Prof. David

Más detalles

POLIETILENO DE ALTA Y BAJA DENSIDAD

POLIETILENO DE ALTA Y BAJA DENSIDAD Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Química y Biotecnología IQ5432- Tecnología de Materiales Plásticos POLIETILENO DE ALTA Y BAJA DENSIDAD SOY PAZ

Más detalles

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos.

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos. PIRÓLISIS 1. Definición La pirólisis se define como un proceso termoquímico mediante el cual el material orgánico de los subproductos sólidos se descompone por la acción del calor, en una atmósfera deficiente

Más detalles

Aire acondicionado y refrigeración

Aire acondicionado y refrigeración Aire acondicionado y refrigeración CONCEPTO: El acondicionamiento del aire es el proceso que enfría, limpia y circula el aire, controlando, además, su contenido de humedad. En condiciones ideales logra

Más detalles

PROBLEMAS DE BALANCES DE ENERGÍA

PROBLEMAS DE BALANCES DE ENERGÍA PROBLEMAS DE BALANCES DE ENERGÍA José Abril Requena 2013 2013 José Abril Requena INDICE Un poco de teoría... 3 Problemas resueltos... 10 Problema 1... 10 Problema 2... 11 Problema 3... 11 Problema 4...

Más detalles

Adhesivos Especialmente desarrollados para el etiquetado de Envases de PET retornables y no retornables

Adhesivos Especialmente desarrollados para el etiquetado de Envases de PET retornables y no retornables t Etiquetado de Envases de PET Adhesivos en Base Acuosa y HOT MELT H O T MELT BASE ACUOSA Adhesivos Especialmente desarrollados para el etiquetado de Envases de PET retornables y no retornables Adhesivos

Más detalles

Práctica 5. Aislamiento térmico. 5.1. Objetivos conceptuales. 5.2. Conceptos básicos

Práctica 5. Aislamiento térmico. 5.1. Objetivos conceptuales. 5.2. Conceptos básicos Práctica 5 Aislamiento térmico 5.1. Objetivos conceptuales Estudiar las propiedades aislantes de paredes de distintos materiales: determinar la conductividad térmica de cada material y la resistencia térmica

Más detalles

6) ANÁLISIS TÉRMICO DE POLÍMEROS Definición

6) ANÁLISIS TÉRMICO DE POLÍMEROS Definición 6) ANÁLISIS TÉRMICO DE POLÍMEROS Definición Según la International Confederation for Thermal Análisis and Calorimetry (ICTAC), el análisis térmico incluye a todas aquellas técnicas en las cuales se miden

Más detalles

Las cubetas para espectrofotometría Zuzi son instrumentos de gran precisión con una relación calidad/precio inmejorable. Pueden ser empleadas con gran variedad de espectrofotómetros y colorímetros, atendiendo

Más detalles

Transiciones en polímeros amorfos

Transiciones en polímeros amorfos EFECTO DE LA TEMPERATURA. TRANSICION VITREA Deformación dependiente del tiempo Transiciones en polímeros amorfos EFECTO DE LA TEMPERATURA. TRANSICION VITREA FUSIÓN Y FENÓMENO DE TRANSICIÓN VÍTREA. CUANDO

Más detalles

Composición Física y Fabricación de Dispositivos Fotovoltaicos

Composición Física y Fabricación de Dispositivos Fotovoltaicos Composición Física y Fabricación de Dispositivos Fotovoltaicos 1.1 Efecto fotovoltaico Los módulos están compuestos de celdas solares de silicio (o fotovoltaicas). Estas son semiconductoras eléctricas

Más detalles

Estas propiedades toman el nombre de CONSTANTES FISICAS porque son prácticamente invariables características de la sustancia.

Estas propiedades toman el nombre de CONSTANTES FISICAS porque son prácticamente invariables características de la sustancia. DETERMINACION DE LAS CONSTANTES FISICAS I. OBJETIVOS - Determinar el punto de ebullición y el punto de fusión con la finalidad de identificar a un compuesto orgánico. II. MARCO TEORICO: CONSTANTES FISICAS:

Más detalles

S & C Instrumentación de proceso y analítica. Capitulo II

S & C Instrumentación de proceso y analítica. Capitulo II S & C Instrumentación de proceso y analítica Capitulo II Gabriel Asaa Siemens Austral-Andina / Argentina / Sector Industria Cómo Viaja el Calor? 1-Conducción (en sólidos) 2-Convección:(En líquidos y gases)

Más detalles

Instalaciones de ACS de mediano y gran porte

Instalaciones de ACS de mediano y gran porte Instalaciones de ACS de mediano y gran porte Cuidados de proyecto Arreglo de Tanques acumuladores 3 Cuidados del proyecto Interconexión entre tanques acumuladores y el sistema auxiliar 4 Cuidados del

Más detalles

Determinación del calor latente de fusión del hielo

Determinación del calor latente de fusión del hielo Determinación del calor latente de usión del hielo Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad Politécnica

Más detalles

ESTADO LÍQUIDO 26/05/2011. Características. Dependen de la naturaleza y fuerza de las partículas que los constituyen

ESTADO LÍQUIDO 26/05/2011. Características. Dependen de la naturaleza y fuerza de las partículas que los constituyen ESTADO LÍQUIDO Dependen de la naturaleza y fuerza de las partículas que los constituyen Características Tienen densidades mayores que los gases Volumen definido sin forma propia Son poco compresibles Fluyen

Más detalles