TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores"

Transcripción

1 TRANSFORMADORES (parte ) Mg. Amancio R. Rojas Flores

2 CRCUTO EQUALENTE DE UN TRANSFORMADOR

3 La ventaja de desarrollar circuitos equivalentes de máquinas eléctricas es poder aplicar todo el potencial de la teoría de redes eléctricas para conocer con antelación la respuesta de una máquina en unas determinadas condiciones de funcionamiento. En el caso del transformador el desarrollo de un circuito equivalente se inicia reduciendo ambos devanados al mismo número de espiras. Generalmente se reduce el secundario al primario, lo que quiere decir que se sustituye el transformador original por otro que tiene el mismo primario con N espiras y un nuevo secundario con un número de espiras N igual an. Para que este nuevo transformador sea equivalente al original, deben conservarse las condiciones energéticas de la máquina, es decir, las potencias activa y reactiva y su distribución entre los diversos elementos del circuito secundario. Todas las magnitudes relativas a este nuevo devanado se indican con los mismos símbolos del transformador real pero afectados con una tilde, como indica la Figura, donde los valores de tensiones y corrientes se expresan en forma compleja.

4 Figura 3.4. Circuito equivalente de un transformador real

5 De acuerdo con el principio de igualdad de potencias, pérdidas, etc., se obtienen las siguientes relaciones entre las magnitudes secundarias de los transformadores real y equivalente: a) F.e.m.s. Y tensiones N m E E N E y en el transformador equivalente, al ser N = N, se tiene: E m E N E E me E N de forma análoga se tendrá para la tensión : m Tensión secundaria reducida al primario b) Corrientes La conservación de la potencia aparente de ambos secundarios indica que; S y teniendo en cuenta m m Corriente secundaria reducida al primario

6 c) mpedancias Al igualar las potencias activas que se disipan en las resistencias, se obtiene: R R se deduce, teniendo en cuenta m R m R De forma similar, planteando la conservación de la potencia reactiva en las reactancias, resulta: X X y por consiguiente: X m X Eu general, cualquier impedancia conectada en el secundario del transformador real Z m L Z L

7 La importancia fundamental de la reduión de los devanados al haber elegido la igualdad especial N = N restriba en que se puede llegar a obtener una representación del transformador en la que no exista la función transformación, o dicho en otros términos, se va a sustituir el transformador real, cuyos devanados están acoplados magnéticamente, por un circuito cuyos elementos están acoplados sólo eléctricamente. Existe una identidad entre las f.e.m.s. primaria y secundaria, lo cual permite reunir los extremos de igual polaridad instantánea, sustituyendo ambos devanados por uno solo como muestra la Figura. Figura. Circuito equivalente de un transformador real reducido al primario.

8 Por este arrollamiento único circulará una corriente diferencia: que teniendo en cuenta las identidades es igual a la corriente de vacío 0. Ésta a Su ez, tiene dos componentes, una activa Fe y otra reactiva y como se demostró anteriormente representan un circuito paralelo formado por una resistencia R fe, cuyas pérdidas por efecto Joule indican las pérdidas en el hierro del transformador y por una reactancia X por la que se deriva la corriente de magnetización de la máquina De acuerdo con estos razonamientos, el circuito de la Figura anterior se transforma en el de la figura lo que representa el denominado circuito equivalente exacto del transformador reducido al primario.

9 figura. Circuito equivalente exacto de un transformador real reducido al primario

10 El mismo proceso seguido hasta aquí para obtener el circuito equivalente del transformador reducido al primario se puede emplear en sentido inverso, es decir, tomando un primario con un número de espiras N = N y dejando inalterado el secundario; se obtiene así el llamado circuito equivalente reducido al secundario cuyo esquema se indica en la Figura, Figura. Circuito equivalente exacto de un transformador real reducido al secundario.

11 En la práctica, y debido al reducido valor de 0, frente a las corrientes y, se suele trabajar con un circuito equivalente aproximado que se obtiene trasladando la rama en paralelo por la que se deriva la corriente de vacío a los bornes de entrada del primario, resultando el esquema de la Figura

12 Con este circuito no se introducen errores apreciables en el cálculo y sin embargo se simplifica enormemente el estudio de la máquina. El esquema puede simplificarse aún más observando la conexión en serie constituida por las ramas primaria y secundaria (reducida). Si se denomina: R R R : Re sistencia de cortocircuito El circuito anterior se convierte en X X X : Re ac tan cia de cortocircuito

13 Con ayuda de este último circuito equivalente simplificado pueden resolverse una serie de problemas prácticos que afectan a la utilización del transformador; en particular para el cálculo de la caída de tensión y el rendimiento. nclusive, si en un problema real se requiere únicamente la determinación de la caída de tensión del transformador, se puede prescindir de la rama paralelo, ya que no afecta esencialmente al cálculo de aquélla; de este modo el circuito resultante será la impedancia serie: R + j X. Como quiera, además, que en los grandes transformadores se cumple que X, es varias veces R, se puede utilizar solamente la reactancia serie X para representar el circuito equivalente del transformador. Este esquema final es el que se utiliza cuando se realizan estudios de grandes redes en sistemas eléctricos de potencia: análisis de estabilidad, cortocircuitos, etc.

14 Ejemplo. A partir de las ecuaciones que definen el comportamiento de un transformador real, deducir de un modo analítico el circuito equivalente exacto de la Figura

15 Solución ; jx R E jx R E Las ecuaciones de partida son m N N E E m 0 Si la segunda ecuación se multiplica por la relación de transformación m resulta: jmx mr me m En forma equivalen te )...( m X jm m R m me m denominando ; ; ; ; X m X R m R m m me E La ecuación se convierte en jx R E

16 lo que da lugar a las ecuaciones transformadas siguientes: 0 ) ) ) ) d E E c jx R E b jx R E a son las ecuaciones que rigen el comportamiento eléctrico del circuito de la Figura

17 Ejemplo: Un transformador de distribución de 50kA, 400:40, tiene una impedancia de dispersión de 0.7+j0.9 en el devanado de alto voltaje y j en el lado de bajo voltaje. A voltaje y frecuencia nominales, la impedancia Z de la rama en paralelo equivalente para la corriente de excitación es (6.3+j43.7) cuando se mira desde el lado de alto voltaje. Trace el circuito equivalente referido a: a) El lado de alto voltaje b) El lado de bajo voltaje c) dentifique numéricamente las impedancias Solución Como este es un transformador de 0 a, las impedancias se referencian multiplicando o dividiendo por 00 El valor de una impedancia referida al lado de alto voltaje es mayor que el que se refiere al lado de bajo voltaje El valor de una admitancia referida al lado de alto voltaje es menor que el que se refiere al lado de bajo voltaje

18 a) El lado de alto voltaje b) El lado de bajo voltaje

19

20 Se tiene una mayor simplificación si se desprecia enteramente a la corriente de excitación, como se indica en la figura c, en la cual se representa al transformador como una impedancia equivalente en serie Si el transformador es grande ( de algunos cientos de kilovoltamperes o mas ) la resistencia equivalente R eq es pequeña en comparación con la reactancia equivalente X eq y frecuentemente se puede despreciar con lo que se llega a la figura d

21 Ejemplo: Considere el circuito de equivalente-t de un transformador de distribución de 50kA 400:40 cuyas constantes se dieron en el ejemplo () en el cual las impedancias son referidas al lado de alto voltaje. (a) Dibuje el circuito equivalente con la rama paralelo en la terminal de alto voltaje. Haga cálculos y encuentre R eq y X eq. (b) Con el circuito abierto en el terminal de bajo voltaje y 400 aplicado para el terminal de alto voltaje, calcule el voltaje en la terminal de bajo voltaje previsto por cada circuito equivalente.

22 Solución La cantidad equivalente es mostrada en la figura b) Para el circuito equivalente T, el voltaje en el terminal c d estará dado por

23 ENSAYOS DEL TRANSFORMADOR

24 ENSAYOS DEL TRANSFORMADOR Los ensayos de un transformador representan las diversas pruebas que deben prepararse para verificar el comportamiento de la maquina Los dos ensayos fundamentales que se utilizan en la practica para la determinación de los parámetros del circuito equivalente de un transformador son: a) Ensayo en vacio b) Ensayo en cortocircuito

25 ENSAYO DE ACO Esta prueba consiste en aplicar al primario del transformador la tensión asignada, estando el secundario en circuito abierto. Al mismo tiempo debe medirse la potencia absorbida P 0, la corriente de vacio 0 y la tensión secundaria, de acuerdo con el esquema de conexiones de la figura. Fig. esquema eléctrico del ensayo en vacio * El ensayo de vacío se indica por «didáctica>> que se realiza alimentando el devanado primario, ya que se pretende obtener el circuito equivalente reducido al primario. En la práctica real este ensayo se realiza alimentando el devanado de B.T porque normalmente su tensión de régimen está comprendida en las escalas de los aparatos de medida empleados. Además existe menos peligro para el operador al trabajar con B.T.

26 Como quiera que las perdidas R 0 en vacio son despreciables ( debido al pequeño valor de 0 ) la potencia absorbida en vacio coincide prácticamente con las perdidas en el hierro Del circuito equivalente aproximado de un transformador reducido al primario. Si: = 0

27 De las medidas efectuadas puede obtenerse el factor de potencia en vacio, de acuerdo con la ecuación P0 cos n0 0 P Fe Por otra parte, debido al pequeño valor de la caída de tensión primaria, se puede considerar que la magnitud coincide prácticamente con E, resultando el diagrama vectorial de vacio de la figura b en el que se ha tomado la tensión primaria como referencia de fases. En este esquema las dos componentes de 0 valen: Fe 0 cos0 sen 0 0 Potencia en vacío medida en el primario De donde pueden obtenerse ya los valores de los parámetros R Fe, y X : R Fe ; X Fe

28 Es decir, el ensayo de vacio permite determinar las perdidas del hierro del transformador y también los parámetros de la rama paralelo del circuito equivalente del mismo. Del ensayo de vacío puede obtenerse también la relación de transformación, merced a que la tensión aplicada coincide prácticamente con E, además la f.e.m E es igual a la tensión medida en el secundario en vacío y se denomina 0. En consecuencia, se cumplirá de acuerdo con: N N E E 0

29 ENSAYO DE CORTOCRCUTO En este ensayo se cortocircuita el devanado secundario y se aplica al primario una tensión que se va elevando gradualmente desde cero hasta que circula la corriente asignada de plena carga para los devanados. El esquema y tipos de aparatos necesario para la realización de este ensayo se indican en la figura Figura. Circuito eléctrico del ensayo de cortocircuito. * Este ensayo se realiza en la práctica alimentando el transformador por el lado de A.T., de esta forma la corriente a medir en el primario será de un valor razonable. Al mismo tiempo, la tensión de alimentación sólo será una pequeña parte de la nominal, estando comprendida dentro de las escalas de los instrumentos de medida usuales.

30 La tensión aplicada necesaria en esta prueba representa un pequeño porcentaje respecto a la asignada (3-0)% de por lo que el flujo en el núcleo es pequeño. Siendo en consecuencia despreciables las perdidas en el hierro. La potencia absorbida en cortocircuito coincide con las perdidas en el cobre. Lo que esta de acuerdo con el circuito equivalente aproximado de la figura, al despreciar la rama en paralelo, como consecuencia del pequeño valor de la corriente 0 frente a n Del circuito equivalente aproximado de un transformador reducido al primario. Si despreciamos la rama en paralelo

31 De las medidas efectuadas se puede obtener el f.d.p de cortocircuito de acuerdo con la ecuación. P cos Si en el circuito de la figura a se toma la corriente como referencia, se obtiene el diagrama fasorial de la figura. R X Del cual se deduce R X cos y en consecuencia: sen R cos ; X sen

32 Es decir, el ensayo de cortocircuito permite determinar los parámetros de la rama serie del circuito equivalente del transformador, y de ahí que se designen con los símbolos R y X. Debe destacarse que el ensayo de cortocircuito determina la impedancia total del transformador pero no da información de cómo están distribuidos estos valores totales entre el primario y el secundario.es decir se obtiene según: R X R X R X : : Re sistencia Re ac tan cia cortocircuito Para poder determinar los valores individuales de las resistencias R y R es preciso aplicar c.c a cada un o de los devanados y obtener las resistencias R y R (no R ) aplicando la ley de ohm y aplicando un factor de correión para tener en cuenta el efecto pelicular que se produce con c.a. de de cortocircuito No existen procedimientos para separar en la da ecuación X y X. En la practica de la ingeniería eléctrica. Cuando se desea conocer la distribución de R y X entre ambos devanados es frecuente recurrir a la solución aproximada siguiente:. R R R ; X X X

33 Otro aspecto a tener en cuenta en el ensayo en cortocircuito es que la potencia absorbida coincide con la pérdida en el cobre de los devanados correspondiente a la corriente que fluye en esa situación. Si como exigen las Normas de Ensayos (CE, LiNE, DE, etc.) esta corriente es la asignada, las pérdidas correspondientes representarán las pérdidas en el cobre a plena carga. Pero qué sucede si el ensayo de cortocircuito no esta hecho con corriente asignada? El conflicto está en la interpretación de ) las pérdidas en cortocircuito, que ya no serán las pérdidas en el cobre asignadas nominales o de plena carga sino las pérdidas en el cobre al régimen de carga impuesto por la corriente de cortocircuito a la que se haya realizado el ensayo, ) la tensión de cortocircuito, que será proporcional a la corriente a la que se haya efectuado el ensayo. Estimamos que la confusión procede de una indefinición de las magnitudes que entran en juego.

34 Para aclarar este problema denominaremos: ; ; n P A la tensión de cortocircuito con corriente asignada, corriente de cortocircuito igual a la asignada, y potencia de cortocircuito con corriente asignada, respectivamente Si el ensayo no esta hecho con la corriente asignada (nominal), las magnitudes correspondientes se designan así:, corto, corto corto Como ambos juegos de valores se obtendrán las mismas soluciones(si el sistema es lineal). P Definidas las corrientes n ; e corto

35 Las relaciones entre las otras magnitudes, teniendo en cuenta el circuito de la figura Serán Z P P corto R R corto corto corto de donde se deduce: corto ; corto P P corto corto Las igualdades representan de este modo las relaciones de cambio para transformar las magnitudes de ambos ensayos.

36 Normalmente las caídas de tensión indicadas suelen expresarse en tanto por ciento respecto a la tensión asignada resultando.00 ; R El ensayo de cortocircuito debe distinguirse de la falta o fallo de cortocircuito que puede suceder en un transformador alimentado por su tensión asignada primaria cuando por aidente se unen entre si los bornes del devanado secundario El circuito equivalente en esta situación es también el indicado en la Figura (ensayo de cortocircuito); sin embargo, ahora el transformador está alimentado por una tensión (en vez de ), apareciendo una fuerte corriente de circulación fallo (o fallo en el secundario), muy peligrosa para la vida de la máquina debido a los fuertes efectos térmicos y electrodinámicos que produce. R ; X X

37 Desde el punto de vista de circuito equivalente, el valor de falla vendrá expresado por: Y teniendo en cuenta el diagrama vectorial se deduce: Z n Z fallo Se podrá poner: fallo n O también 00 fallo n

38 Ejemplo de aplicación Un transformador monofásico de 50 ka, 5000/50, ha dado los siguientes resultados en unos ensayos: acío: 50, 80 A, 4000 W (datos medidos en el lado de B.T.). Cortocircuito: 600, corriente asignada, W (datos medidos en el lado de A.T.) Calcular: a) Parámetros del circuito equivalente del transformador reducido al primario. b) Corriente de cortocircuito de fallo. Solución se observa que los ensayos no han sido determinados en el primario ( la prueba de vacío se ha realizado en el lado de B.T., que en este caso es el lado de 50, es decir, el secundario). Es preciso reducir todas tas medidas al lado donde se desea obtener el circuito equivalente (primario) m el ensayo de vacío reducido al primario corresponderá a los valores: ; 0,33A ; 4000W 60

39 El fp. en vacío será entonces: R Fe ; X Fe 4000 cos 0, sen ,33 0 0, R Fe 56,4 ; X, 5k,33.0,,33.0,98 la corriente asignada del primario vale: Sn n 6, 67A 5000 la corriente de vacío o=,33 A representa un valor relativo:,33 6,67 0 8% del ensayo se deduce también que las pérdidas en el hierro son de 4000 W.

40 Para calcular la rama serie del circuito equivalente se ha de emplear el ensayo de cortocircuito, cuyos datos están ya medidos en el lado primario (A.T.); por tanto, estas medidas son de utilización directa. El fp. de cortocircuito vale: cos P ,67 0,5 sen 0, R.0,5 8 ; X.0,88 3, 7 6,67 6,67 El valor relativo de la tensión de cortocircuito %

41 b) Al ocurrir un fallo de cortocircuito en el transformador, la corriente correspondiente, que aparece en el primario, será: 00 fallo.6,67 46, 75A 4 que corresponde en el secundario a una intensidad: y como quiera que l n es igual a: se tendrá: Sn n 00A 50 n 00 fallo.000 5kA 4 00 fallo n 00 fallo n

42 CADA DE TENSON O REGULACON EN UN TRANSFORMADOR

43 CADA DE TENSON O REGULACON EN UN TRANSFORMADOR La regulación de voltaje de un transformador es el cambio en el voltaje de las terminales del secundario desde el vacio hasta plena carga, y en general se expresa como porcentaje del valor a plena carga. Considérese un transformador alimentado por su tensión asignada primaria. En vacio el secundario proporciona una tensión 0 ; cuando se conecta una carga a la maquina, debido a la impedancia interna del transformador la tensión medida en el secundario ya no será la anterior sino otro valor que denominaremos. La diferencia aritmética o escalar entre ambas tensiones: 0 Se denomina caída de tensión relativa o simplemente regulación de tensión interna, respecto a la tensión secundaria en vacio (asignada), expresada en tanto por ciento, que se asigna por el símbolo c c %

44 Al trabajar con el circuito equivalente reducido al primario es mas conveniente expresar el cociente anterior en función de magnitudes primarias; si se multiplica por la relación de transformación m cada termino de la ecuación resulta c n.00% Para calcular esta relación se va ha considerar un transformador que lleva una corriente secundaria con un fp. inductivo (o en retraso) como indica la figura. Al aplicar la dª ley de kirhoff al circuito equivalente aproximado del transformador reducido al primario se obtiene: n R jx ) ( Fig. circuito eléctrico equivalente para determinar la caída de tensión de un transformador Que permite calcular la tensión secundaria reducida en función de la tensión aplicada al transformador y de la corriente secundaria reducida al primario. Obteniendo en la ecuación anterior la magnitud

45 En la practica, debido a que la caída de tensión del transformador representa un valor reducido (<0%) respecto a las tensiones puestas en juego, se recurre aun método aproximado propuesto por el profesor Kapp. En la figura se muestra el diagrama fasorial correspondiente. Fig. diagrama fasorial de un transformador en carga Se observa en este grafico. n OS OP PS

46 Como quiera que en los transformadores industriales las caídas de tensión son pequeñas frente a las magnitudes de y se puede admitir que: n PS PR siendo R la proyeión del afijo del vector, sobre la recta OS. El triangulo de caída de tensión PTM se denomina triangulo Kapp y sus dimensiones son mucho menores que y Teniendo en cuenta que se cumple PR PQ QR PQ MN resulta PR R cos X sen Por lo que la caída absoluta de tensión tendrá un valor R cos X sen

47 Si se denomina índice de carga C al cociente entre la corriente secundaria del transformador y la asignada correspondiente, es decir La expresión de la caída absoluta de tensión se puede escribir O en valores relativos C n n C R n cos CX nsen c n. 00% C R cos C sen X Donde se ha tenido en cuenta que Z.00 R R.00 R n.00 ; X X.00 X n.00

48 Ejemplo de aplicación Se dispone de un transformador monofásico de 50 ka, 5.000/50, que tiene los parámetros R = 8 ; X = 3,7 (véase ejemplo anterior) Calcular: a) Caídas de tensión relativas b) Regulación a plena carga con f.p=0, 8 inductivo. c) Tensión secundaria en el caso anterior. d) Regulación, a media carga y tensión secundaria correspondiente con fp= 0,6 cap. e) Regulación a 3/4 de la plena carga con fp= y tensión secundaria correspondiente. NOTA: La tensión primaria se mantiene constante en todos los casos en Solución a) La corriente asignada primaria del transformador vale: Sn n 6, 67A 5000 y en consecuencia, teniendo en cuenta R R.00 R n.00 ; X X.00 X n.00

49 8.6,67 R.00 % ; 5000 X 3,7.6, ,46% % C cos C sen n b) A plena carga C =, y la regulación de acuerdo con R X c.. 0,8. 3,46. 0,6 3,68% c) Teniendo en cuenta que: n.00% ,8.00 3,68% d) A media carga (C = /) y para fp= 0,6 capacitivo se cumplirá: c.. 0,6. 3,46. 0,8 0,784% que corresponde a = 5,96, que es superior incluso a la de vacío (efecto Ferranti). e) Para C = 3/4 y fp. unidad resulta: 3 3 c... 3,46. 0,5% ; 46, 5 4 4

50 PÉRDDAS Y RENDMENTO DE UN TRANSFORMADOR

51 RENDMENTO El rendimiento de un transformador es la razón de la potencia de salida a la de entrada expresada en tanto por ciento: Potencia de salida potencia de entrada x00% Potencia de salida ( potencia de salida pérdidas ) x00% ( Potencia de entrada pérdidas ) potencia de entrada x00% Pérdidas: Pérdidas por histéresis en el núcleo Pérdidas por corrientes parásitas en el núcleo Pérdidas en el cobre de los devanados ( pérdidas a 75 C) Correión de la Resistencia por Rt t 34.5 efecto de la temperatura R t t

52 Podemos decir entonces que, una máquina eléctrica presenta unas pérdidas fijas y unas pérdidas variables. Las pérdidas fijas se componen de las pérdidas mecánicas, que no existen en el transformador y las pérdidas en el hierro. Las pérdidas variables, que cambian según sea el régimen de carga, son debidas a las pérdidas en el cobre. De acuerdo con lo expresado anteriormente, ambas pérdidas pueden obtenerse de los ensayos del transformador. Se debe recordar que se cumplía: P Fe P 0 Perdida en vacío P P R cu n n Perdida en cortocircuito con corriente nominal La segunda identidad representa las pérdidas en el cobre a plena carga, puesto que el ensayo de cortocircuito se realiza con corriente asignada. En general, para una corriente secundaria, (o reducida ) se cumplirá: P R Teniendo en cuenta la definición de índice de carga y la expresión

53 la potencia perdida en el cobre en cualquier régimen de carga se podrá expresar como: P cu R C P Perdida en el cobre para un índice de carga C en función de las perdidas en cortocircuito Como en cualquier máquina eléctrica, el rendimiento es el cociente entre la potencia útil o potencia secundaria y la potencia total o de entrada en el primario, es decir: P P Si el secundario suministra una corriente, a la tensión, con fp = cos, se tendrá: P cos C n cos P p P Fe P cu P 0 P C P P p por consiguiente, el rendimiento del transformador resulta ser: C n P C n cos cos P C 0 P n : Representa la potencia asignada del transformador en ka.

54 El rendimiento es máximo, para una determinada carga para la cual coinciden las pérdidas fijas y variables, es decir, cuando se cumple: P C P 0 opt CC Resultando un índice de carga óptimo al cual se obtiene el rendimiento máximo dado por P P 0 Copt Si el transformador trabajara siempre a plena carga convendría que el índice anterior fuera igual a la unidad, de este modo la máquina trabajaría con máximo rendimiento; sin embargo, lo normal es que un transformador trabaje con cargas variables, y esto hace que en la práctica se diseñen estas máquinas con un índice de carga comprendido entre 0,5 y 0,7 para los grandes transformadores de las centrales eléctricas y entre 0,3 y 0,5 para los transformadores de distribución de pequeña potencia.

55 Ejemplo. Se dispone de un transformador monofásico de 50 ka, 5000/50, que tiene unas pérdidas en el hierro de W y unas pérdidas en el cobre a plena carga de 5000 W. Calcular: a) Rendimiento a plena carga con fp = 0,8 b) Rendimiento a media carga con fp= mitad c) Potencia de máximo rendimiento. d) Rendimiento máximo para fp= 0,9. Solución a) De los datos anteriores se deduce: P P 4kW ; P P kw 0 Fe cu n 5 A plena carga, el índice C es igual a, y el rendimiento del transformador, teniendo en cuenta C n cos C cos P C P n ,8 95,7%. 50.0,8 4 5 b) A media carga (C= /) se tendrá: (/ ). 50. (/ ) (/ ).5 96%

56 c) El índice de carga para el que se obtiene máximo rendimiento es de acuerdo con P P 0 Copt 4 Copt 0,894 S máx 0, , 6kA 5 d) El rendimiento máximo será entonces igual a: S max 0, ,9 0, ,9 4 0, ,%

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO UNIVERIDD DE CNTRI TRNFORMDORE EN PRLELO Miguel ngel Rodríguez Pozueta Condiciones para que varios transformadores se puedan conectar en paralelo Fig. 0: Dos transformadores monofásicos ( y ) conectados

Más detalles

Principio del Transformador

Principio del Transformador Transformadores Oil tank High voltage bushing Low voltage bushing Profesor: Ing. César Chilet Cooling radiators Principio del Transformador La bobina primaria crea un flujo magnético variable, que circula

Más detalles

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS.

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. 9.. Potencias en sistemas equilibrados y simétricos en tensiones Un sistema trifásico puede considerarse como circuitos monofásicos, por lo que la potencia total

Más detalles

DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN DE UN TRANSFORMADOR DE POTENCIA

DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN DE UN TRANSFORMADOR DE POTENCIA PRÁCTICA Nº 8 DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN DE UN TRANSFORMADOR DE POTENCIA Departamento de Ingeniería Eléctrica E.T.S.I.I. Página 1 de 14 PRÁCTICA Nº 8 DETERMINACIÓN DE LAS CAÍDAS DE TENSIÓN

Más detalles

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser:

3. 1 Generalidades y clasificación de los generadores. Según sea la energía absorbida, los generadores pueden ser: CAPITULO 3 GNRADORS LÉCTRICOS 3. 1 Generalidades y clasificación de los generadores. Se llama generador eléctrico todo aparato o máquina capaz de producir o generar energía eléctrica a expensas de otra

Más detalles

TRANSFORMADOR NÚCLEOS

TRANSFORMADOR NÚCLEOS TRANSFORMADOR El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Unidad Didáctica. Transformadores Trifásicos

Unidad Didáctica. Transformadores Trifásicos Unidad Didáctica Transformadores Trifásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

Los transformadores. Inducción en una bobina

Los transformadores. Inducción en una bobina Los transformadores Los transformadores eléctricos han sido uno de los inventos más relevantes de la tecnología eléctrica. Sin la existencia de los transformadores, sería imposible la distribución de la

Más detalles

UNIDAD. Transformadores

UNIDAD. Transformadores NIDAD 8 Transformadores Transformador de una subestación. (A.L.B.) E l transformador nos resulta muy familiar en el ámbito doméstico. Su uso más común y conocido es para adaptar la tensión de la red a

Más detalles

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente.

PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. 2.1 Inductancia Mutua. Inductancia mutua. Sabemos que siempre que fluye una corriente por un conductor, se genera un campo magnético a través

Más detalles

PARALELO DE TRANSFORMADORES

PARALELO DE TRANSFORMADORES GUIA DE TRABAJOS PRACTICOS DE LABORATORIO TPN 2 PARALELO DE TRANSFORMADORES 1. Objetivos Estudio teórico y práctico de las condiciones que se deben cumplir para realizar el conexionado en paralelo de dos

Más detalles

TRANSFORMADOR REAL. Norberto A. Lemozy

TRANSFORMADOR REAL. Norberto A. Lemozy NTRODCCÓN TRANSFORMADOR RAL Norberto A. Lemozy n los transformadores reales no se cumplen las premisas que definían a los ideales, pero se les aproximan mucho, especialmente en las unidades de gran potencia,

Más detalles

En un transformador, el núcleo tiene dos misiones fundamentales:

En un transformador, el núcleo tiene dos misiones fundamentales: Transformador El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA TEMA 6 CORRIENTE ALTERNA TRIÁSICA VI.1 Generación de la CA trifásica VI. Configuración Y-D VI.3 Cargas equilibradas VI.4 Cargas desequilibradas VI.5 Potencias VI.6 actor de potencia Cuestiones 1 VI.1 GENERACIÓN

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: TRANSFORMADORES 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: TRANSFORMADORES 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica Dpto. de ngeniería léctrica.t.s. de ngenieros ndustriales Universidad de Valladolid 003/004 MÁQUNAS LÉCTRCAS: TRANSFORMADORS 3º D NGNROS NDUSTRALS Boletín de Problemas TRANSFORMADORS Problemas propuestos

Más detalles

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo 2 PUNTOS OBJETO DE ESTUDIO Introducción Transformador ideal Transformador real Ensayos de

Más detalles

4.2 Transformadores de potencia

4.2 Transformadores de potencia 4. Transformadores de potencia 4.. Generalidades Descripción Circuito magnético Circuito eléctrico Refrigeración Aspectos constructivos 4.. Principio de funcionamiento El transformador ideal Funcionamiento

Más detalles

GUIA DE EJERCICIOS SOBRE TRANSFORMADORES MONOFÁSICOS Y AUTOTRANSFORMADORES

GUIA DE EJERCICIOS SOBRE TRANSFORMADORES MONOFÁSICOS Y AUTOTRANSFORMADORES GUIA DE EJERCICIOS SOBRE TRANSFORMADORES MONOFÁSICOS Y AUTOTRANSFORMADORES N0VIEMBRE_2003 1.- El primario de un transformador, con fuerte acoplamiento, tiene una inductancia de 20 H, un coeficiente de

Más detalles

UNIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos. TEMA 6: Análisis de circuitos acoplados magnéticamente

UNIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos. TEMA 6: Análisis de circuitos acoplados magnéticamente UIDAD DIDÁCTICA 3: Acoplamiento magnético en circuitos electrónicos TEMA 6: Análisis de circuitos acoplados magnéticamente TEMA 6 6. Inductancia mutua. Criterio del punto. Autoinducción Hasta ahora hemos

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA

MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA ELT 8.MEDICION DE ENERGIA ELECTRICA ACTIVA.- INTRODUCIÓN MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA La medición de energía eléctrica activa se realiza con el medidor de KWH de tipo inducción y con el medidor

Más detalles

Resolución paso a paso de problemas de máquinas eléctricas

Resolución paso a paso de problemas de máquinas eléctricas Resolución paso a paso de problemas de máquinas eléctricas Mario Ortiz García Sergio Valero Verdú Carolina Senabre Blanes Título: Autor: Resolución paso a paso de problemas de máquinas eléctricas 2ed Mario

Más detalles

CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR

CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR CURSO TALLER ACTIVIDAD 15 TRANSFORMADOR Un transformador es un elemento que transfiere energía de un circuito a otro mediante inducción electromagnética. Es un dispositivo eléctrico que sirve para bajar

Más detalles

1.1 Qué es y para qué sirve un transformador?

1.1 Qué es y para qué sirve un transformador? TRANSFORMADORES_01_CORR:Maquetación 1 16/01/2009 10:39 Página 1 Capítulo 1 1.1 Qué es y para qué sirve un transformador? Un transformador es una máquina eléctrica estática que transforma la energía eléctrica

Más detalles

MÁQUINAS ELÉCTRICAS: MOTORES

MÁQUINAS ELÉCTRICAS: MOTORES MÁQNAS ELÉCTRCAS: MOTORES Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía eléctrica. Según esto podemos clasificar las máquinas eléctricas en tres

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

Introducción ELECTROTECNIA

Introducción ELECTROTECNIA Introducción Podríamos definir la Electrotecnia como la técnica de la electricidad ; desde esta perspectiva la Electrotecnia abarca un extenso campo que puede comprender desde la producción, transporte,

Más detalles

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico TRASFORMADORES 7. ntroducción El transformador es un dispositivo que permite modificar potencia eléctrica de corriente alterna con un determinado valor de tensión y corriente en otra potencia de casi el

Más detalles

Modelos de líneas de transmisión en estado estacionario... 2

Modelos de líneas de transmisión en estado estacionario... 2 Modelos de líneas de transmisión en estado estacionario Prof Ing Raúl ianchi Lastra Cátedra: CONTENIDO Modelos de líneas de transmisión en estado estacionario Introducción Constantes del cuadripolo Modelos

Más detalles

MEDICIONES ELECTRICAS II

MEDICIONES ELECTRICAS II Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS II Trabajo Práctico N 3 Tema: MEDICION DE FASE CONTRASTE DE COFIMETRO. Conceptos Fundamentales El período de una señal senoidal se corresponde con

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica La función amplificadora consiste en elevar el nivel de una señal eléctrica que contiene una determinada información. Esta señal en forma de una tensión y una corriente es aplicada

Más detalles

La medida de la energía reactiva, un método imperfecto de evaluación de las pérdidas en el sistema eléctrico

La medida de la energía reactiva, un método imperfecto de evaluación de las pérdidas en el sistema eléctrico La medida de la energía reactiva, un método imperfecto de evaluación de las pérdidas en el sistema eléctrico F. R. Quintela, R. C. Redondo, J. M. G. Arévalo, N. R. Melchor y M. M. Redondo Resumen La medida

Más detalles

UTN- FRM Medidas Electrónicas I Página 1 de 6

UTN- FRM Medidas Electrónicas I Página 1 de 6 UTN- FRM Medidas Electrónicas I Página 1 de 6 Trabajo Practico Nº 8 MEDID DE POTENCI EN C Objeto: Medir potencia activa, reactiva y otros parámetros en C. Tener en cuenta los efectos de los elementos alinéales

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS TRANSFORMADOR 2009/2010

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS TRANSFORMADOR 2009/2010 DPARTAMNTO D NGNRÍA LÉCTRCA BOLTÍN D PROBLMAS TRANSFORMADOR 009/010 TRANSFORMADORS Problemas propuestos 1. Dibujar un diagrama vectorial para un transformador monofásico cargado y con relación de transformación

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Transformadores de Pulso

Transformadores de Pulso 1/42 Transformadores de Pulso Universidad Nacional de Mar del Plata Facultad de Ingeniería 2/42 Aplicaciones Se usan en transmisión y transformación de pulsos con anchuras desde fracciones de nanosegundos

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna.

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. CONTENIDO: 6.1. El motor asíncrono trifásico, principio de funcionamiento. 6.2. Conjuntos constructivos. 6.3. Potencia, par y rendimiento.

Más detalles

PROBLEMAS DE MAQUINAS ASINCRONICAS

PROBLEMAS DE MAQUINAS ASINCRONICAS PROBLEMAS DE MAQUINAS ASINCRONICAS Problemas de MAQUINAS ASINCRONICAS Problema 1: Un motor de inducción trifásico que tiene las siguientes características de placa: P 1.5 HP; 1400 rpm; U N 220/380 V. Se

Más detalles

Capacitores y corrección del Factor de Potencia

Capacitores y corrección del Factor de Potencia Capacitores y corrección del Factor de Potencia El factor de potencia se define como el cociente de la relación de la potencia activa entre la potencia aparente; esto es: FP = P S Comúnmente, el factor

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

CORRIENTE CONTÍNUA (II) GENERADORES Y MOTORES

CORRIENTE CONTÍNUA (II) GENERADORES Y MOTORES CORRENTE CONTÍNU () GENERORES Y OTORES ES La agdalena. vilés. sturias En un circuito se pueden intercalar, además de resistencias, elementos activos tales como generadores y motores. Los generadores (o

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

Conceptos y determinaciones aplicables a transformadores de intensidad

Conceptos y determinaciones aplicables a transformadores de intensidad Definiciones: Error de Calibración de un instrumento o Error de Clase: es el mayor error absoluto que acusa un instrumento en algún punto de la escala Cuando este error se expresa referido al máximo valor

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

COMPENSACIÓN DE ENERGÍA REACTIVA CAPÍTULO XX

COMPENSACIÓN DE ENERGÍA REACTIVA CAPÍTULO XX COMPENSACIÓN DE ENERGÍA REACTIVA CAPÍTULO XX I N D I C E 1.- Disposiciones Reglamentarias con respecto a la Corrección de Energía Reactiva.Generalidades.... 1 2.- Sobrecompensación de Energía Reactiva....

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

CONEXIÓN DE TRANSFORMADORES TRIFÁSICOS EN PARALELO

CONEXIÓN DE TRANSFORMADORES TRIFÁSICOS EN PARALELO CONEXIÓN DE TRANSFORMADORES TRIFÁSICOS EN PARALELO RESUMEN. Ing. Ramón Rivero de la Torre. Instituto Tecnológico de Ciudad Madero En las industrias, como en las Empresas Eléctricas, con frecuencia es necesario

Más detalles

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts)

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts) Medidas de tensión e intensidad. daptadores de medida: Práctica y Práctica y : Medidas de tensión e intensidad. daptadores de medida. Conceptos generales La corriente eléctrica que circula por un instrumento

Más detalles

Transformadores Trifásicos

Transformadores Trifásicos Transformadores Trifásicos 1. Sistemas trifásicos de potencia con transformadores 1.Bancos trifásicos de transformadores monofásicos 2.Transformadores trifásicos 2. Transformadores Trifásicos - Circuito

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

MOTOR DE INDUCCION MONOFASICO

MOTOR DE INDUCCION MONOFASICO MAQUINAS ELÉCTRICAS ROTATIVAS MOTOR DE INDUCCION MONOFASICO Mg. Amancio R. Rojas Flores 1. Principio de funcionamiento Básicamente, un motor de inducción monofásico está formado por un rotor en jaula de

Más detalles

1.1. Sección del núcleo

1.1. Sección del núcleo 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario

Más detalles

Capitalización y descuento compuesto

Capitalización y descuento compuesto Unidad 4 Capitalización y descuento compuesto 4.1. Capitalización compuesta 4.1.1. Magnitudes derivadas 4.2. Comparación entre la capitalización simple y compuesta 4.3. Equivalencia de tantos en capitalización

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

DEPARTAMENTO DE RENOVABLES DIODOS BYPASS Y DE BLOQUEO EN PANELES FOTOVOLTAICOS

DEPARTAMENTO DE RENOVABLES DIODOS BYPASS Y DE BLOQUEO EN PANELES FOTOVOLTAICOS DIODOS BYPASS Y DE BLOQUEO EN PANELES FOTOVOLTAICOS DIODOS BYPASS Los diodos instalados en las cajas de conexión de los paneles fotovoltaicos sirven para prevenir el consumo de energía cuando las células

Más detalles

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE aboratorio de Electricidad PACTCA - 10 CAACTEÍSTCAS DE NA NDCTANCA EN N CCTO SEE - Finalidades 1.- Estudiar el efecto en un circuito de alterna, de una inductancia y una resistencia conectadas en serie.

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

Artículo Técnico: Análisis de las configuraciones de los sistemas híbridos fotovoltaicos.

Artículo Técnico: Análisis de las configuraciones de los sistemas híbridos fotovoltaicos. GRUPO DE SISTEMAS ELECTRÓNICOS DE POTENCIA (GSEP) LABORATORIO DE SISTEMAS FOTOVOLTAICOS (UC3M PV-Lab) Generaciones Fotovoltaicas de La Mancha División Fotovoltaica Artículo Técnico: Análisis de las configuraciones

Más detalles

CAPITULO 6 POTENCIA COMPLEJA 6.1 INTRODUCCION. Si V VmSen wt v. P Vm Sen wt v Sen wt i. Cos v i Cos wt v i 2 2. P VICos v i.

CAPITULO 6 POTENCIA COMPLEJA 6.1 INTRODUCCION. Si V VmSen wt v. P Vm Sen wt v Sen wt i. Cos v i Cos wt v i 2 2. P VICos v i. CAULO 6 OENCA COMLEJA 6. NRODUCCON La potencia compleja (cuya magnitud se conoce como potencia aparente) de un circuito eléctrico de corriente alterna, es la suma (vectorial) de la potencia que disipa

Más detalles

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO - 1 - UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO Tema 1: Operaciones financieras: elementos Tema 2: Capitalización y descuento simple Tema 3: Capitalización y descuento compuesto Tema

Más detalles

ELEL10. Fuerza contraelectromotriz (fcem)

ELEL10. Fuerza contraelectromotriz (fcem) Los motores de corriente directa transforman la energía eléctrica en energía mecánica. Impulsan dispositivos tales como malacates, ventiladores, bombas, calandrias, prensas, preforadores y carros. Estos

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

F.A. (Rectificación).

F.A. (Rectificación). Ficha Temática F.A. (Rectificación). Circuito rectificador de media onda. Cuando se introduce una tensión de C.A. a la entrada del circuito, mostrado en la Figura 11.3, en la salida aparece una tensión

Más detalles

CAPITULO 4. Inversores para control de velocidad de motores de

CAPITULO 4. Inversores para control de velocidad de motores de CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

UNICA Facultad de Ingeniería Mecánica

UNICA Facultad de Ingeniería Mecánica UNICA Facultad de Ingeniería Mecánica y Eléctrica CURSO Dibujo Electrónico Alumno Porras Dávalos Alexander Darwin Paginas de estudio porrasdavalosa1.wikispaces.com porrasdavalosa.wordpress.com porrasdavalosa.blogger.com

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,

Más detalles

TRANSFORMADORES TRANSFORMADORES

TRANSFORMADORES TRANSFORMADORES Sean dos bobinas N 1 y N 2 acopladas magnéticamente. Si la bobina N 1 se conecta a una tensión alterna sinusoidal v 1 se genera en la bobina N 2 una tensión alterna v 2. Las variaciones de flujo en la

Más detalles

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN V 1.0 SEPTIEMBRE 2005 Corriente máxima en el cable (A) CÁLCULO DE LA SECCIÓN MÍNIMA DEL CABLEADO DE ALIMENTACIÓN Longitud del cable en metros 0 1.2 1.2 2.1 2.1

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

Ejercicios. 4. Para el transformador del problema 2 repetir las partes (a) y (b) del problema 3.

Ejercicios. 4. Para el transformador del problema 2 repetir las partes (a) y (b) del problema 3. Ejercicios 1. Se usa un autotransformador elevador para suministrar 3 kv a partir de una línea de alimentación de 2,4kV. Si la carga del secundario es de 50 A, calcular (despreciando las pérdidas y la

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 1 Tema: INSTRUMENTOS. ERRORES. CONTRASTE DE AMPERÍMETRO Y VOLTÍMETRO. Conceptos Fundamentales: Las indicaciones de los instrumentos

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA Introducción En la gran mayoría de las industrias, hoteles, hospitales, tiendas departamentales, etc. existen gran cantidad de motores; en equipo

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

Factor de Potencia. Julio, 2002

Factor de Potencia. Julio, 2002 Factor de Potencia Julio, 2002 Factor de potencia (1/2) El factor de potencia se define como el cociente de la relación de la potencia activa entre la potencia aparente; esto es: FP = Comúnmente, el factor

Más detalles

APUNTE: ELECTRICIDAD-1 COMPONENTES DE UN CIRCUITO ELÉCTRICO

APUNTE: ELECTRICIDAD-1 COMPONENTES DE UN CIRCUITO ELÉCTRICO APUNTE: ELECTICIDAD-1 COMPONENTES DE UN CICUITO ELÉCTICO Área de EET Página 1 de 9 Confeccionado por: Ximena Nuñez Derechos eservados Titular del Derecho: INACAP N de inscripción en el egistro de Propiedad

Más detalles

ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS

ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS INTRODUCCIÓN Para una mejor comprensión del problema que se plantea, partamos en primer lugar del circuito equivalente por fase del motor asíncrono trifásico.

Más detalles

Figura 1 Fotografía de varios modelos de multímetros

Figura 1 Fotografía de varios modelos de multímetros El Multímetro El multímetro ó polímetro es un instrumento que permite medir diferentes magnitudes eléctricas. Así, en general, todos los modelos permiten medir: - Tensiones alternas y continuas - Corrientes

Más detalles

INFORME. Dirección de Negocio Regulado 1. DESCRIPCIÓN DEL PROBLEMA

INFORME. Dirección de Negocio Regulado 1. DESCRIPCIÓN DEL PROBLEMA INFORME ORGANISMO EMISOR: IBERDROLA DISTRIBUCIÓN, S.A.U. PROTECCIONES Y ASISTENCIA TÉCNICA REFERENCIA: SPFV HOJA 1 de 11 Dirección de Negocio Regulado 1. DESCRIPCIÓN DEL PROBLEMA En pruebas de desconexión

Más detalles

EJERCICIOS DE AUTOEVALUACIÓN "CIRCUITOS ALIMENTADOS EN CORRIENTE ALTERNA"

EJERCICIOS DE AUTOEVALUACIÓN CIRCUITOS ALIMENTADOS EN CORRIENTE ALTERNA EJERCICIOS DE AUTOEVALUACIÓN "CIRCUITOS ALIMENTADOS EN CORRIENTE ALTERNA" EJERCICIO 1 Simular con PSIM el siguiente circuito y obtener: a) Valores eficaces de la tensión en el generador, en la resistencia

Más detalles