PRACTICA 3: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRACTICA 3: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO."

Transcripción

1 PRACTCA 3: ESTUDO DEL EQULBRADO ESTÁTCO Y DNÁMCO. ROTACÓN DE UN CUERPO RÍGDO ALREDEDOR DE UN EJE FJO. 1. -NTRODUCCÓN TEÓRCA El objeto de la eperenca será el equlbrar estátca dnámcamente un sstema de masas que gra con velocdad unforme, srvéndonos de una máquna para equlbrados, BALANCNG MACHNE. La fgura representa un cuerpo rígdo cuos puntos A B están fjos en el espaco medante los soportes S S. El movmento del cuerpo rígdo es entonces una rotacón pura alrededor del eje AB fjo en el espaco en el cuerpo msmo. Como cualquer punto O del cuerpo rígdo sobre el eje de rotacón AB esta sempre en reposo tendremos: dl dt M, et ( O eje rotacón) (1) Tenendo en cuenta que la relacón estente entre la dervada temporal de un vector respecto a un sstema de referenca nercal su dervada temporal respecto a un sstema móvl soldaro al sóldo rígdo, se cumple: L ; L L L P P P P P P () Sendo el tensor de nerca del cuerpo rígdo, para el punto O, respecto a un sstema de referenca soldaro al cuerpo rígdo con orgen en el punto O,{o,,,} tene por representacón matrcal P P P P P P Construamos un sstema de referenca soldaro al sóldo de forma que su eje Z concda con el eje de rotacón AB sus ejes, e, sean dos rectas cualesquera perpendculares, contendas en el plano normal por el punto O, al eje de rotacón AB que cortan en O. Como el eje de rotacón está fjo en el espaco, el cuerpo rígdo no tene movmento de precesón alrededor del eje Z del sstema de referenca fjo. 1

2 d (3) dt Por tanto, para el ángulo de Euler se verfca en todo nstante que = cte., lo cual ndca que la línea nodal permanece fja en el espaco, además el ángulo de nutacón θ = cte. Además, sempre podemos tomar como tercer eje del sstema fjo el de la dreccón del eje fjo, como tercer eje del sstema móvl soldaro al sóldo el del eje fjo. Lo que sgnfca un grado de lbertad cuo parámetro es Ψ (ahora no tene sentdo el eje de nodos al ser θ = ). La velocdad angular del cuerpo rígdo es d k k (4) dt Sendo k el vector untaro en la dreccón del eje de rotacón sentdo determnado pero arbtraro. Supongamos que sobre el cuerpo rígdo sólo actúan la fuera de la gravedad mg mgk las reaccones de los soportes S1 S respectvamente. Entonces: R R OA ROB R M, et M (5) donde M es el momento, respecto a O, de la fuera de la gravedad. Consderemos por comoddad que el punto O A concde con el orgen del sstema móvl además con uno de los soportes, as OA R o. Llamemos a la dstanca AB = OB = h Desarrollando por componentes las ecuacones () (4) en el sstema de referenca {O,,,} móvl soldaro al cuerpo rígdo. P P M hr (6.1) o P P M hr (6.) o M o (6.3) La ecuacón (6.3) es la que rge el movmento de rotacón del cuerpo rígdo alrededor del eje fjo AB. Las ecuacones (6.1) (6.) determnan los momentos, respecto al punto O, de las FUERZAS DE LGADURA (reaccones en los soportes) necesaras para mantener el eje fjo. De la ecuacón (6.3) se desprende que debdo al momento de la fuera de gravedad respecto al eje de rotacón, el cuerpo rígdo adquere una aceleracón angular, se pondrá en movmento de rotacón alrededor del eje fjo AB. Se dce, que el CUERPO RGDO ESTA DESEQULBRADO RESPECTO AL EJE DE ROTACON.

3 S consderamos el teorema fundamental de la dnámca: F ac M a dr dm Mg dt (7) (8) Desarrollando por componentes en el sstema de referenca móvl soldaro con el cuerpo rígdo M M Mg R R (9.1) o o M M Mg R R (9.) o o Mg R R (9.3) Sn embargo, s el centro de masas G estuvera sobre el eje de rotacón AB entonces, el momento áco de la fuera de gravedad respecto al eje es nulo, a que en este caso el vector OG sería paralelo al eje Z. Tendríamos: De forma que es constante, ó lo que es lo msmo: cte S en las ecuacones (6) (9) despejamos las reaccones, las ecuacones obtendas ndcarían que las reaccones de los soportes se pueden consderar compuestas de dos componentes: 1) REACCONES ESTATCAS. -No contenen la velocdad angular. ) REACCONES DNAMCAS.-Contenen la velocdad angular. Sus módulos son proporconales al cuadrado de la velocdad angular. Además responden a las fueras que, debdo al movmento de rotacón, el cuerpo rígdo ejerce sobre los soportes al querer escapar de la lgadura mpuesta por los soportes, oblgándole a grar alrededor de un eje fjo. Por tanto, debdo a ellas, se producen vbracones un maor desgaste de los soportes o cojnetes. Caso de pasar el eje por el c.d.m., los momentos estátcos Mo, Mo, Mo son nulos. Consguentemente, cuando el centro de masas del cuerpo rígdo está stuado sobre el eje de rotacón fjo, por tanto el momento áco de la fuera de gravedad respecto al eje de rotacón es nulo, los momentos estátcos son nulos, se dce que el cuerpo está ESTATCAMENTE EQULBRADO. S además el eje de rotacón Z es un eje prncpal de nerca del elpsode de nerca del cuerpo rígdo en un punto, al pasar por C, lo será en todo punto los productos de nerca son nulos. P = P = o (eje prncpal central de nerca) 3

4 Por lo tanto las reaccones dnámcas de los soportes son entonces tambén nulas, lo cual ndca que el cuerpo rígdo al grar no tene entonces, debdo a su rotacón, tendenca alguna a desprenderse de los soportes o cojnetes que mantenen su eje de rotacón fjo. Se dce entonces que el cuerpo rígdo esta ESTATCAMENTE Y DNAMCAMENTE EQULBRADO. En esta stuacón de movmento, en que el sóldo está equlbrado estátca dnámcamente las reaccones en los apoos son las msmas que en stuacón estátca, es decr son ndependentes de su velocdad de gro. Es mu mportante para evtar vbracones el desgaste de los cojnetes que todo cuerpo rígdo que gra alrededor de un eje fjo esté estátcamente dnámcamente equlbrado, es decr, su eje de rotacón fjo sea eje prncpal de nerca el c.d.m. esté stuado sobre el eje de rotacón fjo. El sstema que nosotros dsponemos es el correspondente a la fgura: Tenemos: Velocdad de rotacón es unforme = cte. La masa M será M = Σ m, sendo m las masas que ntervenen. Como los momentos estátcos tenen que ser nulos M n m 1 u r Como los productos de nerca tenen que ser nulos P m u r u r n 1 4

5 . - PROCEDMENTO.1 OBJETOS NECESAROS Balancng machne 4 bloques (masas) Regla, compás transportador de ángulos..- DESCRPCON DEL APARATO La Balancng Machne báscamente consste en un eje perfectamente paralelo, sujeto con rodamentos por los etremos a un armaón rectangular con un motor adosado, que transmte al eje un movmento de rotacón unforme. Un etremo del eje va provsto de una polea sujeta a un dsco provsto de dos escalas, que usaremos como balana como gonómetro. En la parte superor del armaón rectangular ha un nvel (burbuja) para comprobar el paralelsmo del eje el resultado fnal del epermento. Para equlbrar estátca dnámcamente la balancng machne se utlan cuatro bloques de dferentes masas smétrcas que se pueden sujetar sobre el eje..3.- Calculo del tensor de nerca en el punto A para una poscón determnada de las masas. Cálculo del vector momento cnétco. Antes de calcular la poscón de equlbrado estátco dnámco de las masas dentro del eje, se va a proceder a calcular, para una poscón dada, la poscón en e del centro de masas del sstema de sóldos, así como el tensor de nerca en el orgen de coordenadas (Punto A). Para ello se usará la tabla 1. Dentro de la tabla, los valores en negrta van a ser fjos para todo el epermento (valores de los w de las masas, ángulo grado poscón en el eje Z de las masas 1 ). 5

6 Masa 1 Masa Masa 3 Masa 4 Wmasa (W) (gramos) Ángulo grado º 45º 15 3 Dstanca a A (Z) (mm) Dstanca al eje de gro (r )(mm) Tabla 1. Valores ncales de poscón angular en el eje Z de las masas. La poscón del centro de masas en é vendrá dada por la sguente epresón: X Y cm.. cm.. w r cos w w r sn Los momentos de nerca respecto a los ejes, é se calculan de forma drecta: w w r sn w r cos cos sn w r r Y para los productos de nerca respecto a los pares de planos coordenados, usamos las ecuacones de teoría: P P P w r sn cos w Z r cos w Z r sn Fnalmente vamos a consderar que tenemos una velocdad angular w= k. Calculamos el vector momento cnétco en funcón de 6

7 .4 Cálculo de las poscones de equlbro de los bloques Suponemos que ha que encontrar las poscones de los bloques (3) (4) para que el conjunto este equlbrado dnámcamente, habendo fjado las de los bloques (1) (). El procedmento es el sguente: (a) Elegr las poscones angulares longtudnales adecuadas para los bloques (1) (). Elegmos las que tenemos en la tabla 1. (b) Determnar las poscones angulares de los bloques (3) (4), por cálculo gráfco (punto.5). (c) Determnar la poscón longtudnal de los bloques (3) (4), analítcamente. (d) Montar los bloques sobre el eje en las poscones así determnadas (e) Comprobar s el eje se encuentra en equlbro estátco (f) Comprobar s el eje se encuentra en equlbro estátco (g) Colocar la correa en la polea stuar la cuberta transparente; conectar el motor observar s el conjunto se encuentra equlbrado. (h) Cuando se haa logrado el equlbro de forma satsfactora, desplaar levemente uno de los bloques. Observar el desequlbro producdo. () En últmo lugar se pde calcular el nuevo tensor de nerca para la poscón de equlbrado estátco dnámco. Además, volvemos a calcular el vector momento cnétco en funcón de.5 Cálculos Buscamos que las coordenadas é del centro de masas sean cero. Vamos a ver cómo lo podemos hacer gráfcamente. Suponemos el bloque (1) stuado en el punto A con ángulo cero, que el bloque () esta stuado a 165 mm con un ángulo grado de 45. Los momentos de desequlbro que se han meddo son los de la Tabla 1. Fgura. Determnacón de las poscones angulares para un sstema de cuatro masas Se dbuja el polígono de momentos con los valores (Wr), para determnar las poscones angulares de los bloques (3) (4). (Wr)1 (Wr) son conocdos tanto en magntud como en dreccón El vector (Wr)1 se ha dbujado haca abajo por conveno. Las longtudes de (Wr)3 de (Wr)4 son conocdas dbujamos los arcos desde los etremos de (Wr)1 de(wr) 7

8 para encontrar las dreccones de los vectores desconocdos. Una ve obtendo el equlbro estátco, procedemos a equlbrar dnámcamente el dspostvo, para ello vamos a mponer que los productos de nerca P P sean nulos. Como nuestro sstema de referenca a ha sdo defndo en A, esto nos va a dar dos ecuacones analítcas, que quedan, dado que las dstancas r son guales para todas las masas: P P w Z cos w Z sn En este sstema de ecuacones, nuestras dos ncógntas serán Z3 Z4. Una ve resuelto el sstema de ecuacones, tendremos las poscones de las cuatro masas a lo largo del eje Z, procedemos a comprobar epermentalmente los cálculos. RESUMEN DE ACTVDADES: Cálculo, para la poscón ncal (Tabla 1), de la poscón del centro de masas del tensor de nerca en el punto A. Cálculo del vector momento cnétco para un vector velocdad angular w. Cálculo gráfco de la poscón de equlbrado estátco, fjando los ángulos de las masas 1. Cálculo analítco de la poscón de equlbrado dnámco para los ángulos de equlbro estátco anteror, fjando la poscón en Z de las masas 1. Cálculo para esta poscón fnal, de la poscón del centro de masas el nuevo Tensor de nerca. Comprobar las pequeñas desvacones producdas por el uso del cálculo gráfco. Fnalmente calcular de nuevo el vector momento cnétco. 8

9 APÉNDCE A LSTA DE SMBOLOS a r W α θ ω Poscón longtudnal sobre el eje Rado del bloque desequlbrante Poscón longtudnal respecto al cero de la escala Peso del bloque (W = mg) Poscón angular del bloque. Poscón angular del bloque desde el cero de la escala Velocdad angular del eje (rad/s) Los subíndces 1,, 3 4 se referen a los bloques (1), (), (3) (4). 9

10 ANEXO 1. PRÁCTCA 3. EQULBRADO DE MOTORES. HOJA DE ENTREGA DE RESULTADOS Nombre: Nº Matrícula: Poscón del centro de para la poscón ncal de las masas: X c.m. (cm) Y c.m. (cm) - Tensor de nerca para la poscón ncal: Kg m O - Poscón de las masas 3 4 en equlbrado estátco dnámco: 3 (grados) 4(grados) Z3 (cm) Z4 (cm) -Coordenadas del centro de masas en la poscón calculada de equlbro: X c.m. (m) Y c.m. (m) -Tensor de nerca para la poscón fnal: Kg m O -Vector momento cnétco en el punto O ncal en equlbro) L Oncal Kg m s Oequlbro Práctca 1. Mecánca ETS UPM. Curso 18/19 L Kg m s

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO. RACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERO RÍGIDO ALREDEDOR DE UN EJE FIJO. 1. -INTRODUCCIÓN TEÓRICA El objeto de la eperenca será el equlbrar estátca y dnámcamente un

Más detalles

TEMA 2 Revisión de mecánica del sólido rígido

TEMA 2 Revisión de mecánica del sólido rígido TEMA 2 Revsón de mecánca del sóldo rígdo 2.. ntroduccón SÓLDO RÍGDO SÓLDO: consderar orentacón y rotacón RÍGDO: CONDCÓN DE RGÍDEZ: - movmento: no se alteran dstancas entre puntos - se gnoran las deformacones

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

( ) 2 3 a ( ) % τ ia. Solución:

( ) 2 3 a ( ) % τ ia. Solución: Problema 1: El clndro unforme de rado a de la fgura pesaba en un prncpo 80 N. Después de taladrársele un agujero clíndrco de eje paralelo al anteror su peso es de 75 N. Suponendo que el clndro no deslza

Más detalles

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

Tema 3-Sistemas de partículas

Tema 3-Sistemas de partículas Tema 3-Sstemas de partículas Momento lneal y colsones Momento lneal de un partícula Segunda ley de Newton dp F dt p mv Impulso I tb ta Fdt Teorema del mpulso I p B p A Centro de masas 1 r M m r con M m

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones entre

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A. Blatter Lcenca Creatve Commons Atrbucón 3.0 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: epartamento de Físca, UTFSM Físca General II / Prof: A. Brunel. FIS120: FÍSICA GENERAL II GUÍA#6: Campo magnétco, efectos. Objetvos de aprendzaje. Esta guía es una herramenta que usted debe usar para lograr

Más detalles

Modelado de un Robot Industrial KR-5

Modelado de un Robot Industrial KR-5 RESUMEN Modelado de un Robot Industral KR-5 (1) Eduardo Hernández 1, Samuel Campos 1, Jorge Gudno 1, Janeth A. Alcalá 1 (1) Facultad de Ingenería Electromecánca, Unversdad de Colma, km 2 Carretera Manzanllo-Barra

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

SÓLIDO RÍGIDO (I) (cinemática)

SÓLIDO RÍGIDO (I) (cinemática) SÓLDO RÍGDO () (cnemátca) ÍNDCE 1. ntroduccón. Momento del sóldo rígdo 3. Rodadura 4. Momento angular 5. Momento de nerca BBLOGRFÍ: Caps. 9 y 10 del Tpler Mosca, ol. 1, 5ª ed. Caps. 10 y 11 del Serway

Más detalles

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis Físca I Apuntes de Clase 2, 2018 Turno D Prof. Pedro Mendoza Zéls Isaac Newton 1643-1727 y y 1 y 2 j O Desplazamento Magntudes cnemátcas: v m r Velocdad meda r r 1 r 2 r velocdad s x1 2 r1 x1 + r2 x2 +

Más detalles

Cálculo de momentos de inercia

Cálculo de momentos de inercia Cálculo de momentos de nerca Cuando el cuerpo es homogéneo y unforme el cálculo de momento de nerca es una ntegral - Dvdmos el cuerpo en elementos de masa nfntesmal dm, todos a la msma dstanca r del eje

Más detalles

Mecánica Clásica Alternativa II

Mecánica Clásica Alternativa II Mecánca Clásca Alternatva II Alejandro A. Torassa Lcenca Creatve Commons Atrbucón 3.0 (2014) Buenos Ares, Argentna atorassa@gmal.com - versón 1 - Este trabajo presenta una mecánca clásca alternatva que

Más detalles

R (3 coordenadas) y tres ángulos que definen la rotación del sistema de coordenadas ligada con el cuerpo

R (3 coordenadas) y tres ángulos que definen la rotación del sistema de coordenadas ligada con el cuerpo . Velocdad y Aceleracón en Marcos de Referenca en Movmento.. Cnemátca de un cuerpo rígdo... Ángulos de Euler.. Teorema de Euler..4 Marcos de Referenca en Movmentos Traslaconal y Rotaconal..5 Dervada de

Más detalles

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3 .1 Parte I Mecánca de Lagrange Índce I 1 1. Coordenadas generalzadas 1 1.1. Constrccones y coordenadas generalzadas............. 1 1.2. Desplazamentos vrtuales...................... 3 2. Ecs. de Lagrange

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión). Examen de Físca-, del Grado en Ingenería Químca Examen fnal. Septembre de 204 Cuestones (Un punto por cuestón. Cuestón (Prmer parcal: Un satélte de telecomuncacones se mueve con celerdad constante en una

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo Rígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, Rotacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa y ludos Práctca 9 Dspacón de energía mecáa Objetvos El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Determnar los cambos de la energía cnétca de un

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

Fuerzas ficticias Referencial uniformemente acelerado

Fuerzas ficticias Referencial uniformemente acelerado Capítulo 10 Fuerzas fctcas Las fuerzas fctcas son fuerzas que deben nclurse en la descrpcón de un sstema físco cuando la observacón se realza desde un sstema de referenca no nercal, a pesar de ello, se

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍA DE ESTRUCTURAS TEA 4: CÁCUO DE ESTRUCTURAS POR E ÉTODO DE A DEFORACIÓN ANGUAR DEPARTAENTO DE INGENIERÍA ECÁNICA - EKANIKA INGENIERITZA SAIA ESCUEA TÉCNICA SUPERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD

Más detalles

Capítulo V Dinámica del cuerpo rígido

Capítulo V Dinámica del cuerpo rígido Capítulo V Dnámca del cuerpo rígdo 5. Dnámca de un sstema de masas puntuales Hasta el momento hemos estudado la nteraccón de dos cuerpos puntuales. Corresponde ahora analzar lo que ocurre cuando tenemos

Más detalles

La cinemática estudia como ya sabemos el movimiento como una relación espacio-temporal, sin analizar cuales son las causas que lo producen.

La cinemática estudia como ya sabemos el movimiento como una relación espacio-temporal, sin analizar cuales son las causas que lo producen. Capítulo 5 DINÁMICA 5.1. Introduccón La cnemátca estuda como ya sabemos el movmento como una relacón espaco-temporal, sn analzar cuales son las causas que lo producen. La dnámca tene por objeto el estudo

Más detalles

Departamento: Física Aplicada III. Mecánica Racional (Ingeniería Industrial) Curso i q. k Como las coordenadas q k son libres queda

Departamento: Física Aplicada III. Mecánica Racional (Ingeniería Industrial) Curso i q. k Como las coordenadas q k son libres queda Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-8. Dnámca Analítca 1. Introduccón. Prncpo de D Alambert a. Enuncado: Cualquer poscón de una partícula puede ser consderada

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

EQUILIBRIO DE LA BICICLETA

EQUILIBRIO DE LA BICICLETA JUAN RIUS CAMPS EQUILIBRIO DE LA BICICLETA EDICIONES ORDIS 1 2 EDICIONES ORDIS GRAN VIA DE CARLOS III, 59, 2º, 4ª 19 de Marzo de 2010 08028 BARCELONA 3 4 EQUILIBRIO DE LA BICICLETA Resulta muy dfícl explcar

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

FÍSICA I. Mecánica y Termodinámica PLAN DE ACTIVIDADES AÑO 2001 TRABAJO PRÁCTICO Nº 2

FÍSICA I. Mecánica y Termodinámica PLAN DE ACTIVIDADES AÑO 2001 TRABAJO PRÁCTICO Nº 2 Unversdad Naconal del Nordeste acultad de Cencas Exactas y Naturales y Agrmensura ÍSICA I Mecánca y Termodnámca CARRERAS: Ingenería Eléctrca Ingenería Electrónca PLAN DE ACTIVIDADES AÑO 2001 TRABAJO PRÁCTICO

Más detalles

Departamento: Física Aplicada III. Mecánica Racional (Ingeniería Industrial) Curso Estática Analítica

Departamento: Física Aplicada III. Mecánica Racional (Ingeniería Industrial) Curso Estática Analítica Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-8. Estátca Analítca. Introduccón: Necesdad de elmnar de las ecuacones mecáncas las fuerzas vnculares. Conceptos ncales a.

Más detalles

PRÁCTICA 5 TRABAJO Y ENERGÍA

PRÁCTICA 5 TRABAJO Y ENERGÍA Códgo: Versón: 0 Manual de práctcas del Págna 8/4 Laboratoro de Mecánca Seccón ISO 7.3 Epermental 05 de agosto de 0 emsón Secretaría/Dvsón: Dvsón de Cencas Báscas Laboratoro de Mecánca Epermental La mpresón

Más detalles

(c).- En equilibrio estático, el momento resultante respecto a cualquier punto es nulo. (d).- Un objeto en equilibrio no puede moverse.

(c).- En equilibrio estático, el momento resultante respecto a cualquier punto es nulo. (d).- Un objeto en equilibrio no puede moverse. Relacón de problemas DEPARTAMENTO DE FÍSICA ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD DE JAÉN Equlbro estátco y elastcdad 1.- Verdadero o falso: (a).- F = 0 es sufcente para que exsta el equlbro estátco.

Más detalles

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García

Herramientas Matemáticas para la localización espacial. Prof. Cecilia García Herramentas Matemátcas para la localzacón espacal Contendo I. Justfcacón 2. Representacón de la poscón 2. Coord. Cartesanas 2.2 Coord. Polares y Clíndrcas 2.3 Coord. Esfércas 3. Representacón de la orentacón

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo ígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, otacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

FISICA I HOJA 9 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 9. CHOQUES FORMULARIO

FISICA I HOJA 9 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 9. CHOQUES FORMULARIO 9. CHOQUES FORMULARIO 9.1) Un proyectl de masa 0,05 kg, que se mueve con una velocdad de 400 penetra una dstanca de 0,1 m en un bloque de madera frmemente sujeto al suelo. Se supone que la fuerza deceleradora

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

existe una fuerza eléctrica entre ellas. Nos podemos hacer una pregunta si q Ese algo que rodea a la carga se conoce como CAMPO ELECTRIO CE

existe una fuerza eléctrica entre ellas. Nos podemos hacer una pregunta si q Ese algo que rodea a la carga se conoce como CAMPO ELECTRIO CE UNIVRSIDAD NACIONAL D INGNIRIA Curso: FISICA II CB 3U 1I Imagna. stas sentado cerca de Ruperta, una joven muy lnda que usa un perfume muy agradable. Pero Ruperta tene su amorcto, él llega y tenes que rte.

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

SEGUNDO EXAMEN PARCIAL FÍSICA I MODELO 1

SEGUNDO EXAMEN PARCIAL FÍSICA I MODELO 1 SEGUDO EXAME PARCIAL FÍSICA I MODELO.- Un ndvduo de 80 kg se encuentra en el etreo de una tala de 0 kg de asa 0 de longtud que flota en reposo sore la superfce de agua de un estanque. S el hore se desplaa

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

CINEMATICA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

CINEMATICA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física CINEMTIC BERNRD RENS GVIRI Unersdad de ntoqua Insttuto de Físca 2010 Índce general 1. Cnemátca 1 1.1. Introduccón.......................................... 1 1.2. Sstemas de referenca....................................

Más detalles

Cinemática y dinámica del Cuerpo Rígido (no se incluye el movimiento de precesión y el del giróscopo)

Cinemática y dinámica del Cuerpo Rígido (no se incluye el movimiento de precesión y el del giróscopo) Cnemátca y dnámca del Cuerpo ígdo (no se ncluye el movmento de precesón y el del gróscopo) El cuerpo rígdo El cuerpo rígdo es un caso especal de un sstema de partículas. Es un cuerpo deal en el cual las

Más detalles

3 LEYES DE DESPLAZAMIENTO

3 LEYES DE DESPLAZAMIENTO eyes de desplazamento EYES DE DESPAZAMIENTO En el capítulo dos se expone el método de obtencón de las leyes de desplazamento dseñadas por curvas de Bézer para mecansmos leva palpador según el planteamento

Más detalles

Física Curso: Física General

Física Curso: Física General UTP IMAAS ísca Curso: ísca General Sesón Nº 14 : Trabajo y Energa Proesor: Carlos Alvarado de la Portlla Contendo Dencón de trabajo. Trabajo eectuado por una uerza constante. Potenca. Trabajo eectuado

Más detalles

En el espacio-tiempo, las moléculas pueden acumular energía cinéticas de tres maneras

En el espacio-tiempo, las moléculas pueden acumular energía cinéticas de tres maneras Rotacón En el espaco-tempo, las moléculas pueden acumular energía cnétcas de tres maneras Por ejemplo, cuando agregamos calor a un gas monoatómco a volumen constante, toda la energía agregada aumenta la

Más detalles

Tema 2 : DEFORMACIONES

Tema 2 : DEFORMACIONES Tema : eformacones Tema : EFRMACINES F F 3 F / u u u 3 3 3 / 3 / F n Prof.: Jame Santo omngo Santllana E.P.S.-Zamora (U.SAL.) - 008 Tema : eformacones..- INTRUCCIÓN Los cuerpos se deforman debdo a la accón

Más detalles

Tema 10 : PANDEO. Problemas resueltos. N cr (1) (2) Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.) = z 2

Tema 10 : PANDEO. Problemas resueltos. N cr (1) (2) Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.) = z 2 Tema 1 : PDEO L (1) () π. E. I = L Problemas resueltos Pro.: Jame Santo Domngo Santllana E.P.S.-Zamora (U.SL.) - 8 1.1.- Un plar, de 3 m de longtud, se encuentra sometdo a una carga F de compresón centrada.

Más detalles

Semana 12: Tema 9 Movimiento Rotacional

Semana 12: Tema 9 Movimiento Rotacional Semana : Tema 9 Movmeno Roaconal 9. Velocdad y Aceleracón angular 9. Roacón con aceleracón angular consane 9.3 Energía cnéca roaconal 9.4 Cálculo de momeno de nerca y el eorema de los ejes paralelos Capíulo

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratoro de Físca Mecánca. ITM, Insttucón unverstara. Práctca 0. Colsones. Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla corta,

Más detalles

6 Minimización del riesgo empírico

6 Minimización del riesgo empírico 6 Mnmzacón del resgo empírco Los algortmos de vectores soporte consttuyen una de las nnovacones crucales en la nvestgacón sobre Aprendzaje Computaconal en la década de los 990. Consttuyen la crstalzacón

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Ecuaciones de Movimiento

Ecuaciones de Movimiento Facultad de Cenca Fíca y Matemátca Unverdad de Chle Ecuacone de Movmento Concepto báco 26 de octubre de 2011 Depatamento de Ingenería Mecánca ME4701- Vbracone Mecánca 1. Segunda Ley de Newton En un tema

Más detalles

Ejercicios Resueltos de Vectores

Ejercicios Resueltos de Vectores Departamento de Matemátca y C C Coordnacón: Calculo II para Ingenería Semestre Eerccos Resueltos de Vectores Sean los vectores en IR : v,,, u,, 4, a,, y b,, 4 : a) Determne los vectores: UV y AB UV AB

Más detalles

OCION elegr opcones) Ejercco 1 EJERCICIOS Un rombo tene 30 m de superfce su ángulo menor es de 4º, Calcule la longtud de su lado. Ejercco S sumamos uno a un número calculamos su raíz cuadrada postva, se

Más detalles

El Tensor de Deformación

El Tensor de Deformación Comportamento Mecánco de Sóldos Capítlo IV Tensor de deformacón 4.. Introdccón El Tensor de Deformacón Además de descrbr los esferzos de n cerpo, la mecánca de los sóldos contnos aborda tambén la descrpcón

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

En general puede representarse por : Clase 6 3

En general puede representarse por : Clase 6 3 Encontrar raíces de uncones es uno de los problemas más comunes en ngenería Los métodos numércos para encontrar raíces de uncones son utlzados cuando las técncas analítcas no pueden ser aplcadas. Esto

Más detalles

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO 8 CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO En esta seccón se descrbe el análss de posconamento y orentacón del robot paralelo: Se resuelve el problema cnemátco nverso en base a métodos

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

Programa de Doctorado en Ingeniería Aeronáutica Capítulo III Tensor deformación. El Tensor de Deformación A A'

Programa de Doctorado en Ingeniería Aeronáutica Capítulo III Tensor deformación. El Tensor de Deformación A A' Programa de Doctorado en Ingenería Aeronátca Capítlo III Tensor deformacón Comportamento Mecánco de Materales - Dr. Alberto Monsalve González - El Tensor de Deformacón Introdccón Además de descrbr los

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia

Etáti Estática. 2.Centros de gravedad y 3.Momentos de inercia Etát Estátca.Equlbro 2.Centros de gravedad y 3.Momentos de nerca Parte de la físca que estuda el equlbro de los cuerpos Partedelafíscaqueestudalasrelaconesexstentes entre las fuerzas que actúan en un cuerpo

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Www.apuntesdemates.weebl.es TEMA AMO EALARE Y VETORIALE. INTRODUIÓN e entende por magntud cualquer cualdad o propedad medble. ueden clasfcarse en: - Magntudes escalares: Quedan totalmente defndas cuando

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

7º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA 7º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA México D.F., 12 al 14 de Octubre de 2005

7º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA 7º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA México D.F., 12 al 14 de Octubre de 2005 7º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA 7º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Méxco D.F., 1 al 14 de Octubre de 005 ANÁLISIS DINÁMICO DE UN EQUIPO DE ENSAYO DE AMORTIGUADORES Zabalza

Más detalles

MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA

MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA MOVIMIENTO CIRCULAR Y MOVIMIENTO DE ROTACIÓN DE UN CUERPO RÍGIDO TOMÁS S. GRIGERA Insttuto de Físca de Líqudos y Sstemas Bológcos (IFLYSIB), CONICET y Unversdad Naconal de La Plata, Calle 59 no. 789, La

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físca General 1 Proyecto PMME - Curso 2007 Insttuto de Físca Facultad de Ingenería UdelaR ANÁLISIS E INFLUENCIA DE DISTINTOS PARÁMETROS EN EL ESTUDIO DE LA ESTÁTICA DE CUERPOS RÍGIDOS. Sebastán Bugna,

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

PRÁCTICA 4. INDUCCIÓN ELECTROMAGNÉTICA. A. Observación de la fuerza electromotriz inducida por la variación de flujo magnético

PRÁCTICA 4. INDUCCIÓN ELECTROMAGNÉTICA. A. Observación de la fuerza electromotriz inducida por la variación de flujo magnético A. Observacón de la fuerza electromotrz nducda por la varacón de flujo magnétco Objetvo: Observacón de la presenca de fuerza electromotrz en un crcuto que sufre varacones del flujo magnétco y su relacón

Más detalles

Mecánica Estadística: Estadística de Maxwell-Boltzmann

Mecánica Estadística: Estadística de Maxwell-Boltzmann Ludwg Boltzmann 1844-1906 James Clerk Maxwell 1831-1879 E. Martínez 1 Lápda de Boltzmann en el cementero de Vena S=k ln W E. Martínez 2 S=k ln W Entropía, una propedad termodnámca Una medda de nuestra

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO N FEH DURION 3 11 3 JULIO 26 DE 2013 9

Más detalles

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS120: FÍSICA GENERAL II GUÍA#7: Campo magnétco, orgen. Objetvos de aprendzaje. Esta guía es una herramenta que usted debe usar para lograr los sguentes objetvos: Analzar los fenómenos que organ los campos

Más detalles