RED DE DIFRACCIÓN. Objetivos: Introducción teórica. Laboratorio 3 de Física 47

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RED DE DIFRACCIÓN. Objetivos: Introducción teórica. Laboratorio 3 de Física 47"

Transcripción

1 Laboratorio 3 de Física 47 RED DE DIFRACCIÓN Objetivos: Caracterización de diferentes redes de difracción Estudio e identificación de diferentes fuentes espectrales por su espectro de emisión. Introducción teórica Una extensión directa del experimento de Young, consiste en aumentar el número de rendijas, con lo cual el ancho mitad de los picos disminuye; este dispositivo es denominado red de difracción, siendo inventado alrededor de 1785 por David Rittenhous y algunos años más tarde Joseph von Fraunhofer independientemente redescubrió el fenómeno y dio grandes contribuciones teóricas y técnicas al mismo. Hoy día, las redes de difracción son utilizadas en una gran variedad de equipos, en una impresionante variedad de rangos espectrales (ultravioleta, visible, infrarrojo) y en diversos tipos de experimentos, por ejemplo: Raman, Luminiscencia, Absorción, espectroscopia de modulación, etc. En resumen, las redes de difracción se utilizan en todas las experiencias en donde se necesita seleccionar un rango de longitudes de onda, una única longitud de onda o un barrido en un rango dado. En consecuencia, se han convertido en una de las mejores herramientas con que cuenta la ciencia para el análisis de espectros de infinidad de substancias y elementos químicos. En general se pueden crear redes de reflexión y transmisión siendo su análisis teórico básicamente el mismo. En el laboratorio 3 de Física se utilizarán redes de transmisión, por lo cual se analizarán éstas. El análisis de una red de difracción es muy semejante al del experimento de la rendija doble de Young, suposiciones generales: Los rayos de luz monocromática son paralelos e inciden perpendicularmente sobre la red de difracción Las rendijas o hendiduras en la red son lo suficientemente estrechas para que la difracción de cada una de ellas disperse la luz en un ángulo ancho (pantalla de visión muy lejos de la red o difracción Fraunhofer), en consecuencia la interferencia ocurre entre todas las rendijas.

2 Laboratorio 3 de Física 48 Fig. 5-1 Diagrama esquemático del fenómeno de difracción Al igual que en el experimento de Young, los rayos de luz que pasan sin desviarse (θ=0 ) interfieren constructivamente dando un punto o una línea brillante, ya que todo ellos están en fase, ver línea NM de la figura 5-1. Para obtener interferencia constructiva en otros ángulos debe cumplir que la diferencia de camino óptico sea un múltiplo entero de la longitud de onda. d sen θ = m λ (5-1) donde: d θ λ m Espaciamiento entre rendijas Ángulo entre la red y el frente de onda de los rayos dispersados longitud de onda de la radiación incidente orden de difracción En el experimento de Young, las intensidades de cada máximo de interferencia dentro de cada orden de difracción muestran varios valores, con un máximo central, pero en una red de difracción un solo máximo es visible. Esto se puede analizar por dos métodos: Geométrico o principio de Huygens Analítico utilizando análisis vectorial

3 Laboratorio 3 de Física 49 Según el principio de Huygens, cada punto donde incide una onda se convierte a su vez, en un centro de emisión para nuevas ondas secundarias, la envolvente de estas ondas para cada unidad de tiempo forma la nueva onda, ver figura 5-1, donde se muestra una pequeña región de la red con solamente cuatro rendijas. En la figura 5-1 se han trazado algunas líneas marcadas con: NM, AJ, AK que tienen interferencia constructiva, ya que son la envolvente de los máximos de las ondas secundarias; la intensidad de la onda resultante depende de la suma de estos máximos, ver tabla 5-1. Tabla 5-1 Interferencias constructivas Línea Descripción Orden NM máximo de todas las ondas al mismo tiempo cero (centro) AJ AK máximo de una onda y los anteriores en una unidad de tiempo cada una máximo de la onda y los anteriores en dos unidades de tiempo Primero Segundo De aquí podemos ver que el principio de Huygens explica la formación, intensidad y posición de los máximos de difracción en una red de difracción. Actualmente se utiliza el análisis vectorial, para analizar el fenómeno de difracción en las redes, cada onda es considerada un vector y su suma da la intensidad en cada punto de la pantalla de observación. Para cada orden de difracción (máximo) se debe cumplir dos condiciones: Una diferencia de fase ( φ) proporcional a 2π, ondas en fase. Una diferencia de camino óptico ( l) proporcional a la longitud de onda. Se puede realizar una relación entre estas dos condiciones ya que se deben cumplir simultáneamente que: φ l = 2π λ (5-2) En la construcción de las redes de difracción, las rendijas son trazadas en forma paralela y uniforme, por lo cual la diferencia de fase debe estar uniformemente distribuida entre todas las rendijas, o sea: φ= 2π/N (5-3)

4 Laboratorio 3 de Física 50 Siendo N el número total de rendijas. Si sustituimos en la ecuación (5-2) tenemos: l = λ/n (5-4) De la figura 5-1 la diferencia de camino óptico es: d sen θ = l, para el primer máximo, al sustituir (5-4) para un máximo cualquiera tenemos: d sen θ m = m λ / N (5-5) donde se incluye un subíndice para el ángulo, ya que pueden existir diferentes máximos en función del orden de difracción. Con la anterior expresión se puede obtener toda la información de la radiación dispersada por una red de difracción: posición, ancho de línea e intensidad. Características generales de las redes de difracción Ancho de la línea Se puede encontrar derivando (5-5) respeto de θ. θ m = m λ / N d cos θ m (5-6) De aquí podemos apreciar que cuando el número de rendijas sea alto (>300 líneas/mm), θ m debe ser muy pequeño para cada máximo, siendo esta es una de las mayores ventajas de este sistema Poder de Dispersión Definimos la dispersión angular de una rejilla de difracción como la razón de cambio del ángulo respecto de la longitud de onda dθ/dλ. Derivemos la ecuación 5-6 respecto de λ Cos θ dθ / dλ = m /d D = dθ / dλ = m /d cos θ (5-7) Donde apreciamos que la dispersión aumenta con el orden del espectro, por esto en las medidas prácticas únicamente se utilizan el 1 er y 2 do orden de difracción Poder de resolución El poder de resolución de una red es dado por la relación entre dos longitudes de onda al promedio de ellas. El criterio de separación utilizado es el criterio de Rayleigh que

5 Laboratorio 3 de Física 51 dice: Cuando el máximo de un pico coincide con el mínimo del otro la estructura se considera resuelta R = λ / λ Si se sustituye en esta expresión 5-6 y 5-7, obtenemos: R = N m Nota: En general los fabricantes de las redes de difracción dan entre sus especificaciones la densidad de líneas, pero en esta ecuación debemos utilizar el número de líneas utilizadas (iluminadas) de una red dada. Número de líneas (N) = densidad * longitud de la red. Métodos de Fabricación. La red matriz consiste en una serie de líneas o rayas igualmente espaciadas sobre su superficie, estas pueden ser realizadas de dos formas: Con un bisturí de diamante que crea una serie de hendiduras o líneas paralelas en la superficie de una placa de vidrio, creando una estructura parecida a un diente de sierra, el ángulo entre la horizontal y la pendiente del diente de sierra es denominado ángulo de acceso (Blaze), esta estructura disminuye la energía dispersada en el orden cero, aumentándola en los otros ordenes, por consiguiente mejorando la eficiencia de la red. Estas redes se consiguen comercialmente desde 300 hasta 1200 líneas/mm. Sobre una placa de vidrio o aluminio se deposita una capa de fotoresina y dos rayos láser exponen ésta con un patrón uniforme de interferencia, después de removida la fotoresina expuesta, queda un patrón de líneas rectas con sección transversal sinusoidal. Esta forma de fabricación dispersa menos luz y permite un mayor número de líneas por milímetro, por lo cual aumenta la resolución y respuesta de la red dada, pero son mucho más costosas. Estas redes se consiguen desde 1200 hasta 3600 líneas/mm. Sin importar el medio de fabricación de la red matriz, todas las redes comerciales son copia de anteriores, la copia es obtenida de la siguiente forma: Se coloca una capa diluida de colodión sobre la red matriz, después de secada es desprendida cuidadosamente y colocada sobre una placa de vidrio para su uso, si se desea una red de reflexión, se deposita una capa de aluminio sobre la copia. En el proceso de copiado, se introducen diversos defectos en la red; el costo de la red depende de la densidad de los defectos presentes.

6 Laboratorio 3 de Física 52 MÉTODO EXPERIMENTAL Realice el montaje del espectrómetro y su respectiva alineación óptica Busque las características de cada red de difracción: densidad de líneas (linea/mm), poder de dispersión y poder de resolución Busque la mejor red para medir el espectro de las fuentes desconocidas. Calibre el espectrómetro con la red seleccionada Estudie las fuentes desconocidas suministradas y determine que gas contiene. Montaje del espectrómetro. El espectrómetro debe ser calibrado según se indica en el apéndice sobre Uso de espectrómetro. El equipo debe ser alineado con todos los componentes ópticos del sistema, se sugiere para esto utilizar un nivel y una cinta métrica para alineación horizontal. Para cada lámpara que se coloqué, el espectrómetro deberá ser calibrado previamente antes de tomar una medida. Para dar un pequeño ejemplo de alineación del sistema (lámpara y Espectrómetro) utilizaremos el siguiente diagrama. En el diagrama, se puede apreciar que, cuando el rayo de luz atraviesa la red de difracción, la luz se difracta en varios ordenes de difracción. Estos ordenes, deben tener el mismo angulo con respecto al rayo principal de la luz. Cuando se logra que esos dos angulos sean iguales, el sistema estará completamente alineado para las medidas con esa

7 Laboratorio 3 de Física 53 fuente de luz, para cuando se reemplaza la fuente de luz deberá realizar nuevamente la calibración y/o alineación antes descrita. Características de la Red de difracción Coloque en el soporte del espectrómetro cada una de las redes suministradas, con la lámpara de sodio determine los ángulos de difracción para cada línea del doblete de sodio en diferentes órdenes. Con estos datos, determine el poder de resolución, la densidad de líneas de cada red. Con los datos anteriores y con un análisis teórico de las líneas más intensas de los tubos existentes en el laboratorio 3 de física, determine que red utilizará. Cambie la lámpara por una de mercurio, con la red seleccionada determine la calibración del espectrómetro para cada orden, para esto mida el ángulo de difracción para cada línea de emisión del mercurio, grafique λ (teórico) contra el ángulo; con esta curva es que determinará las longitudes de onda de los tubos de gases desconocidos. Grafique sus resultados y analíticamente determine el poder de dispersión para cada orden de difracción. Estudio de las fuentes desconocidas. Como los tubos de descargas utilizados en el laboratorio son de muy baja intensidad, se recomienda que en la alineación retire el riel y las lentes y coloque lo mas cercano posible el tubo de descarga a la rendija de entrada del colimador del espectrómetro. Coloque una por una las fuentes de emisión desconocidas suministradas, mida la posición angular de cada color en cada orden que sea posible. Con la curva de calibración, busque a qué longitud de onda corresponde. Con esta información y un estudio comparativo de los espectros característicos de diferentes gases, encuentre que elementos gaseosos contienen el tubo en estudio. Precisión en las medidas La precisión en las medidas experimentales se obtiene cerrando la rendija (colimador) de entrada, en general mientras más cerrado esté, más precisa será la medida, pero se debe tener cuidado que no se esté observando un espectro fantasma, producido por la difracción de la rendija o alguna reflexión dentro del tubo. Para verificar este punto abra ligeramente la rendija y las líneas deben ensancharse, pero no debe existir ningún otro movimiento, tampoco deben aparecer otras líneas más débiles alrededor de la principal.

8 Laboratorio 3 de Física 54 CUESTIONARIO 1. Qué diferencia existe entre una red de difracción y un prisma? 2. Deduzca la expresión (5-1) 3. Se utiliza una red para resolver el doblete de las líneas del sodio(d) (589,0 nm y 589,6 nm) Cuántas rendijas son necesarias? Si la distancia focal de la lente usada, colocada después de la red, es igual a 50 cm y si el ancho total de la red es 4 cm, Cuál es la separación lineal entre las dos líneas D en el plano focal? 4. Una red tiene 500 líneas Cuál es la razón de la intensidad de un máximo primario (m=0) a la intensidad del primer máximo secundario (m=1) 5. Mostrar que en el caso de incidencia normal de la luz sobre una red de difracción, la magnitud máxima de su poder de resolución no puede superar el valor de l/λ, donde l es el ancho de la red y λ la longitud de onda de la luz. 6. Qué se denomina dispersión angular? Qué se denomina dispersión lineal? Qué diferencia existe entre las dos ecuaciones para el poder de resolución de la red?

Magnetismo y Óptica Departamento de Física Universidad de Sonora

Magnetismo y Óptica Departamento de Física Universidad de Sonora Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora 1 Magnetismo y óptica 6. Difracción. a. Introducción a la difracción. Difracción de Fresnel y de Fraunhofer. b. Difracción de rendijas

Más detalles

Magnetismo y Óptica. Magnetismo y óptica. Óptica ondulatoria Departamento de Física Universidad de Sonora

Magnetismo y Óptica. Magnetismo y óptica. Óptica ondulatoria Departamento de Física Universidad de Sonora Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora 1 Magnetismo y óptica 6. Difracción. a. Introducción a la difracción. Difracción de Fresnel y de Fraunhofer. b. Difracción de rendijas

Más detalles

=0,23 =13,3. Si las longitudes de onda están muy cercanas entre sí podemos escribir y como y, respectivamente. Luego:

=0,23 =13,3. Si las longitudes de onda están muy cercanas entre sí podemos escribir y como y, respectivamente. Luego: Ejercicios de Difracción. 1.- Una red de difracción tiene 10 4 líneas uniformemente distribuidas en 0,0254 [m]. Se ilumina normalmente con luz amarilla de una lámpara de sodio. Esta luz está formada por

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA. Práctica N 01. Interferencia y Difracción

UNIVERSIDAD NACIONAL DEL SANTA. Práctica N 01. Interferencia y Difracción UNIVERSIDAD NACIONAL DEL SANTA Práctica N 01 Interferencia y Difracción Objetivos.- Estudio de los fenómenos de interferencia y difracción usando un láser como fuente de luz coherente y monocromática.

Más detalles

DIFRACCIÓN DE LA LUZ

DIFRACCIÓN DE LA LUZ PRÁCTICA 4 DIFRACCIÓN DE LA LUZ OBJETIVO Determinación de la longitud de onda de una luz monocromática mediante su patrón de difracción al hacerla atravesar una rendija estrecha. INTRODUCCION Cuando un

Más detalles

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica Slide 1 / 52 Las Ondas Electromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion Slide 3 / 52 1 Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en

Más detalles

TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN

TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN TRABAJO PRÁCTICO N 14 Introducción La luz blanca ordinaria (luz del sol, luz de lámparas incandescentes, etc.) es una superposición de ondas cuyas longitudes de onda cubren, en forma continua, todo el

Más detalles

Problemas de Ondas Electromagnéticas

Problemas de Ondas Electromagnéticas Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?

Más detalles

Experiencia nº7: Difracción

Experiencia nº7: Difracción Experiencia nº7: Difracción OBJETIVOS 1.- Estudiar el fenómeno de la difracción de una fuente policromática. 2.- Utilizar una red de difracción como elemento monocromador (espectroscopia con red de difracción).

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 4. Difracción 1. Para un haz de luz de longitud de onda que incide en forma normal sobre una placa con una rendija de ancho b, la intensidad observada sobre una pantalla

Más detalles

difracción? 2) Grafique la intensidad sobre la pantalla, en función de qué variable lo hace? Qué otra

difracción? 2) Grafique la intensidad sobre la pantalla, en función de qué variable lo hace? Qué otra Física 2 (Físicos) Difracción de Fraunhofer Difracción c DF, FCEyN, UBA 1. a) Considere la figura de difracción de Fraunhofer producida por una rendija de ancho b ubicada entre dos lentes convergentes

Más detalles

Interferencia: Redes de difracción

Interferencia: Redes de difracción Laboratorio de Física (Q) Departamento de Física. FCEyN- UBA Interferencia: Redes de difracción Objetivos Se propone medir el espectro emitido por una lámpara de sodio utilizando redes de difracción. Se

Más detalles

Difracción de la luz

Difracción de la luz Difracción de la luz Óptica Física Óptica Geométrica d ~ d >> Difracción de la luz 1. Difracción (cercana) de Fresnel (en honor a: Augustin Jean Fresnel, 1788-1827) 2. Difracción (lejana) de Fraunhofer

Más detalles

Difracción e Interferencia: Experimento de Young

Difracción e Interferencia: Experimento de Young Introducción Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Para dar explicación a ciertos fenómenos producidos por a

Más detalles

Practica nº n 5: Fenómenos de Difracción.

Practica nº n 5: Fenómenos de Difracción. Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular

Más detalles

Difracción e Interferencia: Experimento de Young

Difracción e Interferencia: Experimento de Young Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Elaborado por: Sofía D. Escobar, Miguel A. Serrano y Jorge A. Pérez Introducción

Más detalles

Objetivos. Introducción. β α

Objetivos. Introducción. β α Objetivos Medir el espectro emitido por una lámpara de sodio utilizando redes de difracción. Determinar los límites del espectro visible usando una fuente de luz blanca. Introducción Una red de difracción

Más detalles

Física III clase 22 (09/06/2011) Partícula cuántica

Física III clase 22 (09/06/2011) Partícula cuántica Física III clase 22 (09/06/2011) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería

Más detalles

Las Ondas Electromagnéticas Problemas de Práctica. Multiopcion. Slide 1 / 52. Slide 2 / 52. Slide 3 / 52 A B

Las Ondas Electromagnéticas Problemas de Práctica. Multiopcion. Slide 1 / 52. Slide 2 / 52. Slide 3 / 52 A B Slide 1 / 52 Las Ondas lectromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion 1 uál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de

Más detalles

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Objetivos: Se propone medir el espectro de una lámpara de sodio utilizando redes de difracción. Se propone determinar los límites del espectro visible

Más detalles

Difracción e Interferencia: Experimento de Young

Difracción e Interferencia: Experimento de Young Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Elaborado por: Sofía D. Escobar, Miguel A. Serrano y Jorge A. Pérez Introducción

Más detalles

Laboratorio 6 Difracción de la luz

Laboratorio 6 Difracción de la luz Laboratorio 6 Difracción de la luz 6.1 Objetivo 1. Estudiar el patrón de difracción dado por rendijas rectangulares sencillas y dobles, aberturas circulares, y rejillas de difracción. 2. Medir las constantes

Más detalles

Física 2 (biólogos y geólogos) 1er cuatrimestre SERIE 3. Difracción

Física 2 (biólogos y geólogos) 1er cuatrimestre SERIE 3. Difracción Física 2 (biólogos y geólogos) 1er cuatrimestre 2015 19 SERIE 3. Difracción 1. Para un haz de luz de longitud de onda que incide en forma normal sobre una placa con una rendija de ancho b, la intensidad

Más detalles

07/05/2017. ÓPTICA FÍSICA: difracción. Introducción a los patrones de difracción

07/05/2017. ÓPTICA FÍSICA: difracción. Introducción a los patrones de difracción ÓPTICA FÍSICA: difracción Dispositivo Delfina Fernandez y Damián Pontet, 2015 Introducción a los patrones de difracción Difracción es la desviación que sufren las ondas alrededor de los bordes y esquinas

Más detalles

Difracción: Experimento de Young y Principio de Babinet

Difracción: Experimento de Young y Principio de Babinet Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción: Experimento de Young y Principio de Babinet Introducción Durante los primeras décadas del siglo XIX se realizaban

Más detalles

Interferencias por reflexión en una lámina de vidrio Fundamento

Interferencias por reflexión en una lámina de vidrio Fundamento Interferencias por reflexión en una lámina de vidrio Fundamento Si sobre una lámina de vidrio, de índice de refracción n y espesor e, se hace incidir un haz de luz monocromática, que forma un ángulo θ

Más detalles

Naturaleza ondulatoria de la luz. Difracción.

Naturaleza ondulatoria de la luz. Difracción. Objetivos Comprobar la naturaleza ondulatoria de la luz. Estudio de la difracción de la luz en diferentes rendijas y obstáculos. Estudiar la difracción de Fraunhofer por una rendija. Material Láser de

Más detalles

Práctica Nº 7: Red de difracción

Práctica Nº 7: Red de difracción Práctica Nº 7: Red de difracción 1.- INTRODUCCIÓN. INTERFERENCIA o DIFRACCIÓN? Desde el punto de vista físico ambos fenómenos son equivalentes. En general se utiliza el término INTERFERENCIA, para designar

Más detalles

INTERFERENCIA DE LA LUZ

INTERFERENCIA DE LA LUZ INTERFERENCIA DE A UZ 1. OBJETIVO Interferencia de la luz Determinar la longitud de onda de la luz emitida por un láser, a partir del patrón de interferencias que se obtiene al incidir un haz de luz: a)

Más detalles

Guías de Prácticas de Laboratorio

Guías de Prácticas de Laboratorio Guías de Prácticas de Laboratorio Laboratorio de: (5) FÍSICA OPTICA Y ACUSTICA Titulo de la Práctica de Laboratorio: (6) REJILLA DE DIFRACCION Identificación: (1) Número de Páginas: (2) 8 Revisión No.:

Más detalles

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable) Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ

GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ TABLA DE CONTENIDO Pag. EXPERIMENTO DE DIFRACCIÓN DE LA LUZ... 3 1. INTRODUCCIÓN... 3 2. EQUIPOS... 3 3. MONTAJE GENERAL DEL EXPERIMENTO... 5 3.1

Más detalles

2- Describa y deduzca las expresiones matemáticas correspondientes al experimento de la doble rendija de Young.

2- Describa y deduzca las expresiones matemáticas correspondientes al experimento de la doble rendija de Young. ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 14 INTERFERENCIA, DIFRACCION Y POLARIZACION Bibliografía Obligatoria (mínima) Capítulos 37 y 38 Física de Serway Tomo II PREGUNTAS SOBRE LA TEORIA Las preguntas

Más detalles

Preguntas del capítulo Ondas electromagnéticas

Preguntas del capítulo Ondas electromagnéticas Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer

Más detalles

PROPIEDADES ONDULATORIAS: La radiación electromagnética tiene una componente eléctrica y una componente magnética. El vector eléctrico y el vector

PROPIEDADES ONDULATORIAS: La radiación electromagnética tiene una componente eléctrica y una componente magnética. El vector eléctrico y el vector Espectroscopia: Estudio de la materia en base la observación y estudio de sus propiedades espectrales. Los antecesores de la moderna espectroscopía fueron Kirckoff y Bunssen quienes a mediados del siglo

Más detalles

Capítulo 4. Rejillas de difracción.

Capítulo 4. Rejillas de difracción. Capítulo 4 Rejillas de difracción. 4.1 Introducción. En este capítulo se estudiarán las rejillas de difracción así como se mencionará el papel que juega dentro de la óptica, también se muestra una imagen

Más detalles

1 LA LUZ. 2 La velocidad de la luz

1 LA LUZ. 2 La velocidad de la luz 1 LA LUZ -Newton: La luz está formada por corpúsculos -Hyugens: La luz es una onda -Interferencia -Las ecuaciones de Maxwell -El éter. -Einstein y la teorí a de los fotones. E=hν La luz posee una naturalez

Más detalles

Física II (Biólogos y Geólogos) SERIE 3. Difracción

Física II (Biólogos y Geólogos) SERIE 3. Difracción Física II (Biólogos y Geólogos) SERIE 3 Difracción 1. Partiendo de la expresión de la intensidad observada sobre una pantalla, explique el significado de cada uno de los términos que aparece en dicha expresión

Más detalles

P8. ESPECTROSCOPÍA ATÓMICA DE EMISIÓN

P8. ESPECTROSCOPÍA ATÓMICA DE EMISIÓN UCLM F. C. M. Amb. 0. OBJETIVOS. P8. ESPECTROSCOPÍA ATÓMICA DE EMISIÓN ) Visualizar líneas espectrales con el espectroscopio. 2) Determinar la constante de una red de difracción y realizar su calibración.

Más detalles

Problema Interferencia de N ranuras.

Problema Interferencia de N ranuras. Problema 9. 4. Interferencia de N ranuras. Considere un obstáculo con tres ranuras separadas por una distancia d e iluminado con una onda plana de longitud de onda λ. Emplee el método de los fasores para

Más detalles

ÓPTICA DE MICROONDAS

ÓPTICA DE MICROONDAS Laboratorio 3 de Física 93 ÓPTICA DE MICROONDAS Objetivos: Estudiar la aplicación leyes de la óptica para las microondas: Reflexión, refracción, polarización, interferencia Encontrar la longitud de onda

Más detalles

Experiencia N 8: Espectro Visible del Hidrógeno

Experiencia N 8: Espectro Visible del Hidrógeno 1 Experiencia N 8: Espectro Visible del Hidrógeno OBJETIVOS 1.- Calcular experimentalmente la constante de Rydberg. 2.- Calcular experimentalmente las líneas espectrales visibles del hidrógeno utilizando

Más detalles

Problemas de Óptica Física

Problemas de Óptica Física Problemas de Óptica Física Cte. de Planck: h= 6.6x10-34 J.s= 4.1x10-15 ev.s Velocidad de la luz en el vacío: c = 3x10 8 m/s Problema 1 Si se observa en una pantalla alejada el patrón de difracción al hacer

Más detalles

Tutoría 2: Experimentos de difracción

Tutoría 2: Experimentos de difracción Tutoría 2: Experimentos de difracción T2.1 Introducción En esta tutoría trataremos la cuestión fundamental de cómo conocemos donde se sitúan los átomos en un sólido. La demostración realizada se basa en

Más detalles

ESPEJO DE FRESNEL RESUMEN:

ESPEJO DE FRESNEL RESUMEN: RESUMEN: 1 ESPEJO DE FRESNEL El presente documento expone como obtener la longitud de onda de una fuente de luz láser He-Ne a partir de la geometría del experimento, generando dos fuentes virtuales coherentes

Más detalles

Laboratorio de Física II (ByG) 1er cuat Guía 6: Fenómeno de Difracción. La Cristalografía de rayos X.

Laboratorio de Física II (ByG) 1er cuat Guía 6: Fenómeno de Difracción. La Cristalografía de rayos X. Laboratorio de Física II (ByG) 1er cuat. 2015 Guía 6:. La Cristalografía de rayos X. Objetivos Estudiar la figura de difracción (también llamada patrón de difracción) producida por diferentes obstáculos

Más detalles

PRISMA. Objetivo: Introducción Teórica. δ = δ 1 + δ 2 δ 1 = θ i1 θ t1 δ 2 = θ i2 θ t2 δ = θ i1 + θ i2 (θ t1 + θ t2 ) (3-1)

PRISMA. Objetivo: Introducción Teórica. δ = δ 1 + δ 2 δ 1 = θ i1 θ t1 δ 2 = θ i2 θ t2 δ = θ i1 + θ i2 (θ t1 + θ t2 ) (3-1) Laboratorio 3 de Física 25 PRISMA Objetivo: Estudio de la dispersión de un prisma. Obtención del índice de refracción del prisma. Obtención del índice de refracción de varias sustancias con el prisma y

Más detalles

Práctica Nº8. REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma.

Práctica Nº8. REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma. Práctica Nº8 REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma. 1 Introducción. En esta práctica estudiaremos un elemento óptico: el prisma, que nos permitirá analizar los fenómenos

Más detalles

ESPECTRÓMETRO. El instrumento tiene un colimador, telescopio y una plataforma óptica montada en un centro común.

ESPECTRÓMETRO. El instrumento tiene un colimador, telescopio y una plataforma óptica montada en un centro común. ESPECTRÓMETRO DESCRIPCION Un espectrómetro es un instrumento usado para medir muchos parámetros relacionados con los prismas, rejillas y espectroscopia general. Es particularmente usado para medir ángulo

Más detalles

Experimento 11 Difracción

Experimento 11 Difracción Experimento 11 Difracción Objetivos Producir patrones de difracción de diferentes aberturas; describir cualitativamente, con detalle sus características más sobresalientes, compararlos con las predicciones

Más detalles

Tipler Mosca: 33 Alonso Finn: 34-35

Tipler Mosca: 33 Alonso Finn: 34-35 Tema 6: Interferencia y difracción de ondas * Diferencia de fase y coherencia. * Interferencia en películas delgadas. * Diagrama de interferencias de dos rendijas. * Diagrama de difracción de una rendija.

Más detalles

Interferencia Luminosa: Experiencia de Young

Interferencia Luminosa: Experiencia de Young Interferencia Luminosa: Experiencia de Young Objetivo emostrar el comportamiento ondulatorio de la luz a través de un diagrama de interferencia. Equipamiento - Lámpara de Filamento rectilíneo - Soporte

Más detalles

Práctica de Óptica Física

Práctica de Óptica Física Práctica de Estudio de fenómenos de interferencia difracción 2 Pre - requisitos para realizar la práctica...2 Bibliografía recomendada en referencia la modelo teórico...2 Competencias a desarrollar por

Más detalles

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA Cuestiones ÓPTICA 1. a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? 2. a) Qué es una onda electromagnética?

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO SEGUNDA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO SEGUNDA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 SEGUNDA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

SESIÓN 8. Redes de difracción. Espectroscopia.

SESIÓN 8. Redes de difracción. Espectroscopia. SESIÓN 8. Redes de difracción. Espectroscopia. TRABAJO PREVIO 1. Conceptos fundamentales. Cuestiones 1. Conceptos fundamentales. Difracción. La difracción es un fenómeno óptico que se produce cuando la

Más detalles

ING. LUIS MIGUEL HERNÁNDEZ HERNÁNDEZ ÓPTICA FÍSICA

ING. LUIS MIGUEL HERNÁNDEZ HERNÁNDEZ ÓPTICA FÍSICA ÓPTICA FÍSICA Si no considerásemos la luz como una onda electromagnética, nos sería imposible explicar los fenómenos de interferencia, dispersión, difracción y la polarización de la luz. La parte de la

Más detalles

Qúe es un espectrómetro? - Instrumentos para medir y analizar espectros de señales

Qúe es un espectrómetro? - Instrumentos para medir y analizar espectros de señales Espectrómetros Qúe es un espectrómetro? - Instrumentos para medir y analizar espectros de señales Espectros Algunas aplicaciones - En química: Se utiliza para determinar propiedades y composición de sustancias

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física. Examen Final - Fisi 3162/3172 Nombre: jueves 8 de mayo de 2008

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física. Examen Final - Fisi 3162/3172 Nombre: jueves 8 de mayo de 2008 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3162/3172 Nombre: jueves 8 de mayo de 2008 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

CONCEPTOS DE ÓPTICA FÍSICA (continuación)

CONCEPTOS DE ÓPTICA FÍSICA (continuación) CONCEPTOS DE ÓPTICA FÍSICA (continuación) 4.2 La red de difracción Una red de difracción, Fig.15, se construye haciendo rayas iguales, paralelas e igualmente espaciadas, en una superficie plana. Si es

Más detalles

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA II TERMINO ACADEMICO 2013-2014 PRIMERA EVALUACIÓN DE FISICA D 4 DE DICIEMBRE DEL 2013 COMPROMISO

Más detalles

Física A.B.A.U. ONDAS 1 ONDAS

Física A.B.A.U. ONDAS 1 ONDAS Física A.B.A.U. ONDAS 1 ONDAS PROBLEMAS 1. La ecuación de una onda transversal que se propaga en una cuerda es y(x, t) = 10 sen π(x 0,2 t), donde las longitudes se expresan en metros y el tiempo en segundos.

Más detalles

Interferencias y difracción. Propiedades ondulatorias de la luz

Interferencias y difracción. Propiedades ondulatorias de la luz Interferencias y difracción Propiedades ondulatorias de la luz Naturaleza ondulatoria de la luz Interferencias: al combinarse dos ondas hay máximos y mínimos Difracción: debido a la existencia de varias

Más detalles

Webpage:

Webpage: Magnetismo y Óptica Dr. Roberto Pedro Duarte Zamorano E-mail: roberto.duarte@didactica.fisica.uson.mx Webpage: http://rpduarte.fisica.uson.mx 2016 Departamento de Física Universidad de Sonora A. Magnetismo

Más detalles

Calibración de un espectrómetro y medición de longitudes de onda de las líneas de un espectro.

Calibración de un espectrómetro y medición de longitudes de onda de las líneas de un espectro. Calibración de un espectrómetro y medición de longitudes de onda de las líneas de un espectro. Objetivo Obtener la curva de calibración de un espectrómetro de red de difracción. Determinar la longitud

Más detalles

REPASO Interferencia

REPASO Interferencia REPASO Interferencia Dos fuentes de ondas coherentes separadas por una distancia 4 Considere un punto a en el eje x. las dos distancias de S 1 a a y de S 2 a a son iguales las ondas requieren tiempos iguales

Más detalles

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN 22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación

Más detalles

Práctica 4. Interferómetro de Michelson

Práctica 4. Interferómetro de Michelson . Interferómetro de Michelson 1. OBJETIVOS Estudiar una de las propiedades ondulatorias de la luz, la interferencia. Aplicar los conocimientos para la medida (interferometría) de longitudes de onda o distancias.

Más detalles

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN 22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

Laboratorio de Física II (ByG) 1er cuat. 2017

Laboratorio de Física II (ByG) 1er cuat. 2017 Laboratorio de Física II (ByG) 1er cuat. 2017 Guía 7:. Espectrofotómetro. Objetivos Medir el espectro emitido por una lámpara de sodio utilizando redes de difracción. Determinar los límites del espectro

Más detalles

Tipler Mosca: 33 Alonso Finn: 34-35

Tipler Mosca: 33 Alonso Finn: 34-35 Tema 6: Interferencia y difracción de ondas * Diferencia de fase y coherencia. * Interferencia en películas delgadas. * Diagrama de interferencias de dos rendijas. * Diagrama de difracción de una rendija.

Más detalles

1. Difracción de Fraunhoffer

1. Difracción de Fraunhoffer Instituto Politécnico Superior Gral. San Martín UNR Física - 5 o Año Apunte Complementario de Fenómenos de Difracción Autores: Carlos M. Silva, Emanuel Benatti 1. Difracción de Fraunhoffer Cálculo de la

Más detalles

RENDIJA DE DIFRACCIÓN

RENDIJA DE DIFRACCIÓN RENDIJA DE DIFRACCIÓN Física de Oscilaciones Ondas Óptica Semestre 01 de 2010 Escuela de Física Sede Medellín 1 Objetivo general Estudiar el fenómeno de difracción de la luz. 2 Objetivos especícos Estudiar

Más detalles

5. Sea una fuente monocromática (λ =5500 Å), y un dispositivo de Young de las siguientes características:

5. Sea una fuente monocromática (λ =5500 Å), y un dispositivo de Young de las siguientes características: Física 2 (Físicos) Interferencia c DF, FCEyN, UBA Condiciones 1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos. 2. Bajo qué condiciones se puede decir que dos fuentes son coherentes?

Más detalles

1. Verificar experimentalmente de la ley de Snell. 2. Medir el índice de refracción del agua y un material acrílico.

1. Verificar experimentalmente de la ley de Snell. 2. Medir el índice de refracción del agua y un material acrílico. Laboratorio 5 Indice de Refracción 5.1 Objetivos 1. Verificar experimentalmente de la ley de Snell. 2. Medir el índice de refracción del agua y un material acrílico. 3. Medir el ángulo de reflexión interna

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

Interferencia y Difracción

Interferencia y Difracción Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Año 2011 Proyecto de Física III Interferencia y Difracción Integrantes Lomenzo, María Florencia Ing. Biomédica (flor_lomenzo@hotmail.com)

Más detalles

Óptica geométrica (I). Reflexión y refracción en superficies planas. Dispersión de la luz.

Óptica geométrica (I). Reflexión y refracción en superficies planas. Dispersión de la luz. Óptica geométrica (I). Reflexión y refracción en superficies planas. Dispersión de la luz. Libro de texto: Paul A. Tipler, Física, Tomo 2, 5ª edición, Reverté, Barcelona (2005), pp. 939 946 (4ª edición

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

Laboratorio de Optica

Laboratorio de Optica Laboratorio de Optica 8. Interferómetro de Michelson Neil Bruce Laboratorio de Optica Aplicada, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, U.N.A.M., Objetivos A.P. 70-186, México, 04510, D.F.

Más detalles

ESPECTROS ATÓMICOS. a) Obtener las curvas características para los espectros de emisión del sodio, helio, hidrógeno y mercurio.

ESPECTROS ATÓMICOS. a) Obtener las curvas características para los espectros de emisión del sodio, helio, hidrógeno y mercurio. ESPECTROS ATÓMICOS OBJETIVOS a) Obtener las curvas características para los espectros de emisión del sodio, helio, hidrógeno y mercurio. b) Mediante las curvas características obtenidas, determinar las

Más detalles

DIFRACCIÓN DE LA LUZ

DIFRACCIÓN DE LA LUZ DIFRACCIÓN DE LA LUZ 1. OBJETIVO a) Determinar la anchura de una rendija a partir del diagrama de difracción que se obtiene cuando sobre la misma incide un haz de luz procedente de un láser. b) Determinar

Más detalles

CAPITULO 4 Resultados Experimentales. El equipo empleado para la obtención de los patrones de difracción para este trabajo incuye:

CAPITULO 4 Resultados Experimentales. El equipo empleado para la obtención de los patrones de difracción para este trabajo incuye: CAPITULO 4 Resultados Experimentales Procedimiento Experimental El equipo empleado para la obtención de los patrones de difracción para este trabajo incuye: Laser Helio-Neon (λ=632.8 nm = 6.328 x 10-7

Más detalles

LO QUE SEA VERDAD Y TACHA LO QUE SEA FALSO

LO QUE SEA VERDAD Y TACHA LO QUE SEA FALSO P5 Espectroscopía Versión 2 En la práctica 3 vimos que un material transparente se puede caracterizar por el índice de refracción n, y ahí aprendimos a calcularlo. Pero en realidad el índice de refracción

Más detalles

Seminario 5: Interferencia

Seminario 5: Interferencia Seminario 5: Interferencia Fabián Andrés Torres Ruiz Departamento de Física,, Chile 18 de Abril de 2007. Problemas 1. (Problema 3, capitulo 37,Física, Raymond A. Serway, V2, cuarta edición) Un experimento

Más detalles

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten La luz se comporta a la vez como onda y partícula. Algunos fenómenos se explican más mejor suponiendo que la luz es una onda (reflexión, refracción, interferencia, difracción) en tanto que otros fenómenos,

Más detalles

Indicar espacio distinto de aula (aula informáti ca, audiovisu al, etc.) GRUPO (marcar X) Indicar SI/NO es una sesión con 2 profesores PEQ UEÑ O

Indicar espacio distinto de aula (aula informáti ca, audiovisu al, etc.) GRUPO (marcar X) Indicar SI/NO es una sesión con 2 profesores PEQ UEÑ O SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: AMPLIACIÓN DE FÍSICA GRADO: Ingeniería en Tecnologías de Telecomunicación; Ingeniería de Sistemas de Telecomunicación Ingeniería de Sistemas Audiovisuales; Ingeniería

Más detalles

Ejercicios de Interferencia en láminas delgadas.

Ejercicios de Interferencia en láminas delgadas. Ejercicios de Interferencia en láminas delgadas. 1.- Sobre una película delgada y transparente de índice de refracción n 2 y espesor uniforme d, situada en un medio de índice de refracción n 1, incide

Más detalles

COMPONENTE HORIZONTAL DEL CAMPO MAGNÉTICO TERRESTRE

COMPONENTE HORIZONTAL DEL CAMPO MAGNÉTICO TERRESTRE Laboratorio 3 de Física 111 COMPONENTE HORIZONTAL DEL CAMPO MAGNÉTICO TERRESTRE Objetivo: Determinar la componente horizontal del campo magnético de la tierra. Encontrar el momento magnético de un imán.

Más detalles

Tema 10: espectroscopía. Instrumentación Astronómica Curso 2011/2012 (material compilado por J. Zamorano, J. Gallego, P.G.

Tema 10: espectroscopía. Instrumentación Astronómica Curso 2011/2012 (material compilado por J. Zamorano, J. Gallego, P.G. Tema 10: espectroscopía 1 Introducción El objetivo de la espectroscopía es obtener las distribuciones espectrales de energía (SEDs): flujo de energía recibido de los objetos celestes respecto a la longitud

Más detalles