x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto."

Transcripción

1 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1, ) Qué tipo de extremo es? Sea f : R R una función C 1 tal que su plano tangente en (5, 0, f(5, 0)) es x + 8y + z = 7 Hallar f(5, 0) y g ((1, 1), ( 1, 3 )) siendo g( = f(x + 3y, x 3 Dada la superficie S en forma paramétrica por: ϕ(u, = (u v, u + v, 4u; (u, ɛ R 1 Hallar una ecuación cartesiana para S Hallar la ecuación del plano tangente a S en ( 1, 3, 8) 3 Calcular la distancia desde ( 1, 3, 8) hasta el punto en que la recta normal a S en ( 1, 3, 8) interseca al cilindro de ecuación 7x = y 4 Sea f( ɛ C 1 tal que f ((1, ), v 1 ) = y f ((1, ), v ) = 3 siendo v 1 = ( 1, 3 ) y v = ( 1, 0) Hallar la ecuación de la recta tangente a la curva de nivel de f( que pasa por el (1, ) 5 Demuestre que: { x + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto

2 1 Sea f : R R una función diferenciable, f( = (u(, v( ), tal que f(1, 1) = (3, ), con matriz jacobiana de f en (1, 1) ( ) (u, 1 1 ( (1, 1) = Sea C la curva imagen por f de x 1 + y = Hallar la ecuación de la recta tangente a C en (3, ) Una función C, h( y, z) tiene un máximo relativo de valor 0 en (1,, 3) Hallar una ecuación del plano tangente en (1,, 3) a la superficie de ecuación h( y, z) = 4x y 3 Parametrizar la curva { x + y z = 0 C : x + y (z 1) = 0 Graficar C y hallar la ecuación de la recta tangente a la curva en el punto ( 3, 0, 9) 4 Sabiendo que: 1 f( es una función diferenciable en P 0 = (x 0, y 0 ) La recta de ecuación 3x-y=0 es perpendicular a la curva de nivel de f que pasa por P 0 3 La máxima pendiente de la superficie S de ecuación z = f( en (x 0, y 0, f(x 0, y 0 )) es 5 Hallar el gradiente de f en P 0 = (x 0, y 0 ) sabiendo que su primer componente es positiva 5 Hallar a para que las superficies: S 1 : (u, (u + v, u v, v ) con 0 u, 0 v, y S : x 3 + ay z 7 = 0 sean ortogonales en el punto (, 0, 1)

3 1 Sea f : R R una función C 3 tal que su polinomio de Taylor de orden en (1, 1) es p( = 6xy + 3y Hallar a de manera que g( = f( + a x 3 3x tenga un mínimo en (1, 1) Hallar todos los puntos en el cono parametrizado por ϕ(u, = ( 3ucos(, usen(, u) tales que su recta normal es paralela al plano de ecuación z = y 1 3 Sea π : x + 3y + 5z = 6 el plano tangente a la gráfica de f( en ( 1, 1, 1) y sea ǔ un versor tangente a la curva de nivel 9 de g( = y 3 xy + x en (, 1) Hallar la derivada direccional de f en ( 1, 1) en la dirección del versor ǔ elegido 4 Sea F : R R una función C tal que F (x + y, y + z) = 0 define implícitamente a z = f( en un entorno de (x 0, y 0, z 0 ), verificar que en (x 0, y 0 ) se cumple que: z x z y = 1 5 Sean S 1 el cilindro de eje z descripto en coordenadas cilíndricas por ϱ = 1+sen θ y S el cilindro z = x 1 Describir la curva C intersección entre S 1 y S, realizar un gráfico aproximado de C y hallar una parametrización de la misma Hallar un vector tangente a C en (0, 1, )

4 1 Sabiendo que la curva C 1 parametrizada por t (t, t, t 3 ), t (, ) y la curva C de ecuaciones x y = 0, x + z = están contenidas en una superficie S de clase C, hallar una ecuación para el plano tangente a S en (1, 1, 1) Sabiendo que el polinomio de Taylor de grado en (1, 1) de una función C 3 f : R R es p( = x x + y, calcular la derivada direccional f ((1, 1), ( /, /)) 3 Sea z = f( definida implícitamente por zx xz y 4y = 6 en un entorno de ( 1,, 1) Estudiar si z tiene extremo en ( 1, ) 4 Sea S la porción de superficie parametrizada por ϕ(u, = (usen(, u +, ucos(), 1 < u < 3, 0 < v < π Hallar un punto P en S tal que la recta normal a S en P pase por (0, 3, 0) 5 Analice si z = g(xy, x satisface la ecuación z puntos de la recta x + y = 0 x + z y = 0 en los

5 1 Dada la familia de funciones f ( = x + kxy + y siendo k una constante, mostrar que hay un único punto crítico ( x, y 0 0), común a todos los miembros de la familia y determinar todos los k que aseguren que: a) ( x, y 0 0) sea un punto de ensilladura b) en ( x, y 0 0) f alcance un mínimo local c) Puede alguna de estas funciones tener un máximo local en ese punto crítico? La ecuación F ( y, z) = f ( xy, xz + z + y ) = 0, con f C enr f (, ) = 0 define una superficie S en el entorno del punto Q = (,1,1 ) Sabiendo que f (, ) = (1, 3), hallar el punto donde la recta normal a S en Q corta al plano xy 3 3 Sea C 1 la curva parametrizada por ( t) = ( t + t + 1, t + 1) t, y C la curva 3 4 de nivel 3 de la función f ( = ax + x y + b hallar a y b para que ambas curvas se corten ortogonalmente en el punto ( 1,1 ) α [ ] 4 Sea f R y : R definida por f ( = x + b( x 1) e + 1 a) Hallar b de manera que el polinomio de Taylor de grado de f en ( 1,0) sea p ( = x + x b) Sea h : R R definida por h( = f (x y, x, hallar aproximadamente h (1,01;1,0) 5 Hallar una curva plana que pase por el punto P = (0,0,3), que esté contenida en la superficie S : z = x y + x + 3 y cuya tangente en el punto P sea paralela al vector (,,0)

6 1 Sea F R 3 : R una función C tal que F ( 0,1,3) = 1 y F ( 0,1,3) = (1,1,1 ) Hallar la ecuación de la recta perpendicular a la superficie 3 x S = ( y, z) R / F( y, z) e + xy = 0 en el punto ( 0,1,3 ) { } xy 3u + uv = 1 u = u( Mostrar que el sistema define en el entorno xu + yv = 1 v = v( del punto ( x 0, y0, u0, v0 ) = (1,1,1,0 ) y hallar la ecuación del plano tangente a la gráfica de la función u = u( en el punto ( 1,1,1 ) 3 Sea f R : R una función C cuyo polinomio de Taylor de orden en el punto (, 1) es p ( = 1+ x xy + x Sea h ( u, = f ( u + v, u + Hallar el valor de la derivada direccional máxima 4 1 de h en (, ) Hallar a R de modo que la recta x + z = 1 x y + z = 3 superficie parametrizada por σ ( u, = (1 + v, au + v,u con sea tangente en ( 1, 1,0) a la u 1 v 1 5 Sea la superficie S definida por ( x 1) + z = 4 hallar y parametrizar una curva C S de manera que C resulte perpendicular al vector ( 1,,3 ) en todo punto

7 1 1 Sea F ( u, = ( x( u,, y( u, ) una función en C en R tal que F ( 1, 1) = (0,3) y ( 1 (1, 1) = ( u, 1 0 Encontrar la recta tangente en ( 1, 1) a la preimagen por F de la curva de ecuación x + y = 9 Demostrar que ( e x + xz z,ln( yz)) = (0,0) define una curva C regular en un entorno del punto ( 0,1,1 ) y obtener el plano normal a C en dicho punto 3 Sea f R : R diferenciable en R tal que los vectores (,1,0 ) y ( 0,1, 1) son tangentes al gráfico de f en el punto (,3,1 ) Hallar la ecuación de la recta perpendicular a la curva de nivel de f que pasa por (,3) 4 Dadas f ( u, = (u + v,1 con ( u, R y g R : R una función C ( R ) cuyo polinomio de Taylor de orden en el punto (,1) es p ( = 1+ x x y Calcular el valor de la derivada direccional de h = g o f en el punto ( 1,0) en la dirección que va del punto ( 1,0) hacia el (,3) 5 Hallar todos los puntos de la superficie z = ( x 1) + y cuya recta normal pasa por el origen Graficar

8 1 Hallar y graficar el dominio de la función Expresarlo en coordenadas polares f ( = 1 x y 1 x + y si x y 0 si x y < 0 a) Hallar el plano tangente al conjunto de nivel 0 de la función 3 5 f ( y, z) = x y + z en el punto P 0 = (1, 1,0) 3 3 b) Dada la curva C: 0 x x 3 y + e = 4 y + cos( z) = 0 P, está contenida en el plano hallado en a) z comprobar que la recta tangente a C en y+ x 3 Sea f ( = xe Hallar un valor aproximado de f ( 01, 398) utilizando el polinomio de Taylor de segundo orden 4 Sea f R : R una función diferenciable en R tal que el plano tangente a la gráfica de f en (,8,0) es X ( u, = (3 u, + 3v, u + con ( u, R 1 1 Sea g : R R una función C en R tal que g ( 0,1) = (,8) y Dg (0,1) = 0 1 Hallar la derivada direccional de h = f o g en ( 0,1) en la dirección del vector v = (3,4) y 1 = 9x + 9z 5 Hallar una parametrización de la curva C : y + 3 = x + z Graficar C y obtener la ecuación del plano normal a C en ( 0,,1)

9 1 1 Comprobar que la ecuación e xz + yz = 0 define z = f ( en un entorno del punto ( 1,1,1 ) Hallar una ecuación para la recta tangente a la curva intersección del gráfico de f con el plano x = y en el punto ( 1,1, f (1,1 )) Sea f R : R una función diferenciable en R de la que sólo se sabe que la curva x y = 3 es una curva de nivel de f y que f ' x (,1) = 5 Hallar la derivada direccional de f en (,1) en la dirección del vector v = (, ) 3 Dada f ( = x x y a) Hallar el dominio de f Graficarlo y expresarlo en coordenadas polares b) Determinar a de manera que la recta perpendicular al gráfico de f en x + y z = 0 ( 1, a, f (1, a)) resulte paralela a la recta de ecuación y z = 0 4 Sean h R 1 : R, h C en R y g( = ( y, sen( x ) Sabiendo que el plano tangente al gráfico de f ( = h o g en el punto ( 1,1, f (1,1 )) es x + y + z = 0, hallar h(1,0 ) Hallar un valor aproximado de ( 10) utilizando el polinomio de Taylor de y segundo orden de la función f ( = x

10 1 Sea f R : R una función diferenciable en R Hallar la recta tangente a la curva de nivel 6 de f en el punto (,1), sabiendo que el plano tangente a la gráfica de f en el punto (,1, f (,1)) es z = x 3y Sea f ( = g( x y,x con g C en R Sabiendo que el polinomio de Taylor de º orden de g en ( 0,) es p( = 3x + y + x + 3xy, hallar la recta normal al gráfico de f en ( 1,1, f (1,1 )) 3 Sea F : R R, F ( u, = ( x( u,, y( u, ) una función C en R tal que 1 1 F ( 1,) = (1,0) y JF (1,) = 1 Dada la curva C : x + y = 1, probar que la recta tangente en el punto ( 1,) a la curva preimagen de C es r : u + v 3 = 0 4 Hallar a para que las superficies: 3 S1 : σ ( u, = ( u + v, u v, v ) con 0 u, 0 v y S : x + ay z 7 = 0 sean ortogonales en el punto (,0,1 ) xy + u v yv = 5 Mostrar que el sistema define a x e y como funciones de xu + yv = 1 u y v en un entorno del punto ( 1,1,1,1 ) Calcular la derivada direccional de y = y( u, en el punto ( 1,1 ) según la dirección del vector ( 3,4)

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos:

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos: A. Vectores ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos, Superficies en el espacio Para terminar el 3 de septiembre.. Sean v = (0,, ) y w = (,, 4)

Más detalles

Hoja 2: Derivadas direccionales y diferenciabilidad.

Hoja 2: Derivadas direccionales y diferenciabilidad. Sonia L. Rueda ETS Arquitectura. UPM Curso 2011-2012. 1 CÁLCULO Hoja 2: Derivadas direccionales y diferenciabilidad. 1. Sea f : R 2 R la función definida por x 4 (x 2 +y 2 ) 2, (x, y) (0, 0) 0, (x, y)

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013

ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013 ESCUELA MILITAR DE INGENIERIA CÁLCULO II Misceláneas de problemas 2013 Tema: Aplicaciones de las Derivadas Parciales. 1. Demuestre que el plano tangente al cono z = a 2 x 2 + b 2 y 2 pasa por el origen.

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

Funciones Implícitas.

Funciones Implícitas. CAPÍTULO 5 Funciones Implícitas. En este capítulo presentamos el concepto de función implícita. Esta idea nos ayuda a obtener derivadas de funciones que no podemos conocer explícitamente, pero su aplicación

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en

, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en x+y-z = 0 1. [2014] [EXT-A] Sea P el punto de coordenadas P(1,0,1) y r la recta de ecuación r x-2z = 1. a) Hallar la ecuación en forma continua de una recta que pase por el punto P y sea paralela a la

Más detalles

Relación de ejercicios del tema 3

Relación de ejercicios del tema 3 Relación de ejercicios del tema 3 Asignatura: Curvas y Superficies. Grado en Matemáticas. Grupo: 3 0 -B Profesor: Rafael López Camino (Do Carmo, sección 2.2) 1. Demostrar que el cilindro {(x, y, z) R 3

Más detalles

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante. Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas,

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas, Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 05 Son 0 (die fechas de final, desde el 6/05/5 al 9/0/6 inclusive Análisis Matemático II (95-0703) Final del 6/05/05 Condición

Más detalles

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo. SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

Funciones Diferenciables. Superficies.

Funciones Diferenciables. Superficies. CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere del de Análisis Matemático I, porque allí diferenciable

Más detalles

ANÁLISIS MATEMÁTICO II

ANÁLISIS MATEMÁTICO II GUÍAS DE TRABAJOS PRÁCTICOS ANÁLISIS MATEMÁTICO II 61.03-81.01 1er. CUATRIMESTRE 2017 Profesora Responsable: María Inés Troparevsky La elaboración de las guías de trabajos prácticos fue realizada por María

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

Funciones Diferenciables. Superficies.

Funciones Diferenciables. Superficies. CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere sustancialmente del de Análisis Matemático I. Estudiamos

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1.

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1. FUNCIONES DE n EN m Nota: se entenderá log log0 = y ln = log e - Determinar y representar gráficamente el dominio de las siguientes funciones: a) f () = 6 b) f () = c) f () = d) f () = e) f () = + + +

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2017-2018) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

CURVAS Y SUPERFICIES Hoja 1: Curvas

CURVAS Y SUPERFICIES Hoja 1: Curvas CURVAS Y SUPERFICIES Hoja 1: Curvas 1. Sea σ (t) = (cos t, sen t, t) con t [0, π] y sea f(x, y, z) = x + y + z. Evaluar la integral σ fdσ. (Sol.: π 3 (3 + 4π )).. Sea σ : [0, π/] R 3 la curva σ(t) = (30

Más detalles

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6

x-y+2 = 0 z = [2014] [JUN-A] Sea el plano que pasa por los puntos A(1,-1,1), B(2,3,2), C(3,1,0) y r la recta dada por r x-7 2 = y+6 1. [014] [EXT-A] Sea el punto A(1,1,) y la recta de ecuación r a) Calcular el plano perpendicular a la recta r que pase por A. b) Calcular la distancia del punto A a la recta r. x-y+ = 0 z =.. [014] [EXT-B]

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:...

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... UTN FRBA Final de Álgebra y Geometría Analítica 1/05/01 Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... La condición para aprobar esta evaluación es tener bien resueltos como mínimo tres ejercicios.

Más detalles

Matemáticas II Hoja 7: Problemas métricos

Matemáticas II Hoja 7: Problemas métricos Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 7: Problemas métricos Ejercicio : Se dan la recta r y el plano, mediante: x 4 y z x + y z 7 3 Obtener los puntos de la recta cuya

Más detalles

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por 1. [01] [SEP-B] Halla el punto simétrico del P(,1,-5) respecto de la recta r definida por x-z = 0 x+y+ = 0.. [01] [SEP-A] Sean los puntos A(0,0,1), B(1,0,-1), C(0,1,-) y D(1,,0). a) Halla la ecuación del

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. a) Demuestre que dz fxy cte obien xf yf

1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. a) Demuestre que dz fxy cte obien xf yf 1 05/1/95 1.- Dada la superficie S de ecuación X= ( u, v, u + v ) con ( u, v) R y la curva C de ecuación X= ( t, t, t ) con t R y X= ( xyz,, ) R 3. Demuestre que en el punto A = ( 1, 1, ) la recta tangente

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2016-2017) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

b E: base canónica de R 3, E = {1, x, x 2 } base de P 2 2) Analice la verdad o la falsedad de las siguientes proposiciones. Justifique sus respuestas.

b E: base canónica de R 3, E = {1, x, x 2 } base de P 2 2) Analice la verdad o la falsedad de las siguientes proposiciones. Justifique sus respuestas. UTN. FRBA ÁLGEBRA Y GEOMETRÍA ANALÍTICA de Mayo de01 Tema: 1 Apellido y nombres del alumno:...legajo:. 1 4 5 Calificación final La condición para aprobar el examen es tener como mínimo tres ejercicios

Más detalles

TEMA 1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. dz a) Demuestre que. f x y cte o bien x f yf

TEMA 1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. dz a) Demuestre que. f x y cte o bien x f yf TEMA 1 05/1/95 1- Dada la superficie S de ecuación X = u, v, u + v ) con u, v) R y la curva de ecuación X = t, t, t ) con t R y X = x, y, z) R 3 a) Demuestre que en el punto A = 1, 1, ) la recta tangente

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita El círculo de radio 1 con centro en el origen, puede representarse implícitamente mediante la ecuación x 2 + y 2 1 ó explícitamente por las ecuaciones y 1 x 2 y y 1 x 2

Más detalles

de C sobre el plano xy tiene ecuación

de C sobre el plano xy tiene ecuación Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 017 Son 10 (die fechas de final, desde el 4/05/17 al 7/0/18 inclusive Análisis Matemático II (95-0703) Final del 4/05/17 Condición

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.

(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

x y z x y z x y z z z z z z z

x y z x y z x y z z z z z z z . Un vector v tiene módulo 5 y es tal que cos ; siendo α el ángulo que forma el vector con el eje x. 5 Escribir la expresión cartesiana del o los vectores v sabiendo que su segunda y tercera componentes

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Superficies parametrizadas

Superficies parametrizadas 1 Universidad Simón Bolívar.. Preparaduría nº 1. christianlaya@hotmail.com ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es

Más detalles

Matemática-ILSE. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA. Guía de verano

Matemática-ILSE. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA. Guía de verano Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA Guía de verano 1 1) Con la información dada, hallar la fórmula en cada caso: a) El vértice de la parábola es V = ( ;1 ) y pasa

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) La recta r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo cuadrante, un triángulo de área 16. Determinar la distancia del punto

Más detalles

Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad

Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba, S. 2014. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative

Más detalles

x = 1-2t 3. [2014] [EXT-B] Dados el plano y la recta r siguentes: 2x-y+2z+3 = 0, r z = 1+t

x = 1-2t 3. [2014] [EXT-B] Dados el plano y la recta r siguentes: 2x-y+2z+3 = 0, r z = 1+t . [04] [EXT-A] Dados los puntos A(,0,-), B(,-4,-), C(5,4,-) y D(0,,4) a) Calcular el área del triángulo de vértices A, B y C. b) Calcular el volumen del tetraedro ABCD.. [04] [EXT-A] Dados los planos x-z-

Más detalles

Soluciones de los ejercicios del primer examen parcial

Soluciones de los ejercicios del primer examen parcial Matemáticas III (GIC, curso 2015 2016) Soluciones de los ejercicios del primer examen parcial EJERCICIO 1. Determina en qué ecuación se transforma la ecuación en derivadas parciales z yy + 3z xy + 2z xx

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

UNIVERSIDAD DE SEVILLA. DEPARTAMENTO DE ECONOMÍA APLICADA I. BOLETÍN DE PROBLEMAS DE MATEMÁTICAS I. GRADO EN ECONOMÍA.

UNIVERSIDAD DE SEVILLA. DEPARTAMENTO DE ECONOMÍA APLICADA I. BOLETÍN DE PROBLEMAS DE MATEMÁTICAS I. GRADO EN ECONOMÍA. UNIVERSIA E SEVILLA. EPARTAMENTO E ECONOMÍA APLICAA I. BOLETÍN E PROBLEMAS E MATEMÁTICAS I. GRAO EN ECONOMÍA. BLOQUE I: CÁLCULO IFERENCIAL. Tema 1: Funciones de una variable Problema 1 Estudiar la continuidad

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8 I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Geometría analítica en R 3 * 1. Determina cuáles de las siguientes ternas de puntos son puntos alineados. Encuentra la ecuación de la recta que

Más detalles

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R.

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R. ÁLGEBRA Práctica 13 Espacios afines E 2 y E 3 (Curso 2004 2005) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = {O, ē 1, ē 2, ē 3 } y R = {P, ū 1, ū 2, ū 3 }, donde

Más detalles

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para:

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para: Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemática Listado 1 Cálculo III (2025) PLEV 2018 1. Hallar adherencia, interior, conjunto de puntos de acumulación

Más detalles

SUPERFICIES. 2.2 Plano tangente y recta normal. 2.3 Métrica sobre una superficie: Primera forma fundamental y aplicaciones.

SUPERFICIES. 2.2 Plano tangente y recta normal. 2.3 Métrica sobre una superficie: Primera forma fundamental y aplicaciones. SUPERFICIES. 2.2 Plano tangente y recta normal. 2.3 Métrica sobre una superficie: Primera forma fundamental y aplicaciones. 2.1 Superficie parametrizacida. Ecuaciones implícitas. Curvas paramétricas. 2.2

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 3 Semestre Académico

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 3 Semestre Académico Práctica N 3 Semestre Académico 014-1 1. a. Parametrizar la curva : b. Dadas las curvas: x 1 y z y x ; z 0. pts C 1 : Ft e t, 1, lnt 1, t 0, y 1 t C : Gr r, 9 r, ln r, r 0,. Hallar la ecuación de la recta

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta.

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta. . Expresar en forma paramétrica y reducida la recta x+ 3 = y- 5 = z -. Hallar el valor de m para que los puntos A(3,m,), B(,,-) y C(-,0,-4) pertenezcan a la misma recta. 3. Probar que todos los planos

Más detalles

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1 Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

Trabajo Práctico N 4: I) VECTORES EN R 2 Y R 3

Trabajo Práctico N 4: I) VECTORES EN R 2 Y R 3 Trabajo Práctico N 4: I) VECTORES EN R Y R Ejercicio 1: Las fuerzas que actúan en un cuerpo se localizan en un plano, entonces se pueden representar mediante elementos de R. Determine la fuerza que hay

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 201/14 20 de diciembre de 201 Soluciones a los ejercicios del examen final 1) Se considera la función f : R R

Más detalles

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES

DERIVADAS DE FUNCIONES DE VARIAS VARIABLES DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Definicion 1. Sea Ω R n un abierto f : Ω R n R m y a Ω. Se define la derivada direccional de f en el punto a y en la dirección u como D u f(a) h 0 f(a + hu) f(a)

Más detalles

DP. - AS Matemáticas ISSN: X

DP. - AS Matemáticas ISSN: X DP. - AS - 59 007 Matemáticas ISSN: 988-379X DETERMINACIÓN DE LA FÓRMULA DE UNA FUNCIÓN A PARTIR DE CIERTAS DESCRIPCIONES VERBALES.. 00 De qué grado será, en general, el polinomio que sólo presenta un

Más detalles

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO ESPACIO AFIN 1.Hallar la ecuación del plano que contenga al punto P(1, 1, 1) y sea paralelo a las rectas: r x 2y = 0 ; y 2z + 4 = 0; s

Más detalles

4. [ANDA] [JUN-B] Dados los puntos A(2,1,1) y B(0,0,1), halla los puntos C en el eje OX tales que el área del triángulo de vértices A, B y C es 2.

4. [ANDA] [JUN-B] Dados los puntos A(2,1,1) y B(0,0,1), halla los puntos C en el eje OX tales que el área del triángulo de vértices A, B y C es 2. Selectividad CCNN 008 x-z = -. [ANDA] [SEP-A] Sea la recta dada por y+z = a) Halla la ecuación del plano que es paralelo a la recta s y contiene a la recta r, dada por x- = -y+ = z-. b) Estudia la posición

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

SELECTIVIDAD ESPACIO AFÍN

SELECTIVIDAD ESPACIO AFÍN SELECTIVIDAD ESPACIO AFÍN Junio 2008: Se considera el plano π x + ay + 2az = 4 y la recta r x + y + 2z = 2 x + 2y z = 3 a) Determinar los valores de a para los cuales la recta y el plano son paralelos.

Más detalles