Tema 2 Transformada Z y análisis transformado de sistemas LTI
|
|
- Concepción Blázquez San Segundo
- hace 3 años
- Vistas:
Transcripción
1 Tem Trsformd Z y álss trsformdo de sstems LTI rlos Óscr Sáche Soro 4º Ig. Telecomuccó EPS Uv. S Pblo EU Bblogrfí: Oppehem I p., Oppehem II p. 3, Pros p. 3
2 y Fucoes props de los sstems LTI x h h h h H x h H [.46] x y H [.47] urso / rlos Óscr Sáche Soro EPS-S Pblo EU Bblogrfí: Oppehem.6
3 urso / Trsformd Z X j j re X x r e TF{ x[ ] r } Im{} Re{} rlos Óscr Sáche Soro EPS-S Pblo EU x TF{ x[ ]} X j e L trsformd Z de x[] coverge e s l trsformd de Fourer de x[ ] r coverge, es decr, x [ ] r S coverge pr, etoces coverge pr :. Esto defe u regó de covergec RO. L trsformd de Fourer coverge, s l RO cluye l círculo udd. X y tods sus dervds so cotus detro de l RO. 3 Bblogrfí: Oppehem II 3., Pros 3. 3
4 Trsformd Z Ejemplo: X u[ ] x[ ] u[ ] Im{} S Re{} Se llm polos quellos putos pr los que X. Se llm ceros quellos putos pr los que X. urso / rlos Óscr Sáche Soro EPS-S Pblo EU 4 Bblogrfí: Oppehem II 3., Pros 3. 4
5 Trsformd Z Ejemplo: x[ ] u[ ] b u[ ] X ' b b ' b S so : b o exste X S b b so : b o exste X so 3: b Exste X pr b urso / rlos Óscr Sáche Soro EPS-S Pblo EU 5 Bblogrfí: Oppehem II 3., Pros 3. Ejemplo: Pros, pp 6 Problems Opp: 3.*, 3.*, 3.4 Problems Pro: 3. 5
6 6 urso / rlos Óscr Sáche Soro EPS-S Pblo EU 6 Trsformd Z Polos y ceros de u trsformd rcol M M M M M M M M p b b b b Q P X -M ceros ó M- polos e el orge M ceros fuer del orge polos fuer del orge Bblogrfí: Oppehem II 3., Pros 3., Pros 3.3 Problems Pro: 3.
7 uddo co TF{ x[ ]} X Ejemplo: Ejemplo: Relcó co l TF j j * j * X e X e X X j e X e * j e c c x[ ] s c r : x[ ] r X x [ ] cos pero l TF tede e setdo L u fucó peródc dscotu! E estos csos o se debe pesr e l TF como l evlucó de l TZ e el círculo udd. urso / rlos Óscr Sáche Soro EPS-S Pblo EU 7 7
8 Propeddes de l RO L RO se compoe de regoes ulres cetrds e el orge del plo. L RO o cotee gú polo S x[] es de durcó ft etoces l RO es todo el plo slvo co posble excepcó de = y/o =. { } RO {,} RO {} RO urso / rlos Óscr Sáche Soro EPS-S Pblo EU 8 Bblogrfí: Oppehem 3., Pros 3. 8
9 Propeddes de l RO Im{} Im{} Im{} r Re{} r Re{} Re{} r urso / rlos Óscr Sáche Soro EPS-S Pblo EU 9 Bblogrfí: Oppehem 3., Pros 3. 9
10 Propeddes de l RO Ejemplo: x[ ] resto X Im{} r { } RO Re{} urso / rlos Óscr Sáche Soro EPS-S Pblo EU Bblogrfí: Oppehem 3., Pros 3. Ejercco: represetr los polos y ceros de u trsformd Z
11 Propeddes de l RO S X es rcol, etoces su RO está delmtd por polos o se extede hst el fto. S X es rcol y x[] está cotd por l querd, etoces l RO se extede desde el polo más extero hc el fto. S demás x[] es cusl, etoces el fto está cludo e l RO. S X es rcol y x[] está cotd por l derech, etoces l RO se extede desde el orge hst el polo más tero. S demás x[] es tcusl, etoces el orge está cludo e l RO. P X Q Im{} Re{} Im{} Re{} urso / rlos Óscr Sáche Soro EPS-S Pblo EU Bblogrfí: Oppehem 3., Pros 3. Problems Opp: 3.8*, 3.*, 3.*, 3.46
12 Propeddes de l RO Im{} Ejemplo: X b b b Re{} Im{} Im{} Im{} Re{} Re{} Re{} b b b Est es l RO porque es l úc pr l que l TF coverge urso / rlos Óscr Sáche Soro EPS-S Pblo EU Bblogrfí: Oppehem 3., Pros 3. Ejercco: relr l TZ vers de X co cd u de ls RO Problems Opp: 3.4*, 3., 3.5, 3.48 Problems Pro: 3.5, 3., 3.44, 3.5, 3.53
13 urso / Propeddes de l TZ Leldd By Desplmeto e el tempo j Escldo e el domo TF:Desplmeto e frecuec Ax AX BY Al meos RO RO rlos Óscr Sáche Soro EPS-S Pblo EU x X x e Iversó e el tempo RO x slvo l dcó o substrccó del orge X e j RO x X RO x X : / RO y RO 3 Bblogrfí: Pros 3., Oppehem 3.4 Problems Pro: 3.9 3
14 Upsmplg ojugcó urso / Propeddes de l TZ x / m x m rlos Óscr Sáche Soro EPS-S Pblo EU m resto Dowsmplg ] ovolucó x y X m RO / m m x m x[m X me m m RO x * X * * RO Prte rel Re{ x } * * X X Al meos RO Prte mgr Im{ x } * * X X j Al meos RO j m X Y Al meos RO RO x y 4 Bblogrfí: Pros 3., Oppehem 3.4 Problems Opp: 3.3, 3.7*, 3.9*, 3.6, 3.8, 3.9*, 3.*, 3., 3., 3.3, 3.34 Problems Pro: 3., 3.3, 3.4, 3.7*, 3.8, 3.6, 3.7 4
15 Propeddes de l TZ Dferec ft x Itegrcó Dfereccó e frecuec Tm. del vlor cl S S x x,, etoces x lm X x,, etoces x lm X x X Al meos RO { } x X Al meos RO { } dx d RO RO RO urso / rlos Óscr Sáche Soro EPS-S Pblo EU 5 Bblogrfí: Pros 3., Oppehem 3.4 Problems Opp: 3.37, 3.54 Problems Pro: 3.6*, 3., 3.5,
16 Propeddes de l TZ orrelcó l] x l yl Multplccó xy r xy [ X Y Al meos RO RO * * * * j X v Y v Al meos r r Relcó de Prsevl xy xl yl x xu y r r v dv RO X RO Y yu * * * j X v Y v v dv RO X RO Y urso / rlos Óscr Sáche Soro EPS-S Pblo EU 6 Bblogrfí: Pros 3., Oppehem 3.4 L relcó de Prsevl sle de l regl de multplccó prtculrd pr = Problems Opp: 3.7, 3.3, 3.33, 3.4, 3.4, 3.4, 3.47, 3.5, 3.5* Problems Pro: 3.3*, 3.8, 3., 3.8, 3.3*, 3.35, 3.4, 3.43, 3.49, 3.5 6
17 urso / Algus TZs u u rlos Óscr Sáche Soro EPS-S Pblo EU u u u {} { } 7 Bblogrfí: Pros 3.3, Oppehem 3. 7
18 Algus TZs r r cos r cosu r cos r cos r cos r cos u r cos r r s r s u r cos r s u s u[ ] u r cos r r r r r urso / rlos Óscr Sáche Soro EPS-S Pblo EU 8 Bblogrfí: Pros 3.3, Oppehem 3. 8
19 Drect Trsformd Z vers Ispeccó x[ ] j X d Itegrl de líe pr lgu crcuferec recorrd e setdo cotrro ls gujs del reloj. : RO Expsó e frccoes prcles Expsó e sere de potecs urso / rlos Óscr Sáche Soro EPS-S Pblo EU 9 Bblogrfí: Oppehem 3.3, Pros 3.4 9
20 Drect X X Trsformd Z vers x d Im{} jx[ ] x[ ] d x[ ] RO d x[ ]j [ ] Tm. tegrl de uchy Re{} j f d d f! d detro de fuer de S f urso / rlos Óscr Sáche Soro EPS-S Pblo EU Bblogrfí: Oppehem 3.3, Pros 3.4 Multplco por los dos ldos por ^- e tegro e. se recorre e setdo cotrro ls gujs del reloj. omo está e l RO l sum coverge y se puede tercmbr l sum co l tegrl. Ejercco: demostrr que l plccó del teorem tegrl de uchy l tegrl dd d u delt.
21 urso / rlos Óscr Sáche Soro EPS-S Pblo EU Trsformd Z vers Drect j j j A d A d A d g f Supoedo que todos los polos so dsttos g f A X Resduo del polo Sum de los resduos de todos los polos [ ] j x X d Bblogrfí: Oppehem 3.3, Pros 3.4
22 urso / rlos Óscr Sáche Soro EPS-S Pblo EU Trsformd Z vers Drect m m m j d A d d g f! Supoedo que hy polos de multplcdd múltple g f A m m m m d X d x! ] [ Sum de los resduos de todos los polos Bblogrfí: Oppehem 3.3, Pros 3.4
23 3 urso / rlos Óscr Sáche Soro EPS-S Pblo EU 3 Trsformd Z vers Drect Ejemplo: X d j d j x ] [ so : : A x ] [ so : : Polo de orde ] [ d j x A A A Bblogrfí: Oppehem 3.3, Pros 3.4
24 4 urso / rlos Óscr Sáche Soro EPS-S Pblo EU 4 Trsformd Z vers Drect Ejemplo: X d j d j x ] [ so : d j x ] [ A A d d Bblogrfí: Oppehem 3.3, Pros 3.4 Ejercco: clculr x[] pr =-3 Problems Opp: 3.38, 3.39, 3.57 Problems Pro: 3.9, 3.56, 3.57, 3.58
25 Trsformd Z vers Ispeccó Ejemplo: X x[ ] u[ ] Ejemplo: X 4 x[ ] u[ ] 4 urso / rlos Óscr Sáche Soro EPS-S Pblo EU 5 Bblogrfí: Oppehem 3.3, Pros 3.4 Problems Opp: 3.5*, 3.3 5
26 6 urso / rlos Óscr Sáche Soro EPS-S Pblo EU 6 Trsformd Z vers Ejemplo: 4 4 K K X X K 4 X K 4 X ] [ ] [ ] [ 4 u u x Expsó e frccoes prcles Bblogrfí: Oppehem 3.3, Pros 3.4 Problems Opp: 3.6*, 3.4*, 3.3, 3.35, 3.36, 3.43*, 3.44, 3.45 Problems Pro: 3.4, 3.5, 3.6, 3.33, 3.37, 3.38*, 3.39, 3.4*, 3.4, 3.45, 3.46, 3.47, 3.48, 3.55
27 7 urso / rlos Óscr Sáche Soro EPS-S Pblo EU 7 Trsformd Z vers Ejemplo: X }, { ] [ ] [ ] [ ] [ ] [ x Ejemplo: log X [ ] [ ] [ ] x u Expsó e sere de potecs Bblogrfí: Oppehem 3.3, Pros 3.4
28 Trsformd Z vers Expsó e sere de potecs Ejemplo: X... Decrecete Im{} Re{}... x[ ] [ ] [ ] [ ]... u[ ] urso / rlos Óscr Sáche Soro EPS-S Pblo EU 8 Bblogrfí: Oppehem 3.3, Pros 3.4 Problems Opp: 3.5, 3.6, 3.7, 3.8, 3.9 8
29 Trsformd Z vers Expsó e sere de potecs Ejemplo: X... recete Im{} Re{} x[ ] [ ] [ ]... u[ ] urso / rlos Óscr Sáche Soro EPS-S Pblo EU 9 Bblogrfí: Oppehem 3.3, Pros 3.4 Problems Pro: 3., 3.4*, 3.5, 3.9, 3.3 9
30 Resume Defcó de l Trsformd Z Relcó co l Trsformd de Fourer Propeddes de l RO Propeddes de l Trsformd Z Algus trsformds Z Trsformd Z vers: Drect Ispeccó Expsó e sere de potecs urso / rlos Óscr Sáche Soro EPS-S Pblo EU 3 Problems Opp: 3.49, 3.5, 3.53, 3.55, 3.56 Problems Pro:
MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS NÚMEOROS COMPLEJOS
NÚMEOROS COMPLEJOS Defcó: El cojuto de los úmeros complejos es C R R {(, / R y b R} C está formdo por todos los pres ordedos de úmeros reles etre los que defmos u relcó, l guldd, y dos opercoes brs que
PROBLEMAS RESUELTOS. Problema 1. Resolver la ecuación en la incógnita x: Solución al problema 1
PROBLEMS RESUELTOS Presetmos cotucó ls solucoes los problems,, del úmero de l Revst, que eví Crlos Mrcelo Css Cudrdo. Problem Resolver l ecucó e l cógt : (bsolutorl ufgbe, Bver, 87 Solucó l problem El
a es la parte real, bi la parte imaginaria.
CAPÍTULOIX 55 NÚMEROS COMPLEJOS Coocmetos Prevos Supoemos coocdo que: ) El cojuto de úmeros complejos está e correspodec buívoc co el cojuto de los putos de u plo. b) U úmero complejo expresdo e form boml
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds
Dado el sistema de ecuaciones lineales de la forma
Aálss del Error e Solucó de Sstems de Ecucoes Leles Ddo el sstem de ecucoes leles de l form R A b, dode A ; b R E reldd teemos: A δa δ b δb A Aδ δa δa δ A δb S desprecmosδa δ : δ A - δb δa Métodos Numércos
(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA
(Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.
Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas
5º Curso-Tratameto Dgtal de Señal Trasformada Z Defcó y Propedades Trasformada Iversa Fucó de Trasfereca Dscreta Aálss de Sstemas 7//99 Capítulo 7: Trasformada Z Defcó y Propedades 5º Curso-Tratameto Dgtal
GUÍA EJERCICIOS: NÚMEROS NATURALES
UNIVERSIDAD ANDRÉS BELLO DEPARTAMENTO DE MATEMÁTICAS ÁLGEBRA FMM COORD. PAOLA BARILE M. GUÍA EJERCICIOS: NÚMEROS NATURALES PROGRESIONES ARITMÉTICA Y GEOMÉTRICA EJERCICIOS CON RESPUESTAS.- Verfque s ls
es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a
5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd
2.1 SUCESIONES 2.2 SUMAS Y NOTACIÓN SIGMA
Sucesoes. SUCESIONES. SUMAS Y NOTACIÓN SIGMA Objetvos: Se pretede que el estudte: Determe covergec o dvergec de sucesoes. Alce Mootoí de sucesoes. Coozc ls propeddes de l otcó sgm. 5 Sucesoes.. SUCESIONES..
3. Unidad Aritmética Lógica (ALU)
3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como
a, b y POSITIVA, se puede hacer una aproximación del área
BLOQUE III: Aálss -ÁREA BAJO UNA CURVA Tem 5: Itegrles defds Dd u fucó (, y POSITIVA, se puede hcer u promcó del áre compredd etre el eje X y l gráfc de l fucó e el tervlo, del sguete modo: ) Se dvde el
21 k. ! en función de n. = 1. Universidad de Santiago de Chile Facultad de Ciencia Depto. Matemática y Ciencia de la Computación
USACH ÁLGEBRA Gbrel Rbles R. Uversdd de Stgo de Chle Fcultd de Cec Depto. Mtemátc y Cec de l Computcó Prof. Gbrel Rbles R. SUMATORIAS EJERCICIOS RESUELTOS: Clculr: ) ) b) [ ) ) ] c) j j j d) el vlor de
suma sucesiva de los primeros m términos como se ve a continuación m 1
A veces se ecest deterr l su de uchos téros de u sucesó ft. Pr expresr co fcldd ess sus, se us l otcó de sutor. Dd u sucesó ft,,,...,... el síbolo represet l sutor o su sucesv de los preros téros coo se
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información
Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor
1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n
. SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos
Se puede observar que una partición de un intervalo lo divide en n subintervalos, y a cada uno de ellos se les llama también celda.
Itegrl defd. Fucó tegrle Sum de Rem Se el tervlo [, ]. E cojuto de putos: P = { 0,,......., } Dode 0 = ; = ; < ; =,,....., Se llm prtcó o red de tervlo [, ] Se puede oservr que u prtcó de u tervlo lo dvde
Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.
Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde
Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!
Este documeto es de distribució grtuit y lleg grcis Cieci Mtemátic El myor portl de recursos eductivos tu servicio! Los poliomios de Beroulli y sus pliccioes Pblo De Nápoli versió 0.. Los poliomios de
Sucesiones y series de números reales
79 Mtemátics : Series umérics Cpítulo Sucesioes y series de úmeros reles. Sucesioes Defiició 330.- Llmremos sucesió de úmeros reles culquier plicció f: N R y l represetremos por {, dode = f(). Por comodidd,
Sucesiones de funciones
Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci
POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante
Uversdd de Stgo de Chle Fcultd de Cecs Deprtmeto de Mtemátcs y Cecs de l Computcó Aputes y Ejerccos RESUMEN DE CONTENIDOS. Recordr: Proceso de ortogolzcó de Grm-Schmdt: Se defe, e prmer lugr, el operdor
Resolución de sistemas de congruencias
Resolucó de sstems de cogruecs E este prtdo veremos cómo utlzr l rtmétc modulr pr resolver u problem muy tguo, coocdo como problem cho de los restos, que reformulremos hor utlzdo el leguje modero de ls
10. Optimización no lineal
0. Optzcó o lel Coceptos báscos Prcpos y teores pr l búsqued de óptos lobles Optzcó s restrccoes e desó Optzcó s restrccoes e desó > Modelos co restrccoes de uldd Codcoes de uh-tucker Alortos uércos báscos
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos
X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN
0.3. Cojutos abertos y cerrados.3 TOPOLOGÍA BÁSICA EN R El espaco eucldeao dmesoal se defe como: E ( R,,, d ) Dode (asumedo que X, Y R, co X = (x,..., x ), Y = (y,..., y )): El símbolo represeta el producto
INTEGRAL DEFINIDA. b A =, es decir, la tercera parte 3 1.- INTRODUCCIÓN
INTEGRAL DEFINIDA.- INTRODUCCIÓN E este tem estudremos u cocepto uevo, el de tegrl defd. Auque será ecesro defrl de form eseclmete complcd, l tegrl vee formlzr u cocepto secllo, tutvo: el de áre. Ahor
Guía Semana RESUMEN. Universidad de Chile. Ingeniería Matemática
. ESUMEN Igeierí Mtemátic FACULTA E CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVESIA E CHILE Cálculo e Vris Vribles 08- Igeierí Mtemátic Uiversidd de Chile Guí Sem 0 Itegrl y propieddes básics. d f : Ê y u reticuldo
APUNTE: Introducción a las Sucesiones y Series Numéricas
APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do
GENERALIDADES SOBRE MÓDULOS
GENERALIDADES SOBRE MÓDULOS Presetar el Z -módulo Z como cocete de u Z -módulo lbre Hacer lo msmo para el grupo de Kle Calcular los auladores de los sguetes módulos: a) El Z -módulo Z Z 6 b) El Z -módulo
Ejercicios resueltos. Bloque II. Aproximación Numérica. Tema 2. Integración Numérica. Solución
Bloque II. Apromcó Numérc Tem Itegrcó Numérc Ejerccos resueltos II.- Aprom el vlor de ls sguetes tegrles defds por los mét odos del rectágul o, del put o med o, del trpeco y de Smpso, t omdo pr todos los
INICIO. Elaborado por: Enrique Arenas Sánchez
INICIO Elbordo or: Erque Ares Sáchez EL PROMEDIO El cálculo del romedo de u lst de vlores [,, K,,, ], 2 K ormlmete se clcul medte l coocd exresó: m...() U form geerl r clculr el romedo de u lst
Matemáticas NS y Ampliación de Matemáticas NS: cuadernillo de fórmulas
Progrm del Dplom Mtemátcs NS y Amplcó de Mtemátcs NS: cuderllo de fórmuls Pr su uso durte el curso y e los eámees Prmeros eámees: 04 Publcdo e juo de 0 Orgzcó del Bchllerto Itercol, 0 5050 Ídce Coocmetos
INTEGRAL DEFINIDA INTRODUCCIÓN
INTRODUCCIÓN U medo potete de l vestgcó e mtemátc, físc, mecác y otrs rms de l cec es l tegrl defd. El cálculo de áres lmtds por curvs, de ls logtudes de rcos, volúmees, trjo, velocdd, espco, mometos de
e x Integración numérica Tema 2: Cá álculo umérico Fórmulas de cuadratura. Fórmulas de Newton-Cotes. Fórmulas del trapecio y Simpson. Errores.
Tem : Itegrcó umérc Tem : Itegrcó ó umérc Prolem Fórmuls de cudrtur. Fórmuls de Newto-Cotes. Fórmuls del trpeco Smpso. Errores. Clculr l sguete tegrl: e d Usremos l tegrcó umérc cudo, por el motvo que
Práctico 10 - Integrales impropias y Series. 1. Integrales impropias
Uiversidd de l Repúblic Cálculo Fcultd de Igeierí - IMERL Segudo semestre 6 Práctico - Itegrles impropis y Series. Itegrles impropis. Se f : [,) R u fució cotiu tl que f (t) y defiimos F() = f (t)dt. Demostrr
Cálculo diferencial integral en una variable Facultad de Ingeniería - IMERL Segundo semestre Práctico Semana xm (1 x) n dx = 1
Uiversidd de l Repúblic Cálculo diferecil itegrl e u vrible Fcultd de Igeierí - IMERL Segudo seestre 8 Práctico Se 6. Cbio de vrible liel. Se f : R R u fució itegrble y,b R tl que < b. Probr que: Pr todo
SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable
SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Pr Grdos e Igeierí Cpítulo 4: Itegrció e u vrible Domigo Pest Glvá José Muel Rodríguez Grcí Figurs relizds co Arturo de Pblo Mrtíez 4 Itegrció e u vrible 4. Itegrció
Unidad 1 Fundamentos de Algebra Matricial Parte 1
Udd Fudetos de lger trcl Prte Dr. Ruth. gulr Poce Fcultd de Cecs Deprteto de Electróc Propedeutco 8 Fcultd de Cecs trces U trz de es u rreglo rectgulr dspuesto e regloes y colus Trgulr feror O Trgulr superor
POLINOMIOS. - Ejemplo: es un polinomio ordenado segun la variable x, cuyos coeficientes son: 2
POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel x es: f x = x + x + + x + x+, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo
1.-INTEGRAL DEFINIDA.
INTEGRAL DEFINIDA .-INTEGRAL DEFINIDA. e y ƒ( u fució cotiu e u itervlo [, ]. Not.- Pr simplificr l demostrció se cosider positiv, ƒ( > 0, e todo puto del itervlo. e divide el itervlo [, ] e "" suitervlos
6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes.
Tem 6. Itegró 6. Cálulo e prmtvs. 6. Áre e tegrl ef. 6.3 El Teorem fumetl el álulo 6.4 Áre e u regó etre os urvs. 6.5 Cálulo e volúmees. 6.6 Logtu e ro superfe e revoluó. E.U.Polté e Sevll. Fumetos Mtemátos
GUÍA DE TRABAJO Nº3 RAÍCES 2017 Nombre:. Fecha:..
GUÍA DE TRABAJO Nº RAÍCES 017 Nomre:. Fech:.. Coteidos Ríz eésim e el cojuto de los úmeros reles. DEFINICIÓN: E geerl, si es u úmero turl myor que 1 y es u úmero rel, decimos que x x, etoces x es l ríz
7 Integral triple de Riemann
Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]
UNIVERSIDAD DE CONCEPCIÓN
.5. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es clro que si f SC[-,] es u fució pr, etoces (9) fx ( ) = + cosx, (CM) SERIE DE FOURIER DE COSENOS (SFC) = co () = f ( x )cos x dx, =,,,3,... Si f SC[-,] es
Determinación del Número de Particiones de un Conjunto
Determcó del Número de rtcoes de u Couto Lus E Ryber E el estudo de prtcoes estblecds e u couto A que posee elemetos se susct l cuestó del úmero totl de tles prtcoes Es evdete y el cálculo sí lo dc que
- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:
POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble
Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.
Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,
SISTEMAS DE ECUACIONES
. Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.
ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS
TEMA 5: RENTA. INTRODUCCIÓN Llmmos ret u sucesó de cptles que se hce efectvos e vecmetos peródcos. Ejemplo: lquler, slros, préstmos, etc. A cd uo de estos cptles se le deom térmos o ulddes (A. Llmmos durcó
Aplicaciones prácticas de la antiderivación y la Integral Definida. Universidad Diego Portales CALCULO II
Aplccoes práctcs de l tdervcó y l Itegrl Defd Uversdd Dego Portles Aplccoes práctcs A cotucó se preset lguos prolems e que se cooce l rzó de cmo de u ctdd y el ojetvo es hllr u epresó pr l ctdd msm. Como
Unidad didáctica 3 Las potencias
Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.
i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121
Los números gnros: Clse-15 En hy stucones que no tenen solucón; por ejemplo no exste nngún número cuyo cudrdo se gul -1. Pr dr solucón est stucón recurrremos l conjunto de los números mgnros, donde se
Sucesiones de números reales
Tem 5 Sucesioes de úmeros reles Defiició 5.1 Llmremos sucesió de úmeros reles culquier plicció f: IN IR y l represetremos por { } =1, dode = f(. Por comodidd, diremos tmbié que l sucesió es el cojuto ordedo
Capítulo 3: Integral definida. Módulos 12 al 17. I. Notación sigma. En los ejercicios 1 a 5 escriba en forma de sumatoria la suma dada.
Módulos l 7 I Nocó sgm E los ejerccos escr e form de sumor l sum dd + + + + + + + + 9 + + 7 6 7 8 l + l 6 + l 8 + l 6 6 Supog que f ( ) 8, g( ) y h( ) Clcule el vlor de l epresó dcd e los ejerccos -e c
TEMA 5 VALORACIÓN FINANCIERA DE RENTAS (II)
Fcultd de CC.EE. Dpto. de Ecoomí Fcer I Mtemátc Fcer Dpotv TEMA 5 VALORACIÓN FINANCIERA DE RENTAS (II). Ret cotte temporle y perpetu. 2. Ret dferd y tcpd 3. Ret vrble e progreó geométrc y rtmétc Fcultd
UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO 1
ESCUELA UNIVERSITARIA DE TÉCNICA INDUSTRIAL UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO La sguete tabla muestra la ota fal e los exámees de estadístca (E) e vestgacó operatva (IO) de ua
TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n
TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l
Definición: Es un conjunto ordenado de términos. Se representan mediante una función cuyo dominio es el conjunto de los números naturales.
SUCESIONES Y SERIES Sucesió Es u cojuto ordedo de térmios. Se represet medite u ució cuyo domiio es el cojuto de los úmeros turles. Se expres l ució que geer los térmios de l sucesió como ( ) =. Al térmio
Seminario de problemas. Curso Soluciones hoja 6
Semirio de problems. Curso 06-7. Solucioes hoj 6. Si igeios iformáticos, clculr l cifr que precede l fil fil de ceros e!. (Recuerd:! = 4 4 ) Empezremos por determir cuátos ceros hy e l col fil de!. Hbrá
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS
ESUELA TÉNIA SUPERIOR DE NÁUTIA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO OI ESKOLA TEKNIKOA UNDAMENTOS MATEMÁTIOS : ORMAS UADRÁTIAS orm blel Decó K Se E res espcos vecrles dedos sobre el
CALCULO INTEGRAL TEMAS PORQUE ESTUDIAR. Escribir una cita aquí. Teorema fundamental del cálculo. Métodos de integración e integral indefinida.
CALCULO INTEGRAL PORQUE ESTUDIAR CALCULO INTEGRAL l itegrl defiid es l herrmiet pr clculr y defiir diverss mgitudes, como áres, volúmees, logitudes de tryectoris curvs, proiliddes, promedios, cosumo de
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
1 Áreas de regiones planas.
Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].
PAIEP. Sumas de Riemann
Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,
Matemáticas II Hoja 2: Matrices
Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)
Trigonometría. Prof. María Peiró
Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs
Grado en Química Bloque 1 Funciones de una variable
Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn
APROXIMACION DE FUNCIONES
APROXIMACION DE FUNCIONES Metodos Numercos 6 Fmls de Fucoes Bses - Moomos : 3 - Trgoométrcs: sωt cosωt sωt... - Fs. Sle: olomos trozos - Fs. Eoecles: e e 4 Metodos Numercos 6 Iterolcó Suogmos teer u cojuto
Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:
PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula
Examen de Admisión a la Maestría 8 de Enero de 2016
Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.
La Integral de Riemann
Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función
8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1
E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de
ÁLGEBRA LINEAL Ingenierías ÁLGEBRA II. Unidad Nº 1 LM - PM MATRICES. DETERMINANTES. FCEyT - UNSE
ÁLGEBR LINEL Igeerís ÁLGEBR II LM - PM Udd Nº MTRICES. DETERMINNTES FCEyT - UNSE .- INTRODUCCIÓN ESTRUCTURS LGEBRICS de GRUPO y de CUERPO Defcó Se Álgebr II (LM-PM)-Álgebr Lel (Igs.)-F.C.E. y T.-UNSE G
4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór
Capítulo 4 Iterpolacó polomal de Hermte E determadas aplcacoes se precsa métodos de terpolacó que trabaje co datos prescrtos de la fucó y sus dervadas e ua sere de putos, co el objeto de aumetar la aproxmacó
Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica.
INTRODUCCIÓN L MECÁNIC CUÁNTIC Prte : Fudmetos mtemátos Prte : Meá Cuát Prte : FUNDMENTOS MTEMÁTICOS Espos etorles ompleos de dmesó ft Operdores leles Represetó mtrl Proyetores utolores y utoetores Operdor
Profesorado de Informática - Ciencias de la Computación - INET DFPD Matemática II 2010 Sucesiones
Profesordo de Iformátic - Ciecis de l Computció - INET DFPD Mtemátic II Sucesioes Sucesioes Tems: Límites de sucesioes. Sucesioes moótos y sus límites. Pres de sucesioes moótos covergetes. Número e. Opercioes
Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó
SUCESIONES DE NÚMEROS REALES
SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N
ANÁLISIS MATEMÁTICO I. Coordinadora: Mg. Alicia Tinnirello SUCESIONES Y SERIES
Cátedr: Crrer: ANÁLISIS MATEMÁTICO I ISI Coordidor: Mg. Alici Tiirello SUCESIONES Y SERIES Práctic del libro Cálculo. Trscedetes Temprs º Ed.- Jmes Stewrt - Ig. Mirt Mechi Ig. Edurdo Ggo Año 0 Sucesioes
3. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es claro que: Si f SC[-π,π] es una función impar, entonces. cosnx, (CM) SERIE DE FOURIER DE COSENOS (SFC)
3 SERIES DE FOURIER DE SENOS Y DE COSENOS Es clro que: Si f SC[-,] es u fució pr, etoces (9) fx ( ) = + cosx, (CM) SERIE DE FOURIER DE COSENOS (SFC) = co () = f(x)cosxdx, =,,,3, Si f SC[-,] es u fució
TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 4. INTEGRALES DE LÍNEA Y DE SUPERFICIE
TEORÍA E CÁLCULO II PARA GRAOS E INGENIERÍA Elbord por omingo Pestn y José Mnuel Rodríguez 4.1. INTEGRALES E LÍNEA 4. INTEGRALES E LÍNEA Y E SUPERFICIE Hbitulmente suele identificrse un tryectori : [,
Matemáticas NS y Ampliación de Matemáticas NS: cuadernillo de fórmulas
Progrm del Dplom Mtemátcs NS y Amplcó de Mtemátcs NS: cuderllo de fórmuls Pr su uso durte el curso y e los eámees Prmeros eámees: 04 Edcó de 05 (. versó) Orgzcó del Bchllerto Itercol, 0 5050 Ídce Coocmetos
Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica.
INTRODUCCIÓN L MECÁNIC CUÁNTIC Prte : Fudmetos mtemátos Prte : Meá Cuát Prte : FUNDMENTOS MTEMÁTICOS Espos etorles ompleos de dmesó ft Operdores leles Represetó mtrl Proyetores utolores y utoetores Operdor
1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:
EJERCICIOS de POTENCIAS º ESO FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) ( ) c) d) ( ) e) f) (
UNIVERSIDAD DE BUENOS AIRES Maestría en Ingeniería Matemática
UNIVERSIDAD DE BUENOS AIRES Mestrí e Igeerí Mtemátc L tegrl de Rem-Steltjes. Aplccoes l teorí de prolddes Nots de Mtemátc Áre: Fudmetos y Aplccoes de Aálss Mtemátco Autor: Ferdo Suárez Ídce Itroduccó.
Procesado digital de imagen y sonido
em t bl u Uiversidd del Pís Vsco Deprtmeto de Arquitectur y Tecologí de Computdores upv ehu Tem 5_ Trsformd Z Procesdo digitl de imge y soido Defiició Propieddes priciples Aplicció señles y sistems LTI
Repaso general de matemáticas básicas
Repso geerl de mtemátics básics Expoetes y rdicles Regl de l multiplicció: Cudo dos ctiddes co l mism bse se multiplic, su producto se obtiee sumdo lgebricmete los expoetes. m m Expoete egtivo U térmio
Números Reales y Complejos
Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.
Sucesiones de números reales
Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5
5.2 SUMAS Y NOTACIÓN SIGMA
Mosés Vlle Muñoz Cp. 5 Sucesoes y Seres 5 5. SUCESIONES 5. SUMAS Y NOTACIÓN SIGMA 5. SERIES NUMÉRICAS INFINITAS 5.. A SERIE GEOMÉTRICA. 5.. SERIES TEESCÓPICA 5.. SERIES DE TÉRMINOS POSITIVOS 5... CRITERIO
Tema 9. La Integral de Riemann Construcción de la integral de Riemann.
Tem 9 L Integrl de Riemnn. 9.1. Construcción de l integrl de Riemnn. Definición 9.1.1. Se I = [, b] R un intervlo cerrdo y cotdo (compcto). Se llm prtición de I todo conjunto de puntos P = {x 0, x 1,,
Primitiva de una función.
Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)
Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ
TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,
SERIES NUMÉRICAS. Estudiar el carácter de las series de término general a n. n n n n n = 3. Solución: Converge. 1.- a
Escuel de Igeieros de Bilbo Deprtmeto Mtemátic Aplicd EIE NUMÉICA Estudir el crácter de ls series de térmio geerl :.-! Es u serie de térmios positivos. Podemos hcerlo de dos mers: ) Aplicdo el criterio
El problema del área. Tema 5: Integración. Integral de Riemann. Particiones de un intervalo. Sumas superior e inferior
Construcción Funciones integrbles TFCI Construcción Funciones integrbles TFCI Prticiones de un intervlo El problem del áre Tem 5: Integrción. Integrl de Riemnn El objetivo finl del tem es hllr el áre de