CAPÍTULO 2 - CORRIENTES ALTERNAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO 2 - CORRIENTES ALTERNAS"

Transcripción

1 APÍTUO - OIENTES ATENAS -- FOMAS DE ONDA aos a ltar el estudo de foras de onda peródca, es decr donde f(t) f (t + nt), sendo n un núero entero y T el período.- T T T -- AO MEDIO El valor edo de una funcón peródca y(t) de período T es, por defncón: Y ed T 0 T ( ) y t dt -3- AO EFIAZ Una corrente (t) que crcula por un eleento resstvo puro de resstenca dspa una potenca p(t), con un valor edo P.- Esta sa potenca P la puede dspar una corrente constante de valor I En estas condcones dreos que (t) tene un valor efcaz I ef I. o so puede decrse para la tensón efcaz ef..- El valor efcaz o raíz cuadrátca eda de la funcón y(t) es, por defncón: Y ef T ( ) Y t T 0 dt Ejeplo: Hallar los valores edo y efcaz de la funcón Y(t) Y sen ω t para un período Π Y T Π Y wt d wt Y [ wt] T sen ( ) cos 0 0 Π 0 ed Y ef T Π Y y dt ( Y sen wt ) d( wt) 0, 707 Y T 0 Π 0

2 -4- AGEBA OMPEJA NUMEO IMAGINAIO: Es aquel núero que elevado al cuadrado da coo resultado un núero negatvo. o denonaos con la letra j. j - j ASPETOS A ONSIDEA: a) - S se suan dos núeros reales, se obtene coo resultado un núero real. b) - S se suan dos núeros agnaros, se obtene coo resultado un núero agnaro. c) - S se suan un núero real y un núero agnaro, se obtene un NUMEO OMPEJO. EPESENTAION GÁFIA DE UN NÚMEO OMPEJO Se utlza para la sa el plano ortogonal coplejo.- Iag. 3 Z 4 + j eal OPEAIONES ON NÚMEOS OMPEJOS: IGUADAD: Dos o ás núeros coplejos son guales s y solaente s sus respectvas coponentes reales e agnaras son guales.- SUMA DE NÚMEOS OMPEJOS: a sua de dos núeros coplejos es gual a otro núero coplejo cuya coponente real es gual a la sua de las coponentes reales y cuya coponente agnara es gual a la sua de las coponentes agnaras parcales.- Z a + j. b Z a + j. b Z + Z (a + a) + j.(b + b)

3 PODUTO DE NÚMEOS OMPEJOS Z a + j. b Z c + j. d Z. Z (a + j. b). (c + j. d) OIENTE DE NÚMEOS OMPEJOS (a. c - b. d) + j. (a. d + b. c) Z a + j. b Z c + j. d Z (a + j. b). (c + j. d) Z (c + j. d). (c + j. d) ( a.c+ b.d) + j. ( b.c a.d) c + d a.c+ b.d + j. c + d ( b.c a.d) c + d OMPEJO ONJUGADO: Dado el núero coplejo Z a + j. b, el conjugado del so, que denotaos con Z *, es otro núero coplejo cuya coponente agnara es gual a la coponentes agnara del núero coplejo orgnal cabada de sgno.- Es decr: Z a + j. b Z * a - j. b Se puede deostrar que: POTENIAIÓN: Z. Z * a + b os cuadrados y potencas de órdenes superores de un núero coplejo se obtenen por ultplcacón repetda.- 3

4 FOMA TIGONOMÉTIA DE UN NÚMEO OMPEJO Iag. Sea el núero coplejo: b ρ Z a + j. b Trazando un segento radal desde el orgen de coordenadas y llaando ρ a la longtud de dcho segento y al ángulo que el so fora con el eje real, se tene: a eal a ρ. cos b ρ. sen Z ρ. (cos + j. sen ) De esta anera, Z puede expresarse en funcón de ρ y, abos reales.- FOMA EXPONENIA DE UN NÚMEO OMPEJO: Se puede deostrar que: cos + e e j j ( ) sen e e j j ( ) Suando ebro a ebro abas expresones, se obtene: cos + j sen e j (4) Por lo tanto: ( ) Z a+ j. b ρ cos + j.sen ρ e j Z ρ e j (5) En fora ás sple: Z Z (6) 4

5 MUTIPIAION EN FOMA EXPONENIA: Z Z. e j Z Z Z. e j Z + Z. Z Z. Z.e j(+) Z. Z (7) OIENTE EN FOMA EXPONENIA: Z Z Z (8) Z Z Z - POTENIA DE UN NÚMEO OMPEJO EN FOMA EXPONENIA: Sea el núero coplejo: Z Z n. Z n Z n (9) FASOES: os fasores se utlzan para la representacón de correntes y tensones.- Iag. A W. t a proyeccón sobre el eje real valdrá: jw. t ( ) ( ) eal e A e A e A cos W. t Un segento coo el que se uestra en la fgura puede hacerse grar s se hace cuplr la condcón de que el ángulo que dcho segento fora con el eje real auente con el tepo, es decr: W. t W elocdad angular t Tepo. Esto deuestra que la proyeccón de un segento gratoro sobre un eje fjo es una cantdad que varía senodalente. De lo dcho anterorente se desprende que una agntud alterna queda perfectaente representada por la proyeccón de un segento gratoro sobre un eje fjo.- El segento gratoro al que se hace encón recbe el nobre de FASO. S llaaos I M a la longtud del segento, la longtud de la proyeccón del so sobre el eje horzontal vale I M. cos W. t.- 5

6 Se deduce entonces que un fasor puede representar una corrente o una tensón que varíen de acuerdo a: U U M. cos W. t I M. cos W. t Para representar una tensón que varíe de acuerdo a la expresón U U M. cos (W. t + P), solo se necesta usar un fasor que adelante un ángulo ϕ. Iag. U ϕ I W. t eal a corrente Y y la tensón U están representadas por los fasores o segentos gratoros coo los anterores. Abos fasores están grando y a edda que se produce dcho gro, uno adelanta con respecto al otro un ángulo ϕ constante.- os dos segentos radales nos brndan toda la nforacón que se precse acerca de ellos (dreccón, agntudes y ángulos).- No nos nteresa coo estén grando los fasores con respecto a los ejes sepre y cuando se conserve el ángulo ϕ.- Por lo general, a uno de los fasores se lo hace concdr con el eje horzontal, y este fasor se toa coo referenca para trazar los otros fasores.- De lo anteror se deduce que lo prero que se debe hacer es elegr un fasor de referenca con un ángulo de cero grado, y luego se referen a este últo los fasores restantes.- Para fnalzar, dreos que para la representacón fasoral de tensones y correntes se deben elegr escalas convenentes para las sas.- 6

7 -5- TENSIONES Y OIENTES SENOIDAES Suponendo, para splfcar el estudo, que solo exste el régen peranente (prescndendo del transtoro) se confecconan las tablas y 3 para tensón y corrente con señales senodales o cosenodales.- Eleento U s I sen wt U s I cos wt ( ) U I sen wt I cos wt d dt dt w I cos wt w I (-sen wt) I ( cos wt) I sen wt Tabla Eleento I s v sen wt I s v cos wt v volt dv dt -6- IMPEDANIA sen wt ( cos wt) W cos wt sen wt W w cos wt w ( sen wt) Tabla 3 a pedanca de un eleento aslado, o de una raa de varos eleentos, o de un crcuto copleto es la relacón entre la tensón aplcada y la ntensdad de corrente que crcula.- Ipedanca Funcón de tensón Funcón de corrente Z α Z ódulo de la pedanca. α ángulo entre la tensón y la corrente en la pedanca o ángulo de fase. El ángulo de fase varía entre ± Π esstenca (): Tensón y corrente en fase (α 0) Autonduccón (): orrente a -90º de la tensón (α - 90) apacdad (c): orrente adelanta + 90º a la tensón (α + 90) - Módulo Z w 7

8 -7- IUITOS MIXTOS DE OIENTE ATENA Sea el crcuto de la fg. al que se la aplca una tensón v(t) M e. Aplcando la ª ey de Krchoff: (t) + d(t) M e dt M e Ecuacón dferencal de er. orden y su solucón es de la fora (t) K e Susttuyendo resulta: K e + jwk e M e donde K M e (t) M e + jw + jw Z ( t) ( t) e e + jw + jw () Sea ahora el sguente crcuto con la sa tensón aplcada M e ( t) ( ) t dt e + hacendo (t) ke y reeplazando: M Ke j Ke + e K ; ( t) e + j( / ) j j( ) Z e j ( ) ( ) j 8

9 -8- DIAGAMAS DE IMPEDANIAS as ecuacones y 3 uestran las pedancas coo núeros coplejos de parte real e agnara Y w y - respectvaente.- j α x w α arctg w Z ( w) + α -j α arctg Z + (5) Por lo vsto decos que los eleentos de un crcuto se pueden representar edante su pedanca copleja Z.- 9

10 -9- IUITOS -- Sea el crcuto de la fgura, en el que se desea encontrar la pedanca Z cuando por él crcula I M sen wt u( t) u + u + u I sen wt+ w I wt cos coo (6) u( t) Asen( wt+ α) Asen wt cosα + Acos wt senα (7) u (t) (t) Igualando los coefcentes de sen wt y cos wt en y 6 7 resulta: I M cos α ; I M (wt - ) A sen α w Ahora ben: tgα ; cosα + w I A + w I cosα Por lo que: u( t) Asen( wt+ α) + w I wt sen + tg w donde: Z + w w (8) α tg (9) 0

11 -0- ESONANIA Dreos que un crcuto sere - - entra en resonanca cuando la tensón aplcada y la ntensdad de corrente que crcula están en fase (corrente áxa).- Al estar en fase sgnfca que la pedanca se coporta coo una resstenca X0 w w0 c Por lo tanto de (8) w Πf ; f 0 Π c Para w < w 0 la pedanca es capactva y α es negatvo. Para w > w 0 la pedanca es nductva y α es postvo.

CAPÍTULO 3 - POTENCIA ALTERNA

CAPÍTULO 3 - POTENCIA ALTERNA CAPÍTULO 3 - POTENCA ALTERNA 3-- POTENCA ACTVA (t) Dadas v(t) e (t) la potenca nstantánea en un crcuto genérco es: p(t) = v(t). (t) v(t) Crcuto La potenca p puede ser postva o negatva según el nstante

Más detalles

Cantidad de Momento, Conservación, Choques, Centro de Masa

Cantidad de Momento, Conservación, Choques, Centro de Masa Cantdad de Moento, Conseracón, Choques, Centro de Masa Moentu líneal Las fuerzas aplcadas en una dreccón que no pasa por el centro de graedad de un objeto producen un gro en éste objeto. Para edr la agntud

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

Corriente alterna. (a) no cambia, (b) el valor de X no cambia, y X L = Z sen = 433 L= 1,38 H (c) no cambia, (d) no cambia, (e) C=1,83 F; (f) no cambia

Corriente alterna. (a) no cambia, (b) el valor de X no cambia, y X L = Z sen = 433 L= 1,38 H (c) no cambia, (d) no cambia, (e) C=1,83 F; (f) no cambia Corrente alterna Ejercco 1: un generador de corrente alterna que entrega 100V de tensón efcaz a 50 Hz se halla conectado a un crcuto C sere. Por el crcuto crcula una corrente efcaz ef = 0,2 sen (2 50 t

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE CCESO L UNVERSDD L.O.G.S.E CURSO 004-005 CONVOCTOR SEPTEMRE ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros de calfcacón.- Expresón clara y precsa dentro del lenguaje técnco y gráfco

Más detalles

Solución. Se multiplica numerador y denominador por el conjugado del denominador.

Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Solucón. Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador,

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

( ) 2 3 a ( ) % τ ia. Solución:

( ) 2 3 a ( ) % τ ia. Solución: Problema 1: El clndro unforme de rado a de la fgura pesaba en un prncpo 80 N. Después de taladrársele un agujero clíndrco de eje paralelo al anteror su peso es de 75 N. Suponendo que el clndro no deslza

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

TEMA 8 CIRCUITOS SIMPLES EN REGIMEN ESTACIONARIO SENOIDAL

TEMA 8 CIRCUITOS SIMPLES EN REGIMEN ESTACIONARIO SENOIDAL TEMA 8 UTOS SMPLES EN EGMEN ESTAONAO SENODAL TEMA 8:UTOS SMPLES EN EGMEN ESTAONAO SENODAL 8. ntroduccón 8. espuesta senodal de los elemetos báscos: espuesta del crcuto espuesta del crcuto L espuesta del

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

SEGUNDO EXAMEN PARCIAL FÍSICA I MODELO 1

SEGUNDO EXAMEN PARCIAL FÍSICA I MODELO 1 SEGUDO EXAME PARCIAL FÍSICA I MODELO.- Un ndvduo de 80 kg se encuentra en el etreo de una tala de 0 kg de asa 0 de longtud que flota en reposo sore la superfce de agua de un estanque. S el hore se desplaa

Más detalles

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos Bloque Análss de crcutos almentados en corrente contnua Teoría de Crcutos . Métodos sstemátcos de resolucón de crcutos : Método de mallas Métodos sstemátcos de resolucón de crcutos Permten resolver los

Más detalles

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:..

TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:.. GUÍA DE TRABAJO Nº 5 PSU MATEMÁTICA 07 NÚMEROS COMPLEJOS Nombre:. Fecha:.. CONTENIDOS Números complejos, problemas que permten resolver. Undad magnara. Operatora con números complejos. Propedades de los

Más detalles

[1] [1 ] Esta condición evita que haya rotación del sistema Composición de fuerzas paralelas.

[1] [1 ] Esta condición evita que haya rotación del sistema Composición de fuerzas paralelas. Tea 4 Ssteas de partículas 4.. Estátca y equlbro. 4... Condcones de equlbro. Las condcones de equlbro conssten en que para que un sstea esté en equlbro, la fuerza total externa aplcada debe ser nula: F

Más detalles

Números Complejos II. Ecuaciones

Números Complejos II. Ecuaciones Complejos 1º Bachllerato Departamento de Matemátcas http://selectvdad.ntergranada.com Raúl González Medna Ecuacones 1. Resolver las sguentes ecuacones y determnar en qué campo numérco tenen solucón: a)

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Ejercicios Resueltos de NÚMEROS COMPLEJOS

Ejercicios Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Números Complejos. Formas de epresarlos.- Halla las raíces de los sguentes números: 00 Solucón: ± 00 00 ± 0 ± ±.- Representa

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

En el circuito de la figura se han determinado los siguientes valores:

En el circuito de la figura se han determinado los siguientes valores: Probleas Adconales. Capítulo 7: Aplfcadores FET Probleas esueltos de Coponentes y Crcutos Electróncos. E. Fgueres, M. Pascual, J.A. Martínez e I. Mró. Problea 7.1er1 En el crcuto de la fgura 7.1.1 se han

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

Ideas Básicas sobre Métodos de Medida

Ideas Básicas sobre Métodos de Medida 10: deas Báscas sobre Métodos de Medda Medcones Drectas: el resultado se obtene a partr de la ndcacón de un únco nstruento (étodos de deflexón). Medcones ndrectas: el resultado surge a partr de operacones

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA PROGRAMA DE PERFECCIONAMIENTO FUNDAMENTAL ESTATICA

UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA PROGRAMA DE PERFECCIONAMIENTO FUNDAMENTAL ESTATICA Jornada Enero 200 ESTATICA CONCEPTOS PREVIOS:.- FUERZA: La fuerzas se clasfcan en: a) Fuerzas de accón a dstanca, son aquellas que nteractúan a una certa dstanca, por ejeplo: - Las fuerzas de capos gravtaconales

Más detalles

OSCILADOR ARMONICO - oscilador armónico simple (O.A.S.)

OSCILADOR ARMONICO - oscilador armónico simple (O.A.S.) Mecánca y Ondas. Esqueas de teoría para probeas hanta errer Roca OSILADOR ARMONIO - oscador arónco spe (O.A.S. Es un odeo de gran utdad en a descrpcón de fenóenos físcos, descrto por a ecuacón dferenca:

Más detalles

Diagramas de Heissler para la solución de problemas de conducción transitoria.

Diagramas de Heissler para la solución de problemas de conducción transitoria. Dagraas de Hessler para la solucón de probleas de conduccón transtora. Cuando el núero de Bot odfcado, descrto en la seccón anteror supera el valor de 0,1, la resstenca nterna ya no es desprecable, de

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 0 "# Representa gráfcamente los resultados que obtengas al hallar y calcula el lado del trángulo formado al unr esos tres puntos. Para hallar las raíces prmero pasamos el número a forma polar : r ( )

Más detalles

TEORÍA DE ESTRUCTURAS

TEORÍA DE ESTRUCTURAS TEORÍA DE ESTRUCTURAS TEA 4: CÁCUO DE ESTRUCTURAS POR E ÉTODO DE A DEFORACIÓN ANGUAR DEPARTAENTO DE INGENIERÍA ECÁNICA - EKANIKA INGENIERITZA SAIA ESCUEA TÉCNICA SUPERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD

Más detalles

En el capítulo correspondiente a Inducción Magnética, vimos que un cuadro de hilo

En el capítulo correspondiente a Inducción Magnética, vimos que un cuadro de hilo VII. Corrente Alterna Introduccón: Cas la totaldad de la energía eléctrca utlzada actualmente se produce medante generadores eléctrcos de corrente alterna, la cual tene la gran ventaja sobre la corrente

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6a) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 Rcardo Ramírez Facultad de Físca, Pontfca Unversdad Católca, Chle 1er. Semestre 2008 Corrente eléctrca CORRIENTE ELECTRICA Corrente eléctrca mplca carga en movmento.

Más detalles

5. DIAGONALIZACIÓN DE MATRICES

5. DIAGONALIZACIÓN DE MATRICES Dagonalzacón Herraentas nforátcas para el ngenero en el estudo del algebra lneal 5. DIAGONALIZACIÓN DE MATRICES 5.1. INTRODUCCIÓN 5.2. VALORES Y VECTORES PROPIOS 5.3. MATRICES DIAGONALIZABLES 5.4. DIAGONALIZACIÓN

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton 3.6 Máxma transferenca de potenca Th Th L nálss de Crcutos

Más detalles

Redes abiertas. Pág. 345 (Sotelo)

Redes abiertas. Pág. 345 (Sotelo) Redes abertas. Pág. 45 (Sotelo) ecos que una red de tuberías es aberta cuando los tubos que la coponen se racan, sn ntersectarse después para orar crcutos. Los extreos nales de las racacones pueden ternar

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA

CIRCUITOS DE CORRIENTE ALTERNA CICUITOS DE COIENTE ALTENA 1.- INTODUCCIÓN Un crcuto de corrente alterna consta de una combnacón de elementos (resstencas, capacdades y autonduccones) y un generador que sumnstra la corrente alterna. Orgen

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

FÍSICA. Dr. Roberto Pedro Duarte Zamorano 2017 Departamento de Física Universidad de Sonora

FÍSICA. Dr. Roberto Pedro Duarte Zamorano 2017 Departamento de Física Universidad de Sonora FÍSICA Dr. Roberto Pedro Duarte Zaorano 07 Departaento de Físca Unersdad de Sonora TEMARIO. Mecánca.. Leyes de Newton.. Leyes de Conseracón. [9Ago-07Sep] a) Ley de Conseracón de la Energía. b) Ley de Conseracón

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Sistema de dos espiras de corriente Coeficientes de autoinducción e inducción mutua Definición Propiedades

Sistema de dos espiras de corriente Coeficientes de autoinducción e inducción mutua Definición Propiedades V. nduccón electroagnétca. Autonduccón e nduccón utua brel Cano Góez, 00/ Dpto. Físca Aplcada (U. evlla) Capos Electroagnétcos nero de Telecouncacón V. nduccón Electroagnétca. Fenóenos de nduccón. Autonduccón

Más detalles

Apéndice A. Principio de Mínima Acción y Energía Mecánica total.

Apéndice A. Principio de Mínima Acción y Energía Mecánica total. Apéndce A Prncpo de Mína Accón y Energía Mecánca total. E l prncpo de ína accón es equvalente a decr que la tayectora que sgue una partícula en el espaco de conguracón es aquella para la cual la dferenca

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

(4 3 i)(4 3 i)

(4 3 i)(4 3 i) E.T.S.I. Industrales y Telecomuncacón Curso 00-0 Grados E.T.S.I. Industrales y Telecomuncacón Asgnatura: Cálculo I Ejerccos resueltos Calcular el valor de a y b para que b a 4 sea real y de módulo undad

Más detalles

CAPITULO 3. Corrector de Factor de Potencia Trifásico con Convertidor Zeta aislado en modo de conducción contínuo

CAPITULO 3. Corrector de Factor de Potencia Trifásico con Convertidor Zeta aislado en modo de conducción contínuo CAPITUO Corrector de Factor de Potenca Trásco con Convertdor Zeta aslado en odo de conduccón contínuo.. Introduccón Coo ya es sabdo, la correccón del actor de potenca trae benecos tanto a la red de dstrbucón

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Escuela Técnica Superior de Ingenieros de Telecomunicación. Electrónica. Prueba parcial JUEVES, 9 DE DICIEMBRE DE 1999

Escuela Técnica Superior de Ingenieros de Telecomunicación. Electrónica. Prueba parcial JUEVES, 9 DE DICIEMBRE DE 1999 Escuela écnca Superor de Ingeneros de elecomuncacón. Electrónca. Prueba parcal 19992000 JUEES, 9 DE DICIEMBE DE 1999 pelldos: Nombre: Cuestón 1 Dbujar el esquemátco del modelo en pequeña señal de un dodo.

Más detalles

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía TMA 3: Dnáca II Captulo. Trabajo y energía Bran Cox sts the world's bggest acuu chaber (BBC Two) https://www.youtube.co/watch?43-cfukgs TMA 3: Dnáca II. Captulo : trabajo y energía Concepto de trabajo.

Más detalles

3.1 Resolver mediante el método de la transformada de Laplace el problema 1.1.

3.1 Resolver mediante el método de la transformada de Laplace el problema 1.1. rcutos y Sstemas Dnámcos Ejerccos tema 3 Método de la transformada de aplace 3. esolver medante el método de la transformada de aplace el problema.. 3. esolver medante el método de la transformada de aplace

Más detalles

Figura 2.1 Esquemas para determinar el sentido de flujo de potencia en fuentes de tensión

Figura 2.1 Esquemas para determinar el sentido de flujo de potencia en fuentes de tensión OTENIA EN IUITOS MONOFÁSIOS OTENIA EN IUITOS MONOFASIOS.1 Generaldades En todo crcto eléctrco es de sa portanca deternar la potenca qe se genera y qe se absorbe. Todo aparato eléctrco tene na capacdad

Más detalles

Problemas resueltos. Problema 6.1. E e1 R4 B R3. D Figura P6.1. Para la red de la figura P6.1:

Problemas resueltos. Problema 6.1. E e1 R4 B R3. D Figura P6.1. Para la red de la figura P6.1: 1 Problemas resueltos. Problema 6.1 Para la red de la fgura P6.1: j R e Fgura P6.1. a) etermnar la red pasa Norton entre y, sta por la resstenca. b) etermnar la fuente equalente Théenn entre y, sta por

Más detalles

MATEMÁTICAS I EJERCICIOS NÚMEROS COMPLEJOS

MATEMÁTICAS I EJERCICIOS NÚMEROS COMPLEJOS . De los siguientes números complejos, indica: a) z 5 i Su opuesto: z b) z + i Su conjugado: z c) z i Su parte real: Su parte imaginaria: d) z 5i Su afijo: (, ). Expresa como números complejos: a) 4 b)

Más detalles

Electrotecnia. Potencia eléctrica en CC y CA. Departamento de Ingeniería Eléctrica. Área Electrotecnia. (para la Carrera Ingeniería Mecánica)

Electrotecnia. Potencia eléctrica en CC y CA. Departamento de Ingeniería Eléctrica. Área Electrotecnia. (para la Carrera Ingeniería Mecánica) Departaento de ngenería Eléctrca Unersdad Naconal de Mar del Plata Área Electrotecna Electrotecna (para la Carrera ngenería Mecánca) Potenca eléctrca en CC y CA Profesor Adjunto: ngenero Electrcsta y Laboral

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

Conservación del Momento Lineal y de la Energía

Conservación del Momento Lineal y de la Energía Conservacón del Moento Lneal y de la Energía Conservacón del Moento Lneal y de la Energía Objetvos Coprobar experentalente la conservacón del oento lneal edante choques elástcos e nelástcos. Coprobar la

Más detalles

Problemas sobre números complejos -1-

Problemas sobre números complejos -1- Problemas sobre números complejos --.- Representa gráfcamente los sguentes números complejos y d cuáles son reales, cuáles magnaros y, de estos, cuáles magnaros puros: 5-5 + 4-5 7 0 -- -7 4.- Obtén las

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA

PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA PÁCTICA Nº 5. CICUITOS DE COIENTE CONTINUA OBJETIVO Analzar el funconamento de dferentes crcutos resstvos empleando la Ley de Ohm y las Leyes de Krchhoff. FUNDAMENTO TEÓICO Corrente Eléctrca Una corrente

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

Tipos de amplificadores según su ganancia

Tipos de amplificadores según su ganancia Tpos de amplfcadores según su gananca Electrónca nalógca: ealmentacón Todo amplfcador que posea unas resstencas de entrada () y de salda (o) dstntas de cero y dstntas de nfnto se puede representar de cuatro

Más detalles

Rendimiento de sistemas paralelos. Arquitectura de Computadoras II Fac. Cs. Exactas UNCPBA Prof. Marcelo Tosini 2015

Rendimiento de sistemas paralelos. Arquitectura de Computadoras II Fac. Cs. Exactas UNCPBA Prof. Marcelo Tosini 2015 Rendento de ssteas paralelos Arqutectura de Coputadoras II Fac. Cs. Exactas UNCBA rof. Marcelo Tosn 205 Rendento de un sstea paralelo Rendento en un sstea con un procesador: T cpu RI x CI x t cclo Con

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

CAPÍTULO 2º - Elementos de análisis tensorial y sistemas de coordenadas

CAPÍTULO 2º - Elementos de análisis tensorial y sistemas de coordenadas CAPÍTULO 2º - Eleentos de análss tensoral y ssteas de coordenadas 2. Eleentos de Análss Tensoral: repaso a) Espaco y plano puntuales: 3 y 2. son espacos puntuales (espacos afnes euclídeos trdensonal y

Más detalles

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. REGIMEN DESBALANCEADO DE

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. REGIMEN DESBALANCEADO DE UVESDAD SMO BOLVA Seón de Máqunas Eléctrcas Prof. E. Daron B. EGME DESBALACEADO DE Hoja º 77 TASFOMADOES TFASCOS 4.6 Transformadores trfáscos con cargas desbalanceadas: 4.6 Conexón Estrella-Estrella sn

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

UNIDAD TEMATICA 2 MEDICION DE RESISTENCIAS CON VOLTIMETRO Y AMPERIMETRO

UNIDAD TEMATICA 2 MEDICION DE RESISTENCIAS CON VOLTIMETRO Y AMPERIMETRO Meddas Eectróncas Medcón de resstencas con votíetro y aríetro. ntroduccón: UNDD TEMT MEDON DE ESSTENS ON OLTMETO Y MPEMETO S a exgenca en a edcón no es excesva, o sea no ejor que e 0,5 %, se pueden edr

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBS DE CCESO L UNERSDD LOGSE CURSO 2007-2008 - CONOCTOR: SEPTEMBRE ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros de calfcacón- Expresón clara y precsa dentro del lenguaje técnco y gráfco

Más detalles

EJERCICIO RESUELTO DE RIESGO MORAL

EJERCICIO RESUELTO DE RIESGO MORAL Pontfca Unversdad Católca del Perú Prograa de Maestría en Econoía Curso Mcroeconoía Avanzada Profesora Clauda Barrga Ch. Asstente Sandro A. Huaaní. EJERCICIO RESUELTO DE RIESGO MORAL Aplcacón al ercado

Más detalles

Capítulo 3 Unidad de Potencia

Capítulo 3 Unidad de Potencia apítulo 3 Undad de Potenca Una fuente de almentacón de corrente drecta cd converte la energía de una línea de corrente alterna ca en corrente contnua ó drecta, que es una voltaje constante a un valor deseado.

Más detalles

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante

Más detalles

CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS

CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS Conjunto de los números complejos CAPÍTULO 9: CONJUNTO DE LOS NÚMEROS COMPLEJOS SUMARIO: INTRODUCCIÓN OBJETIVOS DEL CAPÍTULO PARTE TEÓRICA DEL TEMA: 9.1.- Defncón. 9..- Suma y producto. 9..- Partes real

Más detalles

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS. [1.1] Expresar en forma binómica: z 1 3i 1 3i. Solución: Teniendo en cuenta que 1 3i. [1.2] Calcular: a) 3 4 NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS NÚMEROS COMPLEJOS 9 9 [1.1] Expresar en forma bnómca: z 1 1 Tenendo en cuenta que 1 / 1 / 9 9 9 9 9 9 1 1 / / z 9 9 9 10 10 (cos sen ) (cos( ) sen( )) cos ( 1) 10 [1.] Calcular: z 1 a)

Más detalles

Cantidad de movimiento de una partícula: pi = mi vi Cantidad de movimiento del sistema: i i i. dt dt dt dt. Conjunto de partículas: 1 m 1

Cantidad de movimiento de una partícula: pi = mi vi Cantidad de movimiento del sistema: i i i. dt dt dt dt. Conjunto de partículas: 1 m 1 DFARN -- FFI DINÁMICA DE LOS SISTEMAS A CANTIDAD DE MOVIMIENTO Para una partícula: Cantdad de ovento de una partícula: p v Cantdad de ovento del sstea: p p v d( v F + F Para el sstea (suando para todas

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

Circuitos y Sistemas Dinámicos Ejercicios tema 4 Respuesta en frecuencia y circuitos resonantes

Circuitos y Sistemas Dinámicos Ejercicios tema 4 Respuesta en frecuencia y circuitos resonantes rcutos y Sstemas Dnámcos Ejerccos tema 4 espuesta en frecuenca y crcutos resonantes 4. Dada la sguente funcón de transferenca: G(j ω ) 5jω (jω.5) (j ω ) 4jω Escrbrla en forma estándar. b) Trazar el dagrama

Más detalles

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS Unversdad Católca Los Ángeles de Cbote LECTURA 0: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS TEMA : DISTRIBUCION DE FRECUENCIAS: DEFINICIÓN Y CLASIFICACIÓN

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

UNIDAD Nº 9 POTENCIA EN CORRIENTE CONTINUA Y ALTERNA

UNIDAD Nº 9 POTENCIA EN CORRIENTE CONTINUA Y ALTERNA UNDAD Nº 9 POTENCA EN COENTE CONTNUA Y ATENA enca en una resstenca e v nst med v 1 T t nst dt 0 v 0 dt v 1 med 0 dt 1 med 0 0 dt 1 dt med 0 0 dt dt med med 4 t sen 0 w 0 med 4 1 w 0 sen 4 w sen 0 med 4

Más detalles

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

Función de Transferencia en Sistemas Continuos

Función de Transferencia en Sistemas Continuos Funcón e Transferenca en Ssteas Contnuos UeC DIE Problea Introucr la F. e T. e un sstea. a sala e un S..D. que está representao por una ecuacón ferencal está aa por, n ( ) ( ) bs bs u as y = = = = = u

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

Programación y Métodos Numéricos Interpolación polinómica de de Hermite: PLANTEAMIENTO Y CASO DE PRIMER ORDEN

Programación y Métodos Numéricos Interpolación polinómica de de Hermite: PLANTEAMIENTO Y CASO DE PRIMER ORDEN Prograacón y Métodos Nuércos Interpolacón polnóca de de Herte: PLANTEAMIENTO Y CASO DE PRIMER ORDEN Alfredo López L Bento Carlos Conde LázaroL Arturo Hdalgo LópezL Marzo, 7 Departaento de Mateátca Aplcada

Más detalles

Magnetostática

Magnetostática Magnetostátca Ejercco 1: un haz de sótopos (masa m=8,96 x 10 27 kg; carga q=+3,2 10 19 ) ngresa por el punto A de la fgura a una regón del espaco donde exste un campo magnétco de valor B = 0,1T. La energía

Más detalles

SÓLIDO RÍGIDO (I) (cinemática)

SÓLIDO RÍGIDO (I) (cinemática) SÓLDO RÍGDO () (cnemátca) ÍNDCE 1. ntroduccón. Momento del sóldo rígdo 3. Rodadura 4. Momento angular 5. Momento de nerca BBLOGRFÍ: Caps. 9 y 10 del Tpler Mosca, ol. 1, 5ª ed. Caps. 10 y 11 del Serway

Más detalles

ASIGNACION 2 INEL3105 A revisar a partir del 1 marzo.

ASIGNACION 2 INEL3105 A revisar a partir del 1 marzo. SIGNION INEL305 revsar a partr del marzo. Problema. Para un crcuto con bpolos, formamos el gráfco, o grafo (graph) susttuyendo cada bpolo por una línea que une los dos nodos a los que está conectado. Esta

Más detalles

Tema EL PAR DIFERENCIAL

Tema EL PAR DIFERENCIAL ea Prero nenería Electrónca Dseño de Crcutos y steas Electróncos E P DFEENC. El par dferencal MO en ran señal. nálss de pequeña señal 3. Desapareaentos 4. Caras ctas 5. nálss en frecuenca 6. El par dferencal

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

!!!""#""!!!!!!""#""!!!!!!""#""!!!!!!""#""!!!

!!!#!!!!!!#!!!!!!#!!!!!!#!!! Tea 11 Capos agnéticos y corrientes eléctricas! 1 Probleas para entrenarse 1 Una partícula α (q 3, 10-19 C) se introduce perpendicularente en un capo cuya inducción agnética es,0 10 3 T con una velocidad

Más detalles

1 x. f) 4. Encuentra los valores de x que hacen cierta la ecuación: x² + 1=0.

1 x. f) 4. Encuentra los valores de x que hacen cierta la ecuación: x² + 1=0. Los Números Complejos. La necesdad de crear nuevos conjuntos numércos (enteros, raconales, rraconales), fue surgendo a medda que se presentaban stuacones que no tenían solucón dentro de los conjuntos numércos

Más detalles

Actividades de recuperación

Actividades de recuperación Actvdades de recuperacón 1.- Para cada uno de los sguentes complejos, se pde 1 Señala cuál es su parte real y su parte magnara e ndca cuáles se corresponden con números reales y cuáles son magnaros puros.

Más detalles