( i ) 4 ( ) ( ) ( ) ( ) 4k 1 ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN 0! 1 RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Desarrollando la sumatoria 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "( i ) 4 ( ) ( ) ( ) ( ) 4k 1 ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN 0! 1 RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Desarrollando la sumatoria 1"

Transcripción

1 SEMANA 9 HABILIDAD OPERATIVA 1 E cuátos ceros termia 0! A) 9 B) 11 C) 1 D) 1 E) 1 Total 1 ceros RPTA: E Calcular: ( U N A C) si se cumple que: 90 UNAC A) B) C) 0 0 D) E) 1 UNAC00! UNAC00! 1i100 i i i1 i i i7 i9 # ceros que ya aparece: Total de # factores ceros ( i ) N UNAC i N UNAC00 U N A C ( U N A C) 0 RPTA: E Calcule la cifra de uidades que se obtiee al efectuar: T 0! 1!!! 0! A) B) C) D) E) ! 1 0! 1!!!!! 70 7! 00! 00 9! 0 0! T Impar T () Impar T RPTA: B Cuál es la cifra de uidades de: t L sí: t S ; dode: 0 1 S 1: úmeros de Fermat 00 L 00 A) B) C) D) E) 1 Desarrollado la sumatoria º La cifras de uidades: 19 (7) 1 1 S Pero: L 00 k k 1 k 1 t k 1

2 Hallar la cifra de uidades que resulta al efectuar UNAC T PRE79 ZAC97 A) B) C) D) E) Par TEO97 UNAC PREC K TEO 97 ZAC97 7 T 1 T RPTA: B Idique la suma de las cifras del ( ) ( ) 0 cifras 0 cifras A) 9 B) 9 C) D) E) Por diferecia de cuadrados S: :R x Se obtiee: cifras 0 cifras Suma de cifras: 9 x 9 9 o tambié S 0 x RPTA: B 7 Idique el valor umérico de Ai B A B 0 0 A) 1 B) C) D) E) ( ) ( ) 11 ( ) A Por diferecia de cuadrados A ( ) 1 1 A 1 1i1ii ( ) i7 B i10 10i B A B 1 ; RPTA: E Idique la suma de las cifras del a a( a ) A) B) C) D) E) 0 1i9 1i11 1 i0 1 i0 ( 91) i7 ( 0i7 0i0 ) DC 9 0 i Σ cifras 9 Reducir: A RPTA: A A) B) C) 9 D) E) 1

3 V Aplicado: Legedre ( A B) ( A B) ( A B ) ( i ) V V i 1 A i 1 0i A 1 RPTA: E Si: V ( 1) 0,1 cifras Idique la suma de las cifras de: V A) D) B) 1 C) 1 E) 1 V ( 1) 9 V ( 1) ( 999) 9 9 ( 1) ( 1) V 9 Aplicado Legedre: ( A B) A B AB i i1 V i 9 1 V i Se pide: Después de efectuar: 97 x Idique la raíz cuadrada de la suma de las cifras del producto dismiuida e ueve A) B) 11 C) 7 D) E) 9 97 x ( ) Suma de cifras 90 Se pide : RPTA: E 1 Si se cumple z x y i i Halle: x y z A) 1 B) C) D) E) x y z 1 i 1 1 x y 1 z Se pide: 1 1 Después de efectuar: Idique la raíz cuadrada de la suma de las cifras del resultado A) 1 B) C) D) E) 1 9 i Si: 9 i 1 1 Se pide: 1 9

4 1 Si: 0 0 A 7 7 i 7i7i 7 térmios 0 veces B i térmios 1 veces A B Calcule: Luego idique la suma de las cifras del resultado A) B) 9 C) D) 11 E) 1 0 ( i ) i i 0 0( ) ( i ) A B i B i 0i 00 A B 0 Se pide: 1 Calcule: Si: B C N A A x 1 A x x 1 B y 1 y 1 y 1 x C x x x y -1 A) 0,1 B) 0, C) 0, D) 0,9 E) A B C N 1 0, 1 Si el iverso multiplicativo de b c b b c a es ; halle el opuesto de b; si: a 0 y b 0 A) c B) c C) bc D) c-a E) 1 i por ser iversos b c b c a b 1 b c 0 ab ab b c 0 Se pide: - b c b - c RPTA: A b c 17 Si el reciproco de ab b c es ba, cuál será el iverso multiplicativo del opuesto de (b c)? Si:a 0, b 0 c 0 A) 1 B) - 1 C) - a 1 1 D) a c 1 1 E) a b i b c b c ab ba 1 b c 1 b c 1 b c 1 0 a i b 1 ab ab b c 1 0 b c - 1 El opuesto: -(b c) El iverso : 1 b c 1 1 Después de efectuar: x x x x Se obtiee: A) x x B) x C) x x D) E) 1 x x x x RPTA: A x x x i i ( ) i i i i x x x x x x x x x x RPTA: A

5 19 Si: x y ( ) Idique la suma de las cifras del resultado de xi y A) B) 1 C) 1 D) 1 E) 1 xiy 1 i xiy 1i xi y cifras Se pide la suma de las cifras: 1 (9) 1 RPTA: D 0 Reducir: 1i1i1i A) 1 B) C) D) E) Recordar: x( x 1) ( x ) ( x ) 1 x( x ) 1 1i1i11 i 1 1i RPTA: D 1 Halle la suma de las cifras del resultado: 0 cifras 0 cifras A) 0 B) 0 C) 0 D) E) 00 cifras 0 cifras 7 Σ () 1 (0) - 1 Σ 0 10 RPTA: D Halle la suma de las cifras del ( 0000 ) 11 cifras A) 1 B) 1 C) 9 D) 7 E) 1 suma cifras suma cifras scifras9 (000) scif 9 11 cifras Halle la suma de las cifras del ( 9999 ) 0 cifras A) 17 B) 1 C) 10 D) 17 E) ( 999) cifras 19 cifras 19 cifras Σ cifras 9(19) 17 RPTA: D

6 Halle la suma de las cifras del 9 0 cifras A) 90 B) 0 C) 7 D) 70 E) i s cifras 9 i s cifras (9)1 i s cifras (9) scifras 0(9)70 0 cifras RPTA: D Halle la suma de las cifras del resultado: 0 0 cifras A) B) 1 C) 1 D) 1 E) 10 0 suma cif()1 0 suma cif() 0 scif () scif0() 0 cifras RPTA: A Halle la suma de las cifras del S ( ) 111 cifras A) 111 B) C) 999 D) 1 E) 9 Por propiedad; suma de cifras: 111 (9) Cuál es el meor Z por el cual se debe multiplicar a 1 para que el producto sea u cubo perfecto? A) 1 B) C) 1 D) 7 E) 1 x a 7 x a x ii 7 x RPTA: E Si: abc a 97 b abc 0 abc c 1 Idique la suma de las cifras del resultado de efectuar abc cba A) B) C) D) 7 E) 0 abc x cab Se pide: RPTA: D 9 Idicar la cifra de uidades del producto ( ) ( ) ( ) ( )( ) 791 cifras A) 1 B) C) 9 D) 7 E) Equivale a la cifra de uidades de: 791 k 7 RPTA: D

7 0 Idique la cifras de uidades del producto i ( ) 1 7 cifras cifras A) 1 B) C) D) E) La cifra de uidades es equivalete a: 1 7 k k i i 9 1 La suma de dos úmeros es cuatro, y cuatro veces su producto es 1 Halle la diferecia de sus cuadrados A) ± B) ± C) ± D) ± E) ± Sea los úmeros: x e y x y x y 1 Se pide: x y ( x y ) ( x y ) ( x y ) (I) Legedre: ( x y) ( ) x y xy x y 1 ( x y) 1 ( x y) ± 1 E (I) x y ± 1 ± La suma de dos úmeros es dos y dos veces la suma de sus cuadrados es Halle la diferecia de sus cuadrados A) ± B) ± C) ± 1 D) ± 1 E) ± 1 Sea los úmeros x e y x y x y Se pide: x y x y x y x y (I) Legedre ( x y) ( x y) ( x y ) ( x y) ( x y) x y ± E (I) Si se cumple: x y ± ± 1 x 1 x 1 0 Idique el míimo valor de: RPTA: D x x 1 10 A) 0, B) 0, C) D) E) 1 Triágulos de Pascal x x 0x 0x 0x 0x 10 x 10 x x ± x Se pide: ó 0, x 1 Cuál es el míimo valor de: f ( x) x x x x x A) B) 1 C) D) E) 1 ( a 0) 0 ( a 1 ( a 0) ( a ( a 0) ( a 0) ( a 0) <> ( x 1) ( x 1) RPTA: B

8 f x x x x x ( x) ( x) xx x f ( x ) i x 1x x x 1 f ( x ) x f f mi Si:, calcule el valor de: V RPTA: D térm térm A) B) 0 C) 00 D) 000 E) V V Si, calcule: T térmios A) B) C) 0 D) E) T 7 Después de efectuar: ( ) 0 cifras RPTA: A Idique la suma de las cifras que ocupa el lugar 0 y 1 del desarrollo A) 1 B) C) D) E) cif cif cif ( ) cif 0 cif 9 cif Se pide: 1 Calcule: V 1! 11! 1 1! 7! RPTA: D!!!!!! Rad A) B) C) D) 1 E) 1 Por partes: x y V z 1! x 1 1i119 i i 1 1 ( 9) 1 9! 11! y 1 11 i i9i ! Z z z z z 0 Z 1 z V RPTA: D 9 Calcule: ( 777 ) ( ) 1 17 Nota: Los dos factores del radicado tiee 0 cifras A) B) C) 0 0 D) 7 E) 7

9 0 1 9 ( ) ( 1) 7i 11cif 01 9 ( 11cif ) cif Halle el valor de: ( 00001) ( ) 1 ( ) 1 A) i B) i C) D) E) RPTA: A ( 1) ( 1) 1 ( 1) ( 1) ( 1) ( 1) ( 1) 1 ( 1) ( ) ( ) ( )

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS.

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS. SEMAA 9 TEORÍA DE LOS ÚMEROS ÚMEROS PRIMOS. Sea A = 3...( 6) cifras Calcule si A tiee 444 divisores compuestos. A) 3 B) C) D) E) 6 A = 3 6 6 = 6 ( ) A = 3 + A = 3 CD( A) = 444 + 4 CD( A) = 448 ( A) ( )

Más detalles

( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN A + B = 9K B + C = 11 K A + C = 10 K RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES. a b c d.

( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN A + B = 9K B + C = 11 K A + C = 10 K RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES. a b c d. SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd 500, halle el valor de (a + c) a c e g K b d f h b + d + e + g 67 a + c + f + h 4 a + c + e + g 88 1 A) 75 B) 80 C) 90 D) 95 E) 100 a b

Más detalles

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K.

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K. SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd = 500, halle el valor de (a + c) A) 75 B) 80 C) 90 D) 95 E) 100 a b ab K K 7 4 8 d e de K K 1 6 7 Luego: 500 100K K = 5 Luego: a = 5, d

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

TEMA 2: POTENCIAS Y RAÍCES CUADRADAS

TEMA 2: POTENCIAS Y RAÍCES CUADRADAS TEMA 2: POTENCIAS Y RAÍCES CUADRADAS Segudo Curso de Educació Secudaria Oligatoria. I.E.S de Fuetesaúco. Mauel Gozález de Leó. CURSO 2011-2012 Págia 1 de 11 Profesor: Mauel Gozález de Leó Curso 2011 2012

Más detalles

OBJETIVO: RESOLVER PROBLEMAS DE PROGRESIÓN ARITMETICA APLICANDO FORMULA ULTIMO TÉRMINO Y DE LA SUMA

OBJETIVO: RESOLVER PROBLEMAS DE PROGRESIÓN ARITMETICA APLICANDO FORMULA ULTIMO TÉRMINO Y DE LA SUMA I. Muicipalidad De Providecia Corporació De Desarrollo Social Liceo Polivalete Arturo Alessadri Palma A Nº Depto. de Matemática Profesor: Pedro Campillay GUÍA MEDIO COEFICIENTE DOS MODULO MATEMATICO NOMBRE:

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

n es convergente, y en caso de serlo, calcular su suma. Para comprobar su convergencia aplicaremos el criterio del cociente: lim j S = n donde S j...

n es convergente, y en caso de serlo, calcular su suma. Para comprobar su convergencia aplicaremos el criterio del cociente: lim j S = n donde S j... Hoas de Problemas º Álgebra V 9. Comprobar que la serie es covergete, y e caso de serlo, calcular su suma. Resolució: Para comprobar su covergecia aplicaremos el criterio del cociete: ) < por lo tato la

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cueta que las fraccioes so cocietes idicados y que la potecia de u cociete es igual al cociete de potecias, se

Más detalles

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción:

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción: PRE EVALUACION: Resuelve la diferecia El m.c.m. de los deomiadores es el producto de ambos. tiees que dividir por cada deomiador y el factor que te queda como cociete, multiplicar por su umerador: E el

Más detalles

Sesión de Preparación de Olimpiada Matemática.

Sesión de Preparación de Olimpiada Matemática. Sesió de Preparació de Olimpiada Matemática 6 de Diciembre de 06 Ferado Mayoral Desigualdades (y Poliomios y otras fucioes) (I) -Alguas desigualdades básicas ) x 0 para cualquier x R La igualdad sólo se

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

3.- en la fig. Demostrar que: (a+b) 2 -(a-b) 2 =4ab. 4.- En la fig. Demostrar que: (a+b) 2 +(a-b) 2 =2(a 2 +b 2 )

3.- en la fig. Demostrar que: (a+b) 2 -(a-b) 2 =4ab. 4.- En la fig. Demostrar que: (a+b) 2 +(a-b) 2 =2(a 2 +b 2 ) La factorizació e la resolució de problemas. Co la habilidad para resolver ecuacioes poliomiales por factorizació se puede resolver problemas que Se habría esquivado hasta ahora. Se debe rechazar solucioes

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1 Biomio de Newto I Itroducció al Biomio de Newto (para expoete etero y positivo ZZ + ) Teorema Sea: x; a 0 y ZZ + (x + a) = Desarrollado los iomios: C x -.a 0 (x + a) 1 = x + a (x + a) = x + xa + a (x +

Más detalles

Adición y sustracción

Adición y sustracción Adición y sustracción ADICIÓN Es la operación aritmética que asocia cantidades de la misma especie (homogéneas) en una sola, llamada suma. a 1 + a + a +... + a n = s sumandos suma SUMAS NOTABLES Suma de

Más detalles

Eje I: Números y Operaciones

Eje I: Números y Operaciones Colegio Provicial de Educació Secudaria Nº Gregorio Álvarez Maestro Patagóico C I C L O Eje I: Números y Operacioes L E C T I V O 0 1 8 ALUMNO: PROFESORA: MARÍA ELISA PALMAS Eje I: Números y Operacioes

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

Números primos I. Número primo o primo absoluto. Principales fórmulas. Número compuesto. Números primos entre sí (PESI) Donde:

Números primos I. Número primo o primo absoluto. Principales fórmulas. Número compuesto. Números primos entre sí (PESI) Donde: N = A Números primos I Número primo o primo absoluto Es aquel número entero positivo que tiene sólo dos divisores: la unidad y el mismo número. Número compuesto 2; 3; 5; 7; 11; 13; 17; 19;... Son aquellos

Más detalles

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS. Qué es cierto: 3 < 3 o 3 < 3? 2. Sea a 2 R tal que a 3 2a 2 0a = 20.

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Este primer apartado es repaso de conceptos que ya conocemos, pero es bueno que lo tengamos.

Este primer apartado es repaso de conceptos que ya conocemos, pero es bueno que lo tengamos. UNIDAD 1: NÚMEROS RACIONALES. Este primer apartado es repaso de coceptos que ya coocemos, pero es bueo que lo tegamos. 1.1 NÚMEROS ENTEROS. OPERACIONES CON NÚMEROS ENTEROS. Clasificació de los úmeros:

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la lista de los

Más detalles

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1 Guía: Propiedades de las potecias SGUICM00MT11-A17V1 TABLA DE CORRECCIÓN PROPIEDADES DE LAS POTENCIAS Ítem Alterativa Dificultad Estimada 1 C Media D Media D Media 4 B Media 5 D Compresió Media 6 E Compresió

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la

Más detalles

Bárbara Cánovas Conesa. Clasificación Números Reales. Números Racionales. Números Irracionales

Bárbara Cánovas Conesa. Clasificación Números Reales. Números Racionales. Números Irracionales Bárbara Cáovas Coesa 67 70 Clasificació Números Reales www.clasesalacarta.com Números Reales Reales (R) Naturales (N) Eteros (Z) { Negativos Racioales (Q) Decimales Exactos Fraccioarios { Decimales Periódicos

Más detalles

a a a a... a a (n veces)

a a a a... a a (n veces) EJERCICIOS de POTENCIAS º ESO Aplicadas FICHA : Potecias de expoete IN RECORDAR: a a a a... a a ( veces) Defiició de potecia (Añadir esta fórmula al formulario, juto co la lista de pricipales potecias

Más detalles

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN FACTOR COMUN 1. FACTOR COMUN MONOMIO: Factor comú moomio: es el factor que está presete e cada térmio del poliomio: Ejemplo N 1: cuál es el factor

Más detalles

Seminario de problemas Curso Hoja 12

Seminario de problemas Curso Hoja 12 Semiario de problemas Curso 014-15 Hoja 1 78. Resolver el siguiete sistema de ecuacioes dode x, y, z so reales positivos: x y z 8 x 1 y 4 z 9 10 Solució: E la figura CDE, EFG, GHA y ABC so triágulos rectágulos

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora):

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora): EJERCICIOS de RADICALES º ESO HOJA 1: Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añade estas fórmulas al formulario, juto co la lista de los

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

EJERCICIOS PENDIENTES 3º E.S.O. PROGRESIONES ARITMÉTICAS

EJERCICIOS PENDIENTES 3º E.S.O. PROGRESIONES ARITMÉTICAS 3º E.S.O. PROGRESIONES ARITMÉTICAS (a + a ) RECUERDA: E ua progresió aritmética: a a + ( )d, S ) Escribe el térmio geeral de las siguietes progresioes aritméticas: a) a -3, d 5; b) a 3, d ; c) a 5, d )

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Álgebra y dé como respuesta la suma de los términos independientes de sus factores primos. a) 5 b) 9 c) 7 d) 11 e) 3

Álgebra y dé como respuesta la suma de los términos independientes de sus factores primos. a) 5 b) 9 c) 7 d) 11 e) 3 Álgebra. El maor grado de u factor primo e:, es:. Factorizar: 0 9, señalar el térmio de u factor primo. 9. Factorice 0 dé como respuesta la suma de los térmios idepedietes de sus factores primos. 9. Factorizar

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

ARITMÉTICA. Un número será (k 2 ) si los exponentes en su D.C. son impares

ARITMÉTICA. Un número será (k 2 ) si los exponentes en su D.C. son impares TEMA: POTENCIACION Y RADICACIÓN POTENCIACIÓN Es una operación matemática que consiste en multiplicar un numero por si mismo varias veces En general Donde: * * Además: * es la base * es el exponente * es

Más detalles

Unidad Formativa nº 4 - Ejercicios Ejemplo Examen - Polinomios

Unidad Formativa nº 4 - Ejercicios Ejemplo Examen - Polinomios 1. Traduce al lenguaje algebraico: a. Un numero cualquiera: x b. La suma de dos numeros diferentes: x + y c. La diferencia de dos números: x y d. El producto de dos números: x y e. El cociente de dos números:

Más detalles

Guía de estudio para 2º año Medio

Guía de estudio para 2º año Medio Liceo Marta Dooso Espejo Medio Reforzamieto Guía de estudio para º año Medio El propósito de esta guía es hacer ua revisió de los pricipales coteidos tratados e el 1º año Medio durate el año 009. I. Números

Más detalles

Multiplicación División

Multiplicación División Aritmética CAPÍTULO V Multiplicación División 01. Calcule m + n + p + r, si mnpr 27 tiene como suma de sus productos parciales 3946. A) 13 B) 15 C) 16 D) 12 E) 11 02. En una multiplicación al multiplicando

Más detalles

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias: EJERCICIOS de POTENCIAS º ESO académicas FICHA : Potecias de expoete IN RECORDAR: a a a a... a a Defiició de potecia ( veces). Aplicar la defiició para hallar, si calculadora, el valor de las siguietes

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

5. Efectúa las siguientes operaciones con números complejos:

5. Efectúa las siguientes operaciones con números complejos: 17. Expresa en forma binómica el complejo 4 4π 1. Calcular i. Efectúa la siguiente operación con números complejos: 5 + i 5 i. Efectúa el siguiente cociente de complejos en forma polar, expresando el resultado

Más detalles

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS I.E.S. Ramó Giraldo UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS. NÚMEROS REALES.. NÚMEROS NATURALES =,,, 4,... Operacioes iteras (el resultado es u úmero atural) - Suma y producto Operacioes eteras (el resultado

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y Series

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y Series SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y Series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez 3 Sucesioes

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular Repaso: Propiedades fudametales del Valor absoluto: x 0 x = 0 x = 0 xy = x y x + y x + y x = x x y = 0 x = y x y x z + z y x y x y No egatividad Defiició positiva Propiedad multiplicativa Desigualdad triagular

Más detalles

= 2n 4 n distancia a 2 es menor que 0,1. = 4n 1 n distancia a 4 es menor que 0,001. 4n 1 = 3 4 0,01. 4 la sucesión son menores que un millón.

= 2n 4 n distancia a 2 es menor que 0,1. = 4n 1 n distancia a 4 es menor que 0,001. 4n 1 = 3 4 0,01. 4 la sucesión son menores que un millón. IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS 4º ESO ALUMNO: TRABAJO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE: La mayoría de estos ejercicios está hechos e clase o e los aputes. Estúdiate primero los aputes

Más detalles

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN MCD (A; B) = C SEMANA 10 MCD - MCM. q = MCM( A;B) MCD ( A,B) = 7 1 MCD A,B = 7 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN MCD (A; B) = C SEMANA 10 MCD - MCM. q = MCM( A;B) MCD ( A,B) = 7 1 MCD A,B = 7 1 SEMANA MCD - MCM. La suma de dos números A y B es 65, el cociente entre su MCM y su MCD es 8. Halle (A - B). A) 8 B) 6 C) 7 D) 48 E) 48 MCD (A; B) C A dq B dq Donde q y q son números primos entre sí. Luego:

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

Olimpiada de Matemáticas en Chiapas

Olimpiada de Matemáticas en Chiapas UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE CIENCIAS EN FÍSICA Y MATEMÁTICAS Divisibilidad, MCD, MCM, Primos y TFA Olimpiada de Matemáticas en Chiapas Julio del 2018 Divisibilidad El conjunto de los números

Más detalles

EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES

EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver

Más detalles

a m x a n = a (m+n) a n m = a n x m

a m x a n = a (m+n) a n m = a n x m Poteciació y Radicació de úmeros eteros Sabías que... E el tablero de operacioes de la atigua Chia, la multiplicació se iiciaba co las cifras del orde superior, pasado gradualmete a las cifras de órdees

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones

Más detalles

PRODUCTO NOTABLE. Producto Notable

PRODUCTO NOTABLE. Producto Notable PRODUCTO NOTABLE Producto Notable Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se suman los cuadrados de cada término con el doble del producto de ellos. Es decir: Un trinomio

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Un numero en una sucesión: a n. Ejemplo: Qué termino de la sucesión. a n. Gráficamente:

Un numero en una sucesión: a n. Ejemplo: Qué termino de la sucesión. a n. Gráficamente: CONCEPTOS PREVIOS: Es u cojuto de úmeros que obedece a ua ley de formació. E geeral es ua fució del tipo : f:n R + 4 0 Ejemplo : a 64 3... 3 SUCESION CRECIENTE: a ; a > a SUCESION DECRECIENTE: + ; a+ a

Más detalles

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO Recuerde que: 1. Factorizar una expresión algebraica consiste en escribirla como un producto. 2. Existen varios casos de factorización. Revisemos

Más detalles

X Olimpiada Matemática Valencia 1999

X Olimpiada Matemática Valencia 1999 X Olimpiada Matemática Valecia 999 Fase Autoómica Valecia año 999. CATEGORÍA 4-6 AÑOS PROBLEMA. Números. Halla u úmero de cuatro cifras que cumpla las siguietes codicioes: La suma de los cuadrados de las

Más detalles

3 Problemas para nivel Superior

3 Problemas para nivel Superior 3 Problemas para ivel Superior Reproducimos ahora, parte de los problemas de la guía para el ivel superior del año 1996. Véase [9]. 3.1. Problemas de geometría Problema 3.1 Sea A 1, A 2,..., A 1988 los

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

CAPÍTULO VII TEORÍA DE ECUACIONES

CAPÍTULO VII TEORÍA DE ECUACIONES TEORÍA DE ECUACIONES 99 CAPÍTULO VII TEORÍA DE ECUACIONES 7. INTRODUCCIÓN Sea la ecuació racioal etera de grado p p p... p Cuyos coeficietes se supodrá racioales. p Cualquier valor de que aula a f() se

Más detalles

DESIGUALDADES. 1. Desigualdad de Cauchy-Schwarz. Para todo a 1,a 2,...,a n,b 1,b 2,...,b n números reales se cumple que:

DESIGUALDADES. 1. Desigualdad de Cauchy-Schwarz. Para todo a 1,a 2,...,a n,b 1,b 2,...,b n números reales se cumple que: DESIGUALDADES E las olimpiadas de matemáticas es frecuete la aparició de problemas cosistetes e la demostració de determiadas desigualdades. Auque o existe ua estrategia geeral para resolver los problemas

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO)

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) Portal Fueterrebollo Cocurso Primavera Matemáticas: NIVEL IV (BACHILLERATO). CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) 1. Co las letras de la palabra NADIE podemos formar 10 palabras

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 12.4. Raíces de la uidad Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Itroducció al Álgebra 08-1 Importate: Visita regularmete http://www.dim.uchile.cl/~algebra.

Más detalles

Tema 12. Límites de sucesiones

Tema 12. Límites de sucesiones Aálisis IES Complutese Tema Límites de sucesioes Resume Alguas características y propiedades de las sucesioes Sucesió creciete Ua sucesió es creciete si cada térmio es mayor o igual que el aterior: a a

Más detalles

ACTIVIDAD INTEGRADORA Nº PROGRESIONES ARITMÉTICAS

ACTIVIDAD INTEGRADORA Nº PROGRESIONES ARITMÉTICAS ACTIVIDAD INTEGRADORA Nº 5-7 PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS PROGRESIONES ARITMÉTICAS Teemos: Diferecia d = a - a -1 Térmio geeral de ua progresió aritmética: a = a k + ( - k)d Iterpolació de térmios:

Más detalles

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias: EJERCICIOS de POTENCIAS º ESO FICHA : Potecias de expoete IN RECORDAR: a a a a... a a Defiició de potecia ( veces). Aplicar la defiició para hallar, si calculadora, el valor de las siguietes potecias:

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

Examen de Febrero de 2005 de Cálculo I. Soluciones.

Examen de Febrero de 2005 de Cálculo I. Soluciones. Eame de Febrero de 5 de Cálculo I Solucioes Sea la fució f() = e sh + co domiio R a) Hallar los tres primeros térmios o ulos de su desarrollo de Taylor e = b) Probar que eiste su fució iversa f y calcular

Más detalles

Tema: Expresiones Algebraicas. Subtema: Polinomios

Tema: Expresiones Algebraicas. Subtema: Polinomios Tema: Expresiones Algebraicas Subtema: Polinomios Polinomios Definición: Un polinomio es una expresión algebraica que cumple con las siguientes condiciones: Ningún término de la expresión tiene un denominador

Más detalles

( ) ( ) RESOLUCIÓN. RESOLUCIÓN Cálculo de la razón R: RESOLUCIÓN n términos SEMANA 4 NUMERACIÓN II RPTA.: C.

( ) ( ) RESOLUCIÓN. RESOLUCIÓN Cálculo de la razón R: RESOLUCIÓN n términos SEMANA 4 NUMERACIÓN II RPTA.: C. SEMANA 4 NUMERACIÓN II 1. Si el término ab avo de la siguiente serie aritmética es ba. Calcule a +b si: 30; ;48;51 A) 6 B) 7 C) 8 D) 9 E) 10 30; ;48;51 Razón: 3. Término 1: 30 Término n: t n = t 1 + (

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

3 Lenguaje algebraico

3 Lenguaje algebraico Lenguaje algebraico Qué tienes que saber? QUÉ tienes que saber? Actividades Finales Ten en cuenta El lenguaje algebraico epresa la información con letras, números operaciones matemáticas. El valor numérico

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN De la condición: RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN. 13N = 4a9a. 4a9a = a (a) = 13

( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN De la condición: RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN. 13N = 4a9a. 4a9a = a (a) = 13 SEMANA 8 DIVISIBILIDAD II. La suma de trece números enteros consecutivos es de la forma a9a. Halle el mayor de los números. A) 363 B) 368 C) 369 D) 3 E) 3 De la condición: N 6 + N + N +... + N +... + (

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de dos números 4 (x + y)

La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de dos números 4 (x + y) TEMA 5 : ÁLGEBRA 1. Un número cualquiera x Un número más tres x + 3 El doble de un número La quinta parte de un número 2 x x 5 La suma de dos números consecutivos x + (x + 1) El cuádruple de la suma de

Más detalles

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los

Más detalles

Juan C. Castro Mancilla NOCIONES DE ALGEBRA

Juan C. Castro Mancilla NOCIONES DE ALGEBRA I. ALGEBRA. NOCIONES DE ALGEBRA 1.- Expresiones algebraicas: Una expresión algebraica es una serie de términos ligados por las operaciones de adición y diferencia. a) 3x y + xy - 7xy 3 b) m - n c) a 3-3ab

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a Págia. a) Es la sucesió de los úmeros impares:, 5, 7 b) Se suma al valor absoluto del úmero y se cambia de sigo: 7, 0, c) Se

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos:

1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos: Repaso Prueba-01 Clase-14 1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos: i) Números naturales: IN = { iii) Los números enteros: Z = { iv) Los números Racionales: Q = { v)

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles