UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 04/02/2014 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536C)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 04/02/2014 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536C)"

Transcripción

1 UIVERSIDAD ACIOAL DE IEIERIA P.A. 4- FACULAD DE IEIERIA MECAICA 44 EXAME PARCIAL DE MEODOS UMERICOS (MB56C) DURACIO: MIUOS SOLO SE PERMIE EL USO DE UA HOJA DE FORMULARIO A4 ESCRIBA CLARAMEE SUS PROCEDIMIEOS Prolem ) (.5 Pts) Un sector circulr de rdio R y ángulo Ѳ, cuyo momento de inerci con respecto un eje que divide l sector en dos prtes igules se puede clculr con l fórmul: I r 4 sen 4 Si r= m y Ѳ=π5. Cuál dee ser el error reltivo permisile en l medición de r y Ѳ Si el error máximo permitido pr el cálculo de I es del %, plicndo el principio de igul efecto. ) (.5 Pts) Se un sistem sdo en l norm IEEE-754 con ls siguientes crcterístics: Almcenmiento de 6 its: signo: it, exponente: 5 its, mntis : its, determine el vlor inrio y deciml de: i) El myor número positivo normlizdo ii) El menor positivo número sunorml iii) El vlor de I de l pregunt ) redondedo decimles Prolem Se tiene el siguiente sistem ms-resorte. L relción entre ls mss y los desplzmientos ( ) se d por el siguiente sistem de ecuciones: Determine lo siguiente, indicndo clrmente los resultdos prciles: ) ( pto) Verifique si el sistem tiene solución únic. ) ( pts) Clcule con el método de eliminción ussin con pivoteo prcil. c) ( pts) Clcule con el método de Fctorizción de Doolitle. Prolem Se consider el sistem linel: x y z

2 UIVERSIDAD ACIOAL DE IEIERIA P.A. 4- FACULAD DE IEIERIA MECAICA 44 ) ( Pts) Clculr l mtriz de l iterción de uss-seidel y otener su polinomio crcterístico y prtir de él los vlores propios. Qué relción dee existir entre los coeficientes y pr que el método de uss-seidel se convergente? ) (.5 Pto) omndo = y =, clculr 5 iterciones utilizndo el método de uss-seidel con un vector inicil igul l Cj y estime el error. Comente sus resultdos cerc de l convergenci. c) (.5 Pto) Escri un función en MALAB pr resolver ) con prámetros de entrd, y el número de iterciones n, y prámetros de slid el vector solución x y el error err (use norm Infinit). Prolem 4 L estimción de l tempertur en un recinto frio se puede estimr por l siguiente expresión polinómic: x +4x -x-5=, se se que el vlor es cercno C: ) ( pts) Determine fórmuls pr plicr el método de punto fijo que sen convergente, verifique l condición de convergenci. ) ( pts) Determine l fórmul pr plicr el método de ewton-rpshon c) ( pto) Estime l tempertur hst l tercer iterción plicndo ewton-rphson y estime el error. Los Profesores

3 UIVERSIDAD ACIOAL DE IEIERIA P.A. 4- FACULAD DE IEIERIA MECAICA 44 Solución ) r 5 r I.65 I.xI????. I I I r r Por principio de igul efecto: I I. r. r r I I % r..59% ) i) relmx=(-)^()*(.)*^(-5)=(+^-+^-+ +^-)*^5 relmx=6554 inrio= ii) x=(-)^*(.)*^-4=^-4 Deciml =5.965e-8 Binrio = iii) x=.6 x=.=(-)^*.*^- E-5=- E=4= Binrio = Deciml =.699 Solución ) Mtriz mplid Rngo de A y de mplid es de, por lo tnto tiene solución únic. ) f=f+f f=f+f*4.5

4 UIVERSIDAD ACIOAL DE IEIERIA P.A. 4- FACULAD DE IEIERIA MECAICA Por sustitución regresiv x=9 x= x= c) 4 - d e f g h - c i d=4 e=- f= =-.5 = g=5-.5=4.5 c=-4.5=.444 h=5 i=.5555 A L U LUx=, hciendo Lz= y Ux=z Por sustitucion progresiv=> z= z=4.5 z=5 Por sustitucion regresiv=> x=9 x= x= Solución ) U L D det I P ) 4 8 4

5 UIVERSIDAD ACIOAL DE IEIERIA P.A. 4- FACULAD DE IEIERIA MECAICA 44 C 4 C J X X 4 X X X X ERR Se h usdo norm Infinit pr el cálculo del error de sucesión, ddo que el error decrece podemos firmr que hy convergenci, demás est en el rngo de convergenci. ) Función en MALAB: function [x, err]=clcul(,, n) A=[ ; ; ]; B=[; ; ]; D=dig(dig(A)); L=D-tril(A); U=D-triu(A); g=inv(d-l)*u; Cg=inv(D-L)*B; Cj=inv(D)*B; x=cj; for i=:n xn=g*x+cg; err=norm(xn-x,inf); x=xn; end

6 UIVERSIDAD ACIOAL DE IEIERIA P.A. 4- FACULAD DE IEIERIA MECAICA 44 Prolem 4 Solución: ) Verificndo condición de convergenci: g g Por lo qué: g g Ams serán convergentes ) Aplicndo l fórmul genéric, se tiene: x x x x 6x 4x 8x x 5 c) x Err

Problema 2 Sea el sistema:

Problema 2 Sea el sistema: UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN PARCIAL DE METODOS NUMERICOS (MB6A) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO A ESCRIBA CLARAMENTE

Más detalles

GUIA DE SISTEMAS DE ECUACIONES LINEALES

GUIA DE SISTEMAS DE ECUACIONES LINEALES Fcultd de Ciencis Deprtmento de Mtemátics y Ciencis de l Computción GUIA DE SISEMAS DE ECUACIONES LINEALES. Resuelv los siguientes sistems de ecuciones usndo el metodo de elimincion gussin, verifique l

Más detalles

CÁLCULO NUMÉRICO (0258) Tercer Parcial (20%) Jueves 27/09/12

CÁLCULO NUMÉRICO (0258) Tercer Parcial (20%) Jueves 27/09/12 Universidd Centrl de Venezuel Fcultd de Ingenierí Deprtmento de Mtemátic Aplicd CÁLCULO NUMÉRICO (58 Tercer Prcil (% Jueves 7/9/ Se l fórmul de diferencición numéric f(x f(x + + f(x + f ''(x Usndo series

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO CSTILL Y LEÓN / JUNIO. LOGSE / MTEMÁTICS II / EXMEN COMPLETO Se proponen dos pruebs, B. Cd un de ells const de dos problems, PR- PR-, de cutro cuestiones, C-, C-, C- C-4. Cd problem tendrá un puntución

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

Examen con soluciones

Examen con soluciones Cálculo Numérico I. Grdo en Mtemátics. Exmen con soluciones. Decidir rzondmente si ls siguientes firmciones son verdders o flss, buscndo un contrejemplo en el cso de ser flss (.5 puntos): () Si f(x) cmbi

Más detalles

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem

Más detalles

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS 2005 2. SISTEMAS DE ECUACIONES LINEALES

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS 2005 2. SISTEMAS DE ECUACIONES LINEALES A. Métodos Directos 75. ANÁLISIS NUMÉRICO I FACULTAD DE INGENIERÍA UNIVERSIDAD DE BUENOS AIRES GUÍA DE PROBLEMAS 5. SISTEMAS DE ECUACIONES LINEALES. Resolver el sistem linel A x = b utilizndo eliminción

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

Álgebra. Ingeniería Industrial. Curso 2008/2009 Primer Parcial. Primera parte de la convocatoria de Febrero

Álgebra. Ingeniería Industrial. Curso 2008/2009 Primer Parcial. Primera parte de la convocatoria de Febrero Álger. Ingenierí Industril. Curso 8/9 Primer Prcil. Primer prte de l convoctori de Ferero Ejercicio (I) (.) [ puntos] Hllr l prte rel e imginri de z siendo z = ³ + 7 ³ i + i 7. (.) [ puntos] Expresr en

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1 TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distriución grtuit y lleg grcis Cienci temátic www.ciencimtemtic.com El myor portl de recursos eductivos tu servicio! www.ciencimtemtic.com ATRICES Definición: Un mtriz A, es un rreglo

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

y B = + Qué valores han de tener "x" e "y" para que las dos matrices sean iguales?

y B = + Qué valores han de tener x e y para que las dos matrices sean iguales? DP. - AS - Mtemátics ISSN: - X www.ulmtemtic.com. Actividd propuest Sen ls mtrices A B Qué vlores hn de tener "" e "" pr que ls dos mtrices sen igules? Aplicndo l definición de iguldd de mtrices, ésts

Más detalles

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 08 - Todos resueltos

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 08 - Todos resueltos Problems Tem 8: Solución problems sobre Determinntes - Hoj 8 - Todos resueltos págin /9 Problems Tem 8 Solución problems sobre Determinntes - Hoj 8 - Todos resueltos Hoj 8. Problem. Se M un mtriz cudrd

Más detalles

Examen de Admisión a la Maestría 1 de Julio de 2015

Examen de Admisión a la Maestría 1 de Julio de 2015 Exmen de Admisión l Mestrí 1 de Julio de 215 Nombre: Instrucciones: En cd rectivo seleccione l respuest correct encerrndo en un círculo l letr correspondiente. Puede hcer cálculos en ls hojs que se le

Más detalles

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior.

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior. MATEMÁTICAS II ACTIVIDADES REFUERZO ª EVALUACIÓN Ejercicio 1. Sen f : y g : ls funciones definids por f() = -( + 1) + + b y g() = ce Se sbe que ls gráfics de f y g se cortn en el punto ( 1, ) y tienen

Más detalles

Método lineal de resolución para sistemas de tuberías complejos. MC2314. Mecánica de Fluidos III Prof. Geanette Polanco Ene-Mar 2011

Método lineal de resolución para sistemas de tuberías complejos. MC2314. Mecánica de Fluidos III Prof. Geanette Polanco Ene-Mar 2011 Método linel de resolución pr sistems de tuberís complejos MC. Mecánic de Fluidos III Prof. Genette Polnco Ene-Mr Sistems de tuberís Cso tipo: Se requiere resolver l distribución de cudles del sistem de

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

- sen(x) cos(x) cos(x) sen(x)

- sen(x) cos(x) cos(x) sen(x) EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: º Grupo: Dí: CURSO 5-6 Opción A.- ) [ punto] Si A y B son dos mtrices cudrds y del mismo orden, es ciert en generl l relción (A+B)

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx Cpítulo 3 Integrción Numéric 3.1. Introducción Ls integrles que vmos trtr de resolver numéricmente son de l form f(x)dx donde [, b] es un intervlo finito. Sbemos que l integrl definid (de Riemnn) de un

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

Integración numérica por Monte-Carlo

Integración numérica por Monte-Carlo Integrción numéric por onte-crlo Ptrici Svedr Brrer 1 16 de julio de 28 1 Deprtmento de temátics, Universidd Autónom etropolitn-iztplp, psb@xnum.um.mx 2 Introducción Se X un vrible letori continu que tom

Más detalles

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nobre: Curso: º Grupo: A Dí: 7 - IV - 5 CURSO 4-5 ) Durción: HORA y 3 MINUTOS. b) Debes elegir entre relizr únicente los cutro ejercicios

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.

Más detalles

Apellido 1 Apellido 2 Nombre DNI Calificación. 1. Considere la asociación de cuadripolos de la siguiente figura: R G a Cuadripolo A 1:1.

Apellido 1 Apellido 2 Nombre DNI Calificación. 1. Considere la asociación de cuadripolos de la siguiente figura: R G a Cuadripolo A 1:1. Apellido Apellido Nomre DNI Clificción. Considere l socición de cudripolos de l siguiente figur: R G Cudripolo A c v G (t) R [ Z ] = R L : Cudripolo B [ Z ] = d Se pide: ) Clculr l mtri de prámetros Z

Más detalles

Soluciones Hoja 4: Relatividad (IV)

Soluciones Hoja 4: Relatividad (IV) Soluciones Hoj 4: Reltividd (IV) 1) Un estdo excitdo X de un átomo en reposo ce su estdo fundmentl X emitiendo un fotón En físic tómic es hitul suponer que l energí E γ del fotón es igul l diferenci de

Más detalles

IES Fco Ayala de Granada Sobrantes del 2001 (Modelo 1) Solución Germán-Jesús Rubio Luna OPCIÓN A Area Area

IES Fco Ayala de Granada Sobrantes del 2001 (Modelo 1) Solución Germán-Jesús Rubio Luna OPCIÓN A Area Area IES Fco Ayl de Grnd Sobrntes del (Modelo ) GermánJesús Rubio Lun OPCIÓN A Ejercicio de l Opción A del Modelo de sobrntes de. Se quiere dividir l región encerrd entre l prábol y x y l rect y en dos regiones

Más detalles

Tarea Número 4. MA0501 Análisis Numérico I Prof: Oldemar Rodríguez Rojas Fecha de entrega: Viernes 14 de octubre del 2014.

Tarea Número 4. MA0501 Análisis Numérico I Prof: Oldemar Rodríguez Rojas Fecha de entrega: Viernes 14 de octubre del 2014. MA0501 Análisis Numérico I Pro: Oldemr Rodríguez Rojs Fech de entreg: Viernes 1 de octubre del 01 Tre Número 1 Desrrolle unciones itertivs y recursivs en Mthemtic pr los lgoritmos de los métodos de: iterción

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real.

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real. 7.. Clculr el desrrollo de Tylor de grdo en = de l función f () = te t dt, y utilizrlo pr clculr proimdmente, te t dt. Dr un estimción del error cometido. ( 997). 7.. Clculr el siguiente ite funcionl cos

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

RELACION DE PROBLEMAS DE ÁLGEBRA. Problemas propuestos para la prueba de acceso del curso 1996/ e I =

RELACION DE PROBLEMAS DE ÁLGEBRA. Problemas propuestos para la prueba de acceso del curso 1996/ e I = IES "Jándul" RELACION DE PROBLEMAS DE ÁLGEBRA Prolems propuestos pr l prue de cceso del curso 996/97 º Consider ls mtrices A e I Clcul un mtri X tl que A AX I, clcul, si eiste, l invers de X º Estudi el

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 16/10/2015 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 16/10/2015 DACIBAHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. 5- FACULTAD DE INGENIERIA MECANICA 6//5 EXAMEN PARCIAL DE METODOS NUMERICOS (MB56) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 31 de enero de 2008

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 31 de enero de 2008 Primer Prcil de Mtemátics I 31 de enero de 008 EXAMEN DE MATEMÁTICAS I (Primer Prcil) 31 de enero de 008 Sólo un respuest cd cuestión es correct. Respuest correct: 0. puntos. Respuest incorrect: -0.1 puntos

Más detalles

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017 Universidd de Buenos Aires - Fcultd de Ciencis Excts y Nturles - Depto. de Mtemátic Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cutrimestre 17 Práctic N 8: Integrción Numéric - Métodos Multipso

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

vectores Componentes de un vector

vectores Componentes de un vector Vectores Un vector es un segmento orientdo. Está formdo por se representn: - con un flech encim v - en un eje de coordends - el módulo: es l longitud del origen l extremo - l dirección: es l rect que contiene

Más detalles

Tema 8 Integral definida

Tema 8 Integral definida Tem 8 Integrl definid ) Integrl definid Se y = f() un función ositiv y continu en el intervlo (, ). Consideremos el trecio mitilíneo, S, determindo or f(), f(), f() y el eje OX y dividmos el intervlo (,

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

Pauta Certamen N 3. Universidad Técnica Federico Santa María Departamento de Matemática. Matemática II (MAT-022) 1 dx es: (a + x)(b x)

Pauta Certamen N 3. Universidad Técnica Federico Santa María Departamento de Matemática. Matemática II (MAT-022) 1 dx es: (a + x)(b x) Universidd Técnic Federico Snt Mrí Deprtmento de Mtemátic Put Certmen N Mtemátic II (MAT-22) P) Si, b R +, l ntiderivd d es: ( + )(b ) A) + ln + b b + c B) ln ( + )(b ) + c + b C) + b ln b + + c D) ( +

Más detalles

ACTIVIDADES VERANO 4º ESO opción A a b) 3 2 x. 121x 169y. 8 y. a Expresa en forma de potencia: a) Expresa en forma de radical:

ACTIVIDADES VERANO 4º ESO opción A a b) 3 2 x. 121x 169y. 8 y. a Expresa en forma de potencia: a) Expresa en forma de radical: ACTIVIDADES VERANO º ESO opción A 01 NOMBRE: Grupo: 1.- Expres en form de potenci: ) 1 x c) b b.- Expres en form de rdicl: ) = =.- Reduce común índice: ) x,, 8.- Clcul ls siguientes ríces: 1 ) 81 0, 000081.-

Más detalles

Estabilidad de los sistemas en tiempo discreto

Estabilidad de los sistemas en tiempo discreto Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos

Más detalles

Tema 4: Polinomios. c) x 4 5x 3 + 5x 2 + 5x 6 = 0. d) 3x 3 10x 2 + 9x 2 = 0. e) x 5 16x = 0. f) x 3 3x 2 + 2x = 0. g) x 3 x 2 + 4x 4 = 0

Tema 4: Polinomios. c) x 4 5x 3 + 5x 2 + 5x 6 = 0. d) 3x 3 10x 2 + 9x 2 = 0. e) x 5 16x = 0. f) x 3 3x 2 + 2x = 0. g) x 3 x 2 + 4x 4 = 0 Tem 4 Polinomios. Ejercicio Demuestr que el resto l dividir P entre es precismente P Pist l demostrción es muy precid l de lgún teorem visto en clse. Ejercicio Si P = 5 y Q = + clcul P+Q,PQ y P Q Ejercicio

Más detalles

Operación Matemática Conceptos y definiciones básicas Operaciones binarias

Operación Matemática Conceptos y definiciones básicas Operaciones binarias ... onceptos y definiciones ásics... onjunto Llmremos conjunto, o clse culquier colección de ojetos llmdos elementos. Si es un elemento que pertenece l conjunto, se denot por. Si x no pertenece l conjunto,

Más detalles

( 3) ( 4) NÚMEROS REALES. 1. Realiza las siguientes operaciones: 2. Calcula y simplifica: = 3 + = + = = =

( 3) ( 4) NÚMEROS REALES. 1. Realiza las siguientes operaciones: 2. Calcula y simplifica: = 3 + = + = = = IS Jun Grcí Vldemor TMA: NÚMROS RALS º SO MATMÁTICAS B NÚMROS RALS. Reliz ls guientes operciones: 0 ( : [ ] [ ( ] ( ( : [ ] [ ( ( ] ( ( : ( [ ] b : ( ( ( ( ( : ( ( ( ( ( ( ( ( c ( 0 : ( ( ( : ( ( 0 : (

Más detalles

a b c =(b a)(c a) (c b)

a b c =(b a)(c a) (c b) E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll

Más detalles

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si

Más detalles

SELECTIVIDAD DETERMINANTES

SELECTIVIDAD DETERMINANTES SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS XII.- TANSMISIÓN DE CALO PO CONVECCIÓN FLUJO EN CONDUCTOS XII.1.- FLUJO ISOTÉMICO EN CONDUCTOS CICULAES; ECUACIÓN DE POISEUI- LLE En un flujo lminr l corriente es reltivmente lent y no es perturbd por

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega:

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega: PEDES IN TERRA AD SIDERAS VISUS TRABAJO PRÁCTICO N 6 Fech de entreg: PROBLEMA 1: En el circuito mgnético de l figur, l bobin tiene N = 276 espirs y ls dimensiones son = 13 cm, b = 21 cm y S = 16 cm 2.

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Deprtmento de Físic Aplicd III Escuel Superior de Ingenieros Cmino de los Descubrimientos s/n 41092 Sevill Exmen de Cmpos electromgnéticos. 2 o Curso de Ingenierí Industril. 8 de septiembre de 2009 PROBLEMA

Más detalles

1. Utilizando las propiedades de las potencias simplifica las siguientes expresiones: c) 2. d) 0,001 e) 0, f) 0,

1. Utilizando las propiedades de las potencias simplifica las siguientes expresiones: c) 2. d) 0,001 e) 0, f) 0, TEMA POTENCIAS, RADICALES A) POTENCIAS Y NOTACIÓN CIENTÍFICA.. Utilizndo ls propieddes de ls potencis simplific ls siguientes expresiones: ) ) ) ) c) 0 e) f) g) h) 0) ) ) ). Expres con un potenci de se

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 016 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.cr Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I

Más detalles

CATEDRA 0 8 METODOS NUMERICOS. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil

CATEDRA 0 8 METODOS NUMERICOS. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil CATEDRA 0 8 Fcultd de Ingenierí de Mins, Geologí y Civil Deprtmento cdémico de ingenierí de mins y civil METODOS NUMERICOS Ingenierí Civil ING.CRISTIANCASTROP. Cpitulo VI Sistem de Ecuciones Algebrics

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro) UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como

Más detalles

Integración Numérica. Las reglas de Simpson.

Integración Numérica. Las reglas de Simpson. Integrción Numéric. Ls regls de Simpson. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z.

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z. letos Físic pr Ciencis e Ingenierí Contcto: letos@telefonicnet ρ(z) V En el espcio vcío entre dos plcs conductors plns, y, de grn extensión, seprds un distnci, hy un estrto de crg de espesor, con un densidd

Más detalles

Colegio San Agustín (Santander) Página 1

Colegio San Agustín (Santander) Página 1 Mtemátics ºBchillerto Aplicds ls Ciencis Sociles er evlución. Determinntes ) Clcul el vlor de los siguientes determinntes: ) b) c) ) = (-)+ +(-) [ + (-) (-)+ ]= -++-[6++] = --6-= - b) = (-) + + -[ (-)+

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

lím 1 si x=0 3) Halla la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π/2: sen x y = arc tg 1+cos x

lím 1 si x=0 3) Halla la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π/2: sen x y = arc tg 1+cos x CURSO 4-5. de myo de 5. ) Clcul los siguientes ites: (+e ) / sen(/) ) Estudi l continuidd de l siguiente función: +e/ f() -e / si si ) Hll l ecución de l rect tngente l gráfic de l siguiente función en

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

10. Optimización no lineal sin restricciones

10. Optimización no lineal sin restricciones 10. Optimizción no linel sin restricciones 10. Optimizción no linel sin restricciones Conceptos básicos Optimizción sin restricciones en dimensión 1 Métodos numéricos pr dimensión 1 Optimizción sin restricciones

Más detalles

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos.

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos. BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS 1ª Prte :Trigonometrí:Resolución de triángulos. 1.-Medid de ángulos. Un ángulo se puede medir en : )Grdos sexgesimles (DEG ó D) : 1º=60,1 =60. = 90º, =180º

Más detalles