Probabilidad, Variables Aleatorias y Distribuciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Probabilidad, Variables Aleatorias y Distribuciones"

Transcripción

1 GRUPO A Prueba de Evaluación Continua 5-XII-.- Tres plantas de una fábrica de automóviles producen diariamente 00, 00 y 000 unidades respectivamente. El porcentaje de unidades del modelo A es 60%, 0% y 40% respectivamente. Calcular la probabilidad de que: a) Un automóvil elegido al azar sea del modelo A. b) Un automóvil de este modelo haya sido fabricado en la primera planta..- Un almacén distribuye un producto en exclusiva en una gran ciudad y lo recibe semanalmente de fábrica. El nº de millares de artículos vendidos cada mes, X, es una variable aleatoria continua cuya función de densidad viene dada por: 0 si x<0 f(x) = k( x) si 0 x <. Se pide: si x x a) k para que f(x) sea efectivamente función de densidad. b) P( X 0.5), P( X ), P( 0 X ), P( < X < ) c) Media. d) Moda..- Se sabe que la probabilidad de que un alumno anote mal un dato en una medición es 0.000, en una lista de 000 datos. Determinar: a) El tipo de distribución. b) La probabilidad de que existan exactamente 4 datos incorrectos. c) El número medio de datos mal anotados. 4.- El tiempo en minutos que tarda un atleta en recorrer 00 metros sigue una distribución Normal, N(0,0.5). En una carrera por relevos de 4x00 metros, se pide: a) Cuál es la duración total media de la carrera? b) Cuál es la probabilidad de batir el record establecido en 7 minutos? c) Determinar con probabilidad del 0.95 el tiempo máximo que puede durar la carrera. Fecha de publicación de calificaciones: miércoles 9 de diciembre Revisión de la prueba: en el horario de tutorías del profesor, despacho 06

2 GRUPO B Prueba de Evaluación Continua 5-XII-.- El despertador de un trabajador no funciona bien, pues el 0% de las veces no suena. Cuando suena, el trabajador llega tarde con probabilidad 0,, pero si no suena, la probabilidad de que llegue tarde es 0,9. a) Calcular la probabilidad de que llegue tarde al trabajo y haya sonado el despertador. b) Calcular la probabilidad de que llegue temprano al trabajo. c) Si el trabajador ha llegado tarde, cuál es la probabilidad de que haya sonado el despertador..- Una prueba del examen de Estadística consiste en un cuestionario de 0 preguntas con tres posibles respuestas, solamente una de ellas correcta. Si contestamos a todas las preguntas de manera aleatoria, calcular: a) La probabilidad de aprobar, es decir, contestar correctamente, al menos 5 de las 0 preguntas. b) La probabilidad de no contestar bien a ninguna de ellas..- El consumo de electricidad en kilovatios por persona y día en una familia se observó que era una variable aleatoria con la siguiente función de densidad: x si 0 x 4 6 f (x) = k si 4 < x < 0 en el resto a) Hallar k para que f(x) sea efectivamente función de densidad. b) Consumo máximo por persona y día. c) Calcular el consumo medio por persona y día. d) Calcular la probabilidad de que el consumo esté entre y 5 kw. 4.- Un proceso de fabricación tiene tres fases consecutivas de tal manera que la duración en minutos de cada una de ellas viene dada, respectivamente, por las siguientes variables aleatorias independientes: N(50,5), N(70,) y N(0, ). a) Cuál es la duración total media del proceso? b) Cuál es la probabilidad de que el proceso tenga una duración total inferior a 5 minutos? c) Determinar con probabilidad del 0.97 el tiempo máximo que puede durar el proceso. Fecha de publicación de calificaciones: miércoles 9 de diciembre Revisión de la prueba: en el horario de tutorías de la profesora, despacho 5

3 .- Tres plantas de una fábrica de automóviles producen diariamente 00, 00 y 000 unidades respectivamente. El porcentaje de unidades del modelo A es 60%, 0% y 40% respectivamente. Calcular la probabilidad de que: a) Un automóvil elegido al azar sea del modelo A. b) Un automóvil de este modelo haya sido fabricado en la primera planta. Consideramos los siguientes sucesos: A = producir un automóvil modelo A B = producir un automóvil en la planta B = producir un automóvil en la planta B = producir un automóvil en la planta Datos: 00 P( B ) = = ; P(A / B ) = 0, P( B ) = = ; P(A / B ) = 0, P( B ) = = ; P(A / B ) = 0, a) Por el Teorema de la probabilidad total (probabilidad a priori) P(A) = P A P(B A A ) P P(B ) P P(B ) 0,6 0, 0,4 B + B + = + + = B 0, 5 0 b) Por el Teorema de Bayes (probabilidad a posteriori) P A P(B ) P( B A) B 0,6 B P 5 A = = = = P(A) P A P(B A A 0, ) P P(B ) P P(B ) B + + B B 0,.- Un almacén distribuye un producto en exclusiva en una gran ciudad y lo recibe semanalmente de fábrica. El nº de millares de artículos vendidos cada mes, X, es una variable aleatoria continua cuya función de densidad viene dada por: 0 si x<0 f(x) = k( x) si 0 x < Se pide: si x x a) k para que f(x) sea efectivamente función de densidad. P X 0.5 P X P 0 X, P( < X < ) b) ( ), ( ), ( ) c) Media. d) Moda.

4 0 k+ k = x 4 0 a) Se cumple que: ( ) 0,5 b) ( ) ( ) P X 0.5 = x dx = ( ) ( ) 0 = f (x)dx = 0dx + k x dx + dx = 0 5 P X = x dx + dx = x P( 0 X ) = ( ) ( ) P( < X < ) = dx = x 7 P X = x dx + dx = x 0 c) Media o Esperanza matemática: µ= E[X] = x f (x)dx = x x dx + x dx = x ( ) 0 d) Moda: es el máximo de la función de densidad 7 0 f()= y f(0)=. Por tanto, la Moda es x=0.- Se sabe que la probabilidad de que un alumno anote mal un dato en una medición es 0.000, en una lista de 000 datos. Determinar: a) El tipo de distribución. b) La probabilidad de que existan exactamente 4 datos incorrectos. c) El número medio de datos mal anotados. a) Puede ser una distribución binomial de parámetros n=000 y p=0,000 o bien una distribución de Poisson de media np=0,4; ya que se trata de una variable aleatoria discreta con dos situaciones éxito o fracaso. Puesto que np es inferior a 5 utilizaremos la distribución de Poisson (Ley de casos raros). k 0, 4 0,4 b) Distribución de Poisson de parámetro λ=0,4, luego P(X = k) = e y exactamente k! 4 0, 4 0,4 cuatro datos incorrectos P(X = 4) = e 0, ! c) Media: λ=np= 0,4 4.- El tiempo en minutos que tarda un atleta en recorrer 00 metros sigue una distribución Normal, N(0,0.5). En una carrera por relevos de 4x00 metros, se pide: a) Cuál es la duración total media de la carrera? b) Cuál es la probabilidad de batir el record establecido en 7 minutos? c) Determinar con probabilidad del 0.95 el tiempo máximo que puede durar la carrera.

5 El tiempo empleado por los 4 corredores será la suma de los tiempos de cada corredor: Y = X+ X + X + X4 N( µσ, ) µ= E X + X + X + X = = 40 a) [ 4] [ ] σ= V X + X + X + X = 0,5 + 0,5 + 0,5 + 0,5 = 4 b) P(Y < 7) = F(7) 0, c) P( Y < t) = F(t) = 0,95 t = 4,65 Y = X+ X + X + X 4 N(40,)

6 .- El despertador de un trabajador no funciona bien, pues el 0% de las veces no suena. Cuando suena, el trabajador llega tarde con probabilidad 0,, pero si no suena, la probabilidad de que llegue tarde es 0,9. a) Calcular la probabilidad de que llegue tarde al trabajo y haya sonado el despertador. b) Calcular la probabilidad de que llegue temprano al trabajo. c) Si el trabajador ha llegado tarde, cuál es la probabilidad de que haya sonado el despertador. Sean los sucesos S = el despertador suena, y S = el despertador no suena T = el trabajador llega tarde, y T = el trabajador no llega tarde Del enunciado obtenemos las siguientes probabilidades P(S) = 0,; P(T/S) = 0,; P(T/S )=0,9. a) P ( T S) = P ( T ) P(S) = 0, 0, = 0,6 S b) La probabilidad de llegar temprano es uno menos la probabilidad de que llegue tarde P(T) = P ( T S) ( T S) = P ( T ) P ( S) + P T ( ) P ( S S ) = 0, 0, + 0,9 0, = S 0,4 Por tanto la probabilidad de que llegue temprano es P( T) = P(T) = 0,66. c) Por la fórmula de Bayes P ( S ) ( ) PS T 0,6 = = = T P(T) 0,4 0, 47.- Una prueba del examen de Estadística consiste en un cuestionario de 0 preguntas con tres posibles respuestas, solamente una de ellas correcta. Si contestamos a todas las preguntas de manera aleatoria, calcular: a) La probabilidad de aprobar, es decir, contestar correctamente, al menos 5 de las 0 preguntas. b) La probabilidad de no contestar bien a ninguna de ellas. Consideramos la variable aleatoria X= número de respuestas correctas Tenemos una distribución B(0,/) k 0 k n k 0 k 0 P(X = k) = p ( p) = k k 4 k 0 k 0 a) P(X 5) = P(X < 5) = k= 0 k 0, b) P(X = 0) = 0 = 0, El consumo de electricidad en kilovatios por persona y día en una familia se observó que era una variable aleatoria con la siguiente función de densidad:

7 x si 0 x 4 6 f (x) = k si 4 < x < 0 en el resto a) Hallar k para que f(x) sea efectivamente función de densidad. b) Consumo máximo por persona y día. c) Calcular el consumo medio por persona y día. d) Calcular la probabilidad de que el consumo esté entre y 5 kw. 4 x a) = f (x)dx = dx + kdx 6 b) 0 4 k = x si 0 x 4 6 f (x) = si 4 < x < 0 en el resto Moda=4 4 x c) µ= f (x)dx = x dx x dx + = 6 d) x P( < X < 5) = f (x)dx = dx dx + = Un proceso de fabricación tiene tres fases consecutivas de tal manera que la duración en minutos de cada una de ellas viene dada, respectivamente, por las siguientes variables aleatorias independientes: N(50,5), N(70,) y N(0, ). a) Cuál es la duración total media del proceso? b) Cuál es la probabilidad de que el proceso tenga una duración total inferior a 5 minutos? c) Determinar con probabilidad del 0.97 el tiempo máximo que puede durar el proceso. X N(50,5) ; X N(70,) ; X N(0, 4), luego Y = X+ X + X N( µσ, ) a) µ= EY= EX + EX + EX = =00 Con [ ] [ ] [ ] [ ]

8 [ ] [ ] [ ] [ ] ( ) σ = VY= VX + VX + VX = 5+ + = 6 b) P Y < 5 = F(5) = ( ) c) P Y < t = F(t) = 0.97 t =.4767 ( )

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Distribuciones (discretas y continuas) EVALUACIÓN CONTINUA (Tipo I) 14-XII-11 1. Una prueba del examen de Estadística consiste en un cuestionario de 10 preguntas con tres posibles respuestas, solamente

Más detalles

Probabilidad, Variables Aleatorias y Distribuciones

Probabilidad, Variables Aleatorias y Distribuciones Prueba de Evaluación Continua Grupo B 8-X-5.- Un ladrón perseguido por la policía llega a un garaje que tiene dos puertas: una conduce al recinto A en la que hay coches de los que sólo tienen gasolina

Más detalles

Probabilidad, Variables Aleatorias y Distribuciones

Probabilidad, Variables Aleatorias y Distribuciones rueba de Evaluación Continua Grupo A -XI-6.- El despertador de un trabajador no funciona bien, pues el % de las veces no suena. Cuando suena, el trabajador llega tarde con probabilidad., pero si no suena,

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

ETSI de Topografía, Geodesia y Cartografía. Probabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA

ETSI de Topografía, Geodesia y Cartografía. Probabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA robabilidad, variables aleatorias y distribuciones EVALUACIÓN CONTINUA -XII- Grupo B.- Tres máquinas de una planta de montaje producen el %, 5% y 5% de productos, respectivamente. Se sabe que el %, %,

Más detalles

CAPÍTULO 5 DISTRIBUCIONES TEÓRICAS

CAPÍTULO 5 DISTRIBUCIONES TEÓRICAS CAPÍTULO 5 DISTRIBUCIONES TEÓRICAS Hugo Grisales Romero Profesor titular CONCEPTOS BÁSICOS Experimento: Variable aleatoria: Clasificación: Proceso por medio del cual una medición se obtiene. Aquella que

Más detalles

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química)

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química) Estadística Aplicada y Cálculo Numérico (Grado en Química) Valeri Makarov 10/02/2015 29/05/2015 F.CC. Matemáticas, Desp. 420 http://www.mat.ucm.es/ vmakarov e-mail: vmakarov@mat.ucm.es Capítulo 4 Variables

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Tema 5 Modelos de distribuciones de Probabilidad

Tema 5 Modelos de distribuciones de Probabilidad Tema 5 Modelos de distribuciones de Probabilidad Variable aleatoria unidimensional Dado un espacio de Probabilidad (E, F, P), una variable aleatoria es una aplicación del espacio muestral E al conjunto

Más detalles

Repaso de Probabilidad y Estadística

Repaso de Probabilidad y Estadística Repaso de Probabilidad y Estadística Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Probabilidad 2 Definición.............................................................

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

Distribuciones discretas y continuas

Distribuciones discretas y continuas 1.- La luz verde de un semáforo está encendida 15 s cada vez, el ámbar 5, y la roja 55 s. Suponiendo que las condiciones de tráfico inducen variaciones aleatorias en los tiempos de llegada de los automóviles,

Más detalles

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema: Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

9 APROXIMACIONES DE LA BINOMIAL

9 APROXIMACIONES DE LA BINOMIAL 9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X

Más detalles

EXAMEN DE ESTADÍSTICA Junio 2011

EXAMEN DE ESTADÍSTICA Junio 2011 EXAMEN DE ESTADÍSTICA Junio 2011 Apellidos: Nombre: DNI: GRUPO: 1. Sea X una variable aleatoria discreta. Determine el valor de k para que la función p(x) { k/x x 1, 2, 3, 4 0 en otro caso sea una función

Más detalles

Estadística LTA - Principios de estadística 2017

Estadística LTA - Principios de estadística 2017 Estadística Probabilidad Experimento: Desde el punto de vista de probabilidades será "cualquier acto que pueda repetirse en igualdad de condiciones". Ej. Arrojar una vez un dado. Espacio Muestral: Es el

Más detalles

PROBABILIDAD Y ESTADÍSTICA PROPUESTAS PARA UNA AUTOEVALUACIÓN DE LOS FUNDAMENTOS TEÓRICOS

PROBABILIDAD Y ESTADÍSTICA PROPUESTAS PARA UNA AUTOEVALUACIÓN DE LOS FUNDAMENTOS TEÓRICOS PROBABILIDAD Y ESTADÍSTICA PROPUESTAS PARA UNA AUTOEVALUACIÓN DE LOS FUNDAMENTOS TEÓRICOS En lo que sigue le presentamos 50 puntos que fueron incluidos en diferentes evaluaciones finales de los fundamentos

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

Tema 12: Distribuciones de probabilidad

Tema 12: Distribuciones de probabilidad Tema 12: Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E, de un experimento aleatorio, un número real: X:

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Estadística Grupo V. Tema 10: Modelos de Probabilidad

Estadística Grupo V. Tema 10: Modelos de Probabilidad Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos

Más detalles

Distribuciones discretas. Distribución binomial

Distribuciones discretas. Distribución binomial Variables aleatorias discretas y continuas Se llama variable aleatoria a toda función definida en el espacio muestral de un experimento aleatorio que asocia a cada elemento del espacio un número real.

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Repaso de Estadística

Repaso de Estadística Teoría de la Comunicación I.T.T. Sonido e Imagen 25 de febrero de 2008 Indice Teoría de la probabilidad 1 Teoría de la probabilidad 2 3 4 Espacio de probabilidad: (Ω, B, P) Espacio muestral (Ω) Espacio

Más detalles

Modelos Básicos de Distribuciones Discretas y Continuas

Modelos Básicos de Distribuciones Discretas y Continuas Modelos de Distribuciones Discretas y Continuas 1/27 Modelos Básicos de Distribuciones Discretas y Continuas Departamento de Estadística e Investigación Operativa Universidad de Sevilla Contenidos Modelos

Más detalles

Introducción al Diseño de Experimentos.

Introducción al Diseño de Experimentos. Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas

Más detalles

El primer momento centrado en el origen (k=1) es la esperanza matemática de X

El primer momento centrado en el origen (k=1) es la esperanza matemática de X MOMENTO K-ÉSIMO PARA UNA VARIABLE ALEATORIA DISCRETA RESPECTO DEL ORIGEN E(x) n i 1 k x i.p x i El primer momento centrado en el origen (k=1) es la esperanza matemática de X También se definen momentos

Más detalles

INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005

INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005 INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005 1. En una pequeña empresa con 60 empleados, 25 son personal de fábrica y están cobrando unos sueldos semanales (en euros) en función a su antigüedad de: 300

Más detalles

Distribución de probabilidad

Distribución de probabilidad Los experimentos aleatorios originan resultados y los resultados nos permiten tomar decisiones Por ejemplo, en un partido de fútbol si se lanza una moneda y sale cara parte la visita, de lo contrario parte

Más detalles

Universidad Nacional de La Plata

Universidad Nacional de La Plata Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.

Más detalles

Cuando la distribución viene dada por una tabla: 2. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA.

Cuando la distribución viene dada por una tabla: 2. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. 1. DISTRIBUCIONES ESTADÍSTICAS. El siguiente grafico corresponde a una distribución de frecuencias de variable cuantitativa y discreta pues solo puede tomar valores aislados (0, 1, 2, 3, 10). Se trata

Más detalles

Variables aleatorias continuas y Características numéricas

Variables aleatorias continuas y Características numéricas Variables aleatorias continuas y Características numéricas 2ºC 2018 Clase Nº 7 Mg. Stella Figueroa Variable aleatoria continua X es una VAC si existe una función f(x), llamada función de densidad de probabilidad

Más detalles

Resumen de Probabilidad

Resumen de Probabilidad Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS

Más detalles

MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL

MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL 1) PROBABILIDAD Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental. Operaciones con sucesos. Leyes de De Morgan.

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Tema 3:Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. 2. La función de densidad de la variable aleatoria X viene dada por la expresión

Tema 3:Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. 2. La función de densidad de la variable aleatoria X viene dada por la expresión Tema :Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. Puede ser la función de densidad de una variable aleatoria continua mayor que uno en algún punto? Sí. La función de densidad de la variable

Más detalles

Estadística. SESIÓN 9: Distribuciones de probabilidad discreta. Segunda parte.

Estadística. SESIÓN 9: Distribuciones de probabilidad discreta. Segunda parte. Estadística. SESIÓN 9: Distribuciones de probabilidad discreta. Segunda parte. Contextualización En la presente sesión analizarás y describirás un experimento binomial, definirás y conocerás la función

Más detalles

Matemática 3 Curso 2014

Matemática 3 Curso 2014 Matemática 3 Curso 204 Práctica 4: Variables aleatorias continuas. Funciones de distribución de probabilidad uniforme, exponencial, normal ) El tiempo total, medido en unidades de 00 horas, que un adolescente

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Probabilidad y Procesos Aleatorios

Probabilidad y Procesos Aleatorios y Dr. Héctor E. Poveda P. hector.poveda@utp.ac.pa www.hpoveda7.com.pa @hpoveda7 Plan del curso Probabilidad Múltiples 1. Probabilidad Espacios probabilísticos Probabilidad condicional 2. 3. Múltiples 4.

Más detalles

Profesores: M. Guerrero - J. Pérez - C. Olivares - J. Rozas 09 de julio de Examen Probabilidad y Estadísticas

Profesores: M. Guerrero - J. Pérez - C. Olivares - J. Rozas 09 de julio de Examen Probabilidad y Estadísticas 09 de julio de 013 Examen Probabilidad y Estadísticas 1) Una cadena de tiendas de pintura produce y vende pinturas de látex y esmaltes. Con base en las ventas de largo plazo, la probabilidad de que un

Más detalles

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017 INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos

Más detalles

RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL

RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL 1) PROBABILIDAD Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental. Operaciones con

Más detalles

Distribuciones discretas y continuas

Distribuciones discretas y continuas 1.- La luz verde de un semáforo está encendida 15 s cada vez, el ámbar 5, y la roja 55 s. Suponiendo que las condiciones de tráfico inducen variaciones aleatorias en los tiempos de llegada de los automóviles,

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Apuntes de Clases. Modelos de Probabilidad Discretos

Apuntes de Clases. Modelos de Probabilidad Discretos 2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica

Más detalles

NIVELACIÓN DE ESTADISTICA. Carlos Darío Restrepo

NIVELACIÓN DE ESTADISTICA. Carlos Darío Restrepo NIVELACIÓN DE ESTADISTICA Qué es la probabilidad? La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Por ejemplo: tiramos un dado al aire y

Más detalles

Capítulo 5: Probabilidad e inferencia

Capítulo 5: Probabilidad e inferencia Capítulo 5: Probabilidad e inferencia estadística (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Principios de la probabilidad Conceptos básicos

Más detalles

Algunas distribuciones teóricas continuas

Algunas distribuciones teóricas continuas Algunas distribuciones teóricas continuas Dr. Pastore, Juan Ignacio Profesor Adjunto. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial

Más detalles

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma

Más detalles

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes. 1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.

Más detalles

SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II

SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE 4. ESTADÍSTICA EXAMEN DE MATEMÁTICAS II Estadística (primer parcial). Septiembre de 4.- El coeficiente de determinación R nos determina a) el % de la varianza de Y

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas VARIABLE ALEATORIA UNIFORME Definición Se dice que una variable X tiene una distribución uniforme en el intervalo [a;b] si la fdp de X es: 1 si a x b f(x)= b-a 0 en otro

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Segundo Semestre 2008 1. El problema de Galileo.

Más detalles

PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA

PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función

Más detalles

Distribución de Probabilidad

Distribución de Probabilidad Distribución de Probabilidad Variables continuas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Distribuciones de probabilidad continuas

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Probabilidad y Estadística Segundo del grado en Telecomunicaciones, UAM, Examen de la convocatoria extraordinaria,

Probabilidad y Estadística Segundo del grado en Telecomunicaciones, UAM, Examen de la convocatoria extraordinaria, Probabilidad y Estadística Segundo del grado en Telecomunicaciones, UAM, 2014-2015 Examen de la convocatoria extraordinaria, 22-6-2015 Nombre y apellidos.......................................................................

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

SOLUCIÓN: Al realizar el histograma de frecuencias, se obtiene:

SOLUCIÓN: Al realizar el histograma de frecuencias, se obtiene: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SOLUCIÓN SEGUNDO EXAMEN FINAL A

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Prueba Integral Lapso /5

Prueba Integral Lapso /5 Prueba Integral Lapso 204-2 737-747 /5 Universidad Nacional Abierta Introducción a la Probabilidad (Cód. 737) Probabilidad (Cód. 747) Vicerrectorado Académico Cód. Carrera: 236-280 - 508 Fecha: 07 03 205

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #3 Tema: Distribución Discreta Prof.: MSc. Julio Rito Vargas A. Grupo:CCEE y ADMVA /2016 Objetivos: Definir la función de probabilidad

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Actividad Práctica #1 Tema: Actividad práctica (Variable Aleatoria, Esperanza matemática, Distribución Binomial y Poisson) Prof.: MSc. Julio

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Nombre: Distribuciones de probabilidad discreta. Segunda parte. A qué nos referimos con probabilidad discreta?

Nombre: Distribuciones de probabilidad discreta. Segunda parte. A qué nos referimos con probabilidad discreta? Estadística 1 Sesión No. 9 Nombre: Distribuciones de probabilidad discreta. Segunda parte. Contextualización A qué nos referimos con probabilidad discreta? En la presente sesión analizarás y describirás

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Integral Lapso 2010-2 745 1/5 Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: 610-612-613 Fecha: 26-02-2011 OBJ. 2 PTA 1 MODELO DE RESPUESTAS Objetivos 2,

Más detalles

Matemática 3 Curso 2013

Matemática 3 Curso 2013 Matemática 3 Curso 2013 Práctica 3: Variables aleatorias discretas. Funciones de distribución Binomial, Geométrica, Hipergeométrica, Poisson. 1) Dadas las siguientes funciones, determinar cuales son funciones

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Tema 5. Variables Aleatorias Conjuntas.

Tema 5. Variables Aleatorias Conjuntas. Tema 5. Variables Aleatorias Conjuntas. Objetivo: El alumno conocerá el concepto de variables aleatorias conjuntas podrá analizar el comportamiento probabilista, conjunta e individualmente, de las variables

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.

Más detalles

3. Variables aleatorias

3. Variables aleatorias 3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Solución. Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico Solución. Curso 016 Ejercicio 1 Suponemos que hay independencia en la concurrencia o no entre las personas. Dado este supuesto y las características

Más detalles

Tema 13. Distribuciones de Probabilidad Problemas Resueltos

Tema 13. Distribuciones de Probabilidad Problemas Resueltos Tema 3. Distribuciones de Probabilidad Problemas Resueltos Distribución de Probabilidad. Una variable aleatoria discreta, X, se distribuye como se indica en la siguiente tabla: ( ) a) Halla el valor de

Más detalles

Tema 6 Algunas distribuciones importantes Hugo S. Salinas

Tema 6 Algunas distribuciones importantes Hugo S. Salinas Algunas distribuciones importantes Hugo S. Salinas 1 Distribución binomial Se han estudiado numerosas distribuciones de probabilidad que modelan características asociadas a fenómenos que se presentan frecuentemente

Más detalles

FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS ACADEMIA DE PROBABILIDAD. Semestre:

FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS ACADEMIA DE PROBABILIDAD. Semestre: FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS ACADEMIA DE PROBABILIDAD SERIE TEMA VARIABLES ALEATORIAS Semestre: 7-. Una variable aleatoria discreta X tiene la

Más detalles

Cuestiones propuestas de la primera prueba de la primera preparación

Cuestiones propuestas de la primera prueba de la primera preparación Cuestiones propuestas de la primera prueba de la primera preparación Temas a 9 de Teórica Básica Estas cuestiones van pensadas en la línea del primer examen Su dificultad conjunta tiene un nivel similar

Más detalles

Selectividad Septiembre 2007 SEPTIEMBRE 2007

Selectividad Septiembre 2007 SEPTIEMBRE 2007 Bloque A SEPTIEMBRE 2007 1.- Cada instalación de una televisión analógica necesita 10 metros de cable y cada instalación de televisión digital necesita 20 metros. Cada televisión analógica necesita 20

Más detalles

Tema 2 Modelos de probabilidad

Tema 2 Modelos de probabilidad Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución

Más detalles

Examen de Estadística Grado en Ingeniería de Telecomunicación

Examen de Estadística Grado en Ingeniería de Telecomunicación Cuestiones Examen de Estadística Grado en Ingeniería de Telecomunicación 3 de Junio de 5 solución h 45m C (.5 puntos). Una multinacional realiza operaciones comerciales en 3 mercados (A, B y C). El % de

Más detalles

MATEMÁTICAS CCSS 2º DE BACHILLERATO

MATEMÁTICAS CCSS 2º DE BACHILLERATO MATEMÁTICAS CCSS 2º DE BACHILLERATO Probabilidad 1) En un centro educativo el 40 % de los alumnos practica voleibol, el 30 % bádminton y el 20 % ambos deportes. a) Si un alumno, elegido al azar, juega

Más detalles

B0. Distribuciones de probabilidad

B0. Distribuciones de probabilidad B0. Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Distribución Normal X N( µ, σ ) Dada una variable aleatoria caracterizado por la función

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.

Más detalles

Estadística Modelos probabilísticos discretos

Estadística Modelos probabilísticos discretos Estadística Modelos probabilísticos discretos MODELOS ALEATORIOS Al considerar variables aleatorias distintas caemos en la cuenta de que sus comportamientos respecto a la distribución de probabilidad,

Más detalles