Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales.
|
|
- Eugenio Araya Campos
- hace 3 años
- Vistas:
Transcripción
1 Generacón de e Modelos 3D a Partr de e Datos de e Rango de e Vstas Parcales. Santago Salamanca Mño Escuela de Ingenerías Industrales Unversdad de Extremadura (UNED, UCLM, UEX)
2 Introduccón (I) Qué es un modelo de representacón 3D? Ente abstracto que permte consderar los objetos físcos como tems manpulables en un computador. Algunos tpos de representacón: Representacón de Frontera. Representacón de Splne. Representacón de Barrdo. Árboles Octales. Geometría Constructva. Representacón Esférca....
3 Introduccón (II) Generacón del modelo: Aproxmacón de la esfera teselada a los datos de rango del objeto.
4 Introduccón (III) Propedades de los modelos esfércos. La esfera es cuas regular formada por hexágonos y pentágonos. El número de nodos usados en la representacón es fjo (mpuesto por la esfera teselada). Los modelos deben ser cuas regulares, es decr, la dstanca entre nodos debe ser smlar (para tareas de reconocmento y posconamento).
5 Introduccón (IV) Métodos desarrollados hasta ahora: Fusón de los datos de rango que defnen al objeto (posblemente tambén: homogenezacón y cerre de la superfce) Aproxmacón de la esfera completa a los datos de rango defndos anterormente. Problema: La fusón y tratamento de datos de rango es muy compleja.
6 Introduccón (V) Nuestro objetvo: Modelar los datos de rango de cada vsta parcal usando un porcón de esfera. Fusón de los modelos parcales. Prmera aproxmacón: DATOS DE DATOS DE RANGO RANGO MODELADO MODELADO ROTACIÓN ROTACIÓN FUSIÓN FUSIÓN Regstraton Integraton
7 Introduccón (VI) Malla de Fusón Malla de Vsta???
8 Introduccón n (VII) La aproxmacón defntva: DATOS DE DATOS DE RANGO RANGO ROTACIÓN ROTACIÓN MODELADO MODELADO FUSIÓN FUSIÓN
9 Introduccón n (VIII) Esquema detallado del modelado parcal Partal Mesh Redefnng Range Image Partal Model Reconstructon of the Complete Model Normalzaton Data Algnment Selectng a part of T S T Data Base Model 1 Model 2... Model Mergng Closng the model T ' T ' Fttng T T '
10 Generacón del modelo parcal (I) N P j (b) O Π T 1/2 + Orgnal Poston h h Vn New Poston T ' O v
11 Generacón del modelo parcal (II) Normalzacón de los datos: Los datos del objeto deben estar referdos al sstema de coordenadas defndo por la esfera Normalzacón n de éstos. S = X O max[ mod( X O) ]
12 Generacón del modelo parcal (III) Para calcular el centro del objeto (O) usamos un plano que denomnamos plano de corte (Π)( ) y que tene como vector normal a él el vector drector del eje de vsón y contene al dato de rango más alejado desde el punto de vsta. Π
13 Generacón del modelo parcal (IV) Al normalzar con respecto a este centro, el plano dvde a la esfera en dos hemsferos usaremos el hemsfero más m s cercano al punto de vsta (F( ) para realzar el modelado. T 1/2
14 Generacón del modelo parcal (V) Fase de aproxmacón. N ON' ON = + α ( N P ) j Donde: P j N T. O P α j es S / OP j proy OP ON es mínma una constante próxma a 1. j j = 1.. n.
15 Generacón del modelo parcal (VI) Redefncón de nodos váldos: El que un nodo pertenezca a T 1/2, no mplca su pertenenca a T. Sea N T 1/2 N T s: a) La dstanca de P j a la recta defnda por el vector ON es mayor que un valor límte l C. b) La dstanca de P j a N es mayor que uno. (b) N P j P j N k (a) N
16 Generacón del modelo parcal (VII) T 1/2 T T
17 Generacón del modelo parcal (VIII) Regularzacón local. Orgnal Poston h h New Poston O v
18 Generacón n del modelo parcal (IX)
19 Generacón n del modelo parcal (X)
20 Fusón de los modelos (I) Entre las dstntas vstas parcales aparecen sempre zonas de superposcón. Los datos de rango de cada vsta parcal, al haber sdo rotados, han sdo modelados con la parte de esfera que le corresponde.
21 Fusón de los modelos (II) S tenemos n vstas parcales, su fusón, que denotaremos como T T, se defne como: n = T' T' T' 1 T' 2 = = 1... T S un nodo N ha sdo usado en k vstas parcales, su poscón n fnal será el valor medo para esas k vstas parcales. n '
22 Fusón de los modelos (III)
23 Fusón n de los modelos (IV)( Cerre del modelo: S no se ha poddo adqurr toda la superfce del objeto, es necesaro cerrar el modelo. Supondremos que el objeto está sobre una mesa gratora, y por tanto la zona no vsble se corresponde con la base del objeto. En caso de que nuestro sstema permtese realzar una adquscón completa del objeto, esta fase no sería necesara.
24 Fusón n de los modelos (V) Formalmente, el cerre del modelo consste en la aproxmacón de la parte de malla no usada (T( f ) obtenendo T f y, fnalmente, realzar la ntegracón de T y T T f para obtener el modelo completo del objeto T. T T ' = T ' T ' f
25 Fusón n de los modelos (VI) Algortmo: 1. Obtencón n de T f. 2. Obtencón n de la frontera de T T, que se denotará como b(t ). 3. Deformacón n de T f, obtenendo T T f, con la condcón n de que T T f debe estar dentro de b(t ).
26 Fusón n de los modelos (VII) T ' r' r h z h = z 1 r' r T f
27 Fusón n de los modelos (VII( VIII) I)
28 Fusón de los modelos (IX)
29 Regularzacón (I) El proceso realzado hasta ahora parte de un hpótess que es, en prncpo, arbtrara: Se utlza la mtad de la esfera para todas las vstas parcales. Se propone una redefncón de los centros asocados a cada vsta, lo que hará que las porcones de esfera usadas para el modelado parcal se adapten a cada un de las vstas del objeto.
30 Regularzacón n (II) Notacón y defncones: Para la teracón k,, el valor medo de la dstanca entre nodos para la vsta parcal,, se denotará como L (k). Para el modelo completo L(k). Para cada vsta parcal,, en la teracón k, defnmos el sguente parámetro de error: e ( k) = L ( k) L( k) A partr del error se defne la condcón de FIN como: e ( k) ε L k ( ) = 1,2,...,n + Se consdera a T f como la vsta parcal n+1. 1
31 Regularzacón n (III) Idea básca b para la regularzacón: Supongamos que e (k-1) > 0, entonces L (k-1) > L(k-1). En la práctca, esto quere decr que la malla T en la teracón k-1 es pequeña con respecto al resto de mallas parcales en esa msma teracón. Debdo a esto, en la próxma teracón n el número n de nodos asocado a esta malla deberá aumentar. Vceversa s e (k-1)<0. La modfcacón n del número n de nodos se realzará movendo en la dreccón n del eje de vsón n el plano de corte (equvalentemente el centro O del objeto)
32 Regularzacón n (IV) Dos pasos para el cálculo de O (k): O ( k) O ( k) 1. [ K ] OO ( k) = ˆµ FO ( k 1) + e ( k 1) O ( k) O ( 1) k n+ 1 n+ 1 Donde: O n ( k 1) + 1 (a) ( k) O n + 1 O ( k) (c) (b) ( k ) FO FO ( k 1) = OO 1 2. OO ( k) = ˆ OO ( k) + v µ Donde: [( ) ] µ ˆ ( k ) OO ( k 1) v = OOn + 1 n+ 1
33 Regularzacón n (V) Algortmo de generacón del modelo completo: 1. Cálculo de O, =1,..., n. O vene defndo por el punto de corte del eje de vsón con el plano de corte Π. 2. Normalzacón n de los datos de rango con respecto a O, donde el O es el valor medo de los O, =1,..., n. Obtenemos S. 3. Obtencón n de T 1/2 (T ). 4. Aproxmacón de T a S. Obtenemos T. 5. Fusón de los T. 6. Cerre del modelo. Obtencón de T. 7. Cálculo del valor medo de las longtudes entre los nodos de los dstntos T y T. Obtencón de L y L. 8. Verfcacón de la condcón de FIN. S FIN=TRUE entonces fn del algortmo. 9. Caso contraro, recalcular los valores de O e r a 2.
34 Regularzacón n (VI) El algortmo como sstema de control: L(k) - n+1 + e (k) n+1 O (k) {T ',T ' } L Control Process Sensor (k) n+1 n+1 Control: Calcula los nuevos centros en funcón de los errores. Process: Genera las mallas parcales (T ( ) y la malla completa (T ). Sensor: Calcula las dstancas medas entre nodos
35 Regularzacón n (VII) [ K ] OO ( k) = ˆµ FO ( k 1) + e ( k 1)
36 Regularzacón n (VIII) OO k 0 ( k) = ˆµ F O + K e ( k) dk
37 Regularzacón n (IX( IX) Funcón de densdad en varas teracones:
38 Regularzacón n (X)( Evolucón del numero de nodos y error para todas las vstas parcales.
39 Regularzacón n (XI)( Modelo en prmera y últma teracón
40 Conclusones (I) Se ha presentado un método para la generacón de un modelo esférco regular a partr de los datos de rango de las dstntas vstas parcales. El modelo completo se ha sntetzado medante la teracón de tres subprocesos: construccón de los modelos parcales, fusón de los modelos y redefncón de las mallas parcales
41 Conclusones (II) Con respecto a la generacón de modelos parcales se ha presentado un método basado en la ruptura de las esfera en funcón de las coordenadas del centro de gravedad de la vsta parcal. Tambén se ha mostrado cuando un nodo puede o no puede pertenecer a la semesfera de modelado (T ).
42 Conclusones (III) La fusón de los dstntos modelos parcales se ha solucona de forma senclla debdo a la superposcón de las vstas y a la propa estructura de la malla esférca. Tambén se ha presentado un método para el cerre del modelo por su base medante la proyeccón de los nodos no utlzados en el modelado de las vstas parcales sobre el plano que defne a esa base.
43 Conclusones (IV) Por últmo, se ha mostrado como realzar una regularzacón del modelo medante la redefncón de la semesfera usada en el modelo de cada vsta parcal. En esta redefncón se ha segudo la estructura de un sstema de control realmentado, y se ha optmzado su funconamento medante la utlzacón de un controlador de tpo I.
44 Generacón de e Modelos 3D a Partr de e Datos de e Rango de e Vstas Parcales. Santago Salamanca Mño Escuela de Ingenerías Industrales Unversdad de Extremadura (UNED, UCLM, UEX)
Robótica Tema 4. Modelo Cinemático Directo
UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de
Herramientas Matemáticas para la localización espacial. Prof. Cecilia García
Herramentas Matemátcas para la localzacón espacal Contendo I. Justfcacón 2. Representacón de la poscón 2. Coord. Cartesanas 2.2 Coord. Polares y Clíndrcas 2.3 Coord. Esfércas 3. Representacón de la orentacón
Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).
Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca
Perspectiva inversa para Ray Tracing
erspectva nversa para Ray Tracng efncón de la cámara José ortés areo, Abrl 7 a cámara vrtual suele defnrse en funcón de un conunto de parámetros ntutvos: Observador unto Focal: unto de Mra: stanca Focal:
Espacios de Búsqueda en un Árbol Binario para Resolver Problemas de Optimización Discreta
Espacos de Búsueda en un Árbol Bnaro para Resolver Problemas de Optmzacón Dscreta María Elena Gómez-Torres J. Crspín Zavala-Díaz Marco Antono Cruz- Chávez 3 Insttuto Tecnológco de Zacatepec Calzada Insttuto
SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.
Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón
Introducción a la Física. Medidas y Errores
Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren
METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil
CATEDRA 0 6 Facultad de Ingenería de Mnas, Geología Cvl Departamento académco de ngenería de mnas cvl METODOS NUMERICOS Ingenería Cvl ING.CRISTIANCASTROP. Captulo VI Sstema de Ecuacones Algebracas No Lneales
EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.
EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente
Cinemática del Brazo articulado PUMA
Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad
Capitalización y descuento simple
Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los
CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS
Departamento de Físca - UBU enero de 2017 1 CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS En esta hoja podrán vsualzar el campo magnétco creado por una, dos tres o cuatro correntes rectlíneas
16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales
16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo
ANEXO A: Método de Interpolación de Cokriging Colocado
ANEXO A: Método de Interpolacón de Corgng Colocado A. Conceptos Báscos de Geoestadístca Multvarada La estmacón conunta de varables aleatoras regonalzadas, más comúnmente conocda como Corgng (Krgng Conunto),
2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.
. EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas
VISIÓN POR COMPUTADOR
Escuela Poltécnca Superor de Elche VISIÓN POR COMPUTADOR Grado en Electrónca y Automátca Industral PRÁCTICAS TITERE Práctca 4: Segmentacón, Localzacón y Reconocmento de Obetos Departamento de Ingenería
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA Departamento de Ingeniería Eléctrica
ONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA Departamento de Ingenería Eléctrca METODOS DE ASIGNACION DE EAJES DE LOS SISTEMAS DE TRANSMISION ELECTRICA SEGUN EL USO DE LA RED FRANCISCO
METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil
ING.CRISTIANCASTROP. CATEDRA 0 6 Facultad de Ingenería de Mnas, Geología Cvl Departamento académco de ngenería de mnas cvl METODOS NUMERICOS Ingenería Cvl ING.CRISTIANCASTROP. Captulo VI Sstema de Ecuacones
Sistemas Lineales de Masas-Resortes 2D
Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte
UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.
UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es
OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final
OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron
CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI
CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante
Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:
VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes
Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.
Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca
CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso
CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que
Introducción a Vacío
Introduccón a Vacío Sstema de vacío Partes generales de un sstema de vacío: Fgura 1: Sstema de vacío con bomba mecánca y dfusora Fgura 2: Prncpo de funconamento de la bomba mecánca La Fg. 2 muestra el
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
Slide 1. Slide 2 Organización y Resumen de Datos. Slide 3. Universidad Diego Portales. Tablas de Frecuencia. Estadística I
Slde 1 Unversdad Dego Portales Estadístca I Seccón II: Dstrbucones de Frecuenca y Representacón Gráfca Sgla: EST2500 Nombre Asgnatura: Estadístca I Slde 2 Organzacón y Resumen de Datos Como recordará,
Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller
Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo
Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas
Tema : Jerarquía Dgtal Síncrona, SDH Dsponbldad de Sstemas Tecnologías de red de transporte de operadora MÁSTER EN INGENIERÍ TELEMÁTIC Profesor: Espín Defncones Fabldad (Relablty): Probabldad de que el
, x es un suceso de S. Es decir, si :
1. Objetvos: a) Aprender a calcular probabldades de las dstrbucones Bnomal y Posson usando EXCEL. b) Estudo de la funcón puntual de probabldad de la dstrbucón Bnomal ~B(n;p) c) Estudo de la funcón puntual
Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.
Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca
Propiedades efectivas de medios periódicos magneto-electroelásticos a través de funciones de Green
Propedades efectvas de medos peródcos magneto-electroelástcos a través de funcones de Green utores: Lázaro Makel Sto Camacho Julán Bravo Castllero LOGO Renaldo Rodríguez Ramos Raúl Gunovart Díaz Introduccón
PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.
Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en
MODELOS PARA DATOS DE RECUENTO
ECONOMETRÍA III Curso 2008/09 MODELOS PARA DATOS DE RECUENTO Profesores: Víctor J. Cano Fernández y M. Carolna Rodríguez Donate Dpto. de Economía de las Instrtucones, Estadístca Económca y Econometría
Capitalización y descuento simple
Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los
SISTEMAS DE ECUACIONES DIFERENCIALES
DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS AROXIMADOS EN ING. QUÍMICA TF-33 SISTEMAS DE ECUACIONES DIFERENCIALES Esta guía fue elaborada por: rof.
ASIGNACION 2 INEL3105 A revisar a partir del 1 marzo.
SIGNION INEL305 revsar a partr del marzo. Problema. Para un crcuto con bpolos, formamos el gráfco, o grafo (graph) susttuyendo cada bpolo por una línea que une los dos nodos a los que está conectado. Esta
PUBLICACIONES DE 4º CURSO
PUBLICACIONES DE 4º CURSO Grado: DERECHO-ADE Asgnatura: ECONOMERÍA Grupos: Únco ema: ESQUEMA EMA Profesores: Inmaculada Vllanúa Departamento de ANÁLISIS ECONÓMICO Curso Académco 04/5 ema : El Modelo Lneal
Estadísticos muéstrales
Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas
CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO
8 CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO En esta seccón se descrbe el análss de posconamento y orentacón del robot paralelo: Se resuelve el problema cnemátco nverso en base a métodos
Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}
Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces
Operadores por Regiones
Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]
En general puede representarse por : Clase 6 3
Encontrar raíces de uncones es uno de los problemas más comunes en ngenería Los métodos numércos para encontrar raíces de uncones son utlzados cuando las técncas analítcas no pueden ser aplcadas. Esto
IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR
IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR En esta práctca se llevará a cabo un estudo de modelado y smulacón tomando como base el ntercambador de calor que se ha analzado en el módulo de teoría.
Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO)
Tema 8: DESIGUALDAD, REDISTRIBUCIÓN Y POBREZA Xsco Olver 20610 - Economía del Benestar (2º GECO) Motvacón Benestar: el objetvo últmo del Estado es maxmzar el benestar El benestar se obtene a partr de las
Problemas de Condiciones de Contorno para Ecuaciones Diferenciales Ordinarias
Problemas de Condcones de Contorno para Ecuacones Dferencales Ordnaras Segundo curso Grado en Físca Índce Introduccón Métodos de dsparo Método de dsparo para resolver problemas de ODE con condcones de
The Dark Side of the Moon: Estudio del acoplamiento de marea de la Luna
The Dark Sde of the Moon: Estudo del acoplamento de marea de la Luna Matías H. Senger m.senger@hotmal.com Dcembre de 216 Resumen Este trabajo presenta un expermento computaconal que permte el estudo del
Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir
1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)
Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de
Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca
10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD
10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo
Dpto. Física y Mecánica
Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D
INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO
MEF para problemas do orden Problema undmensonal INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS: UN ENFOQUE MATEMÁTICO Govann Calderón y Rodolfo Gallo Grupo Cencas de la Computacón Departamento de Matemátcas
Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá:
Objetvos El alumno conocerá y aplcará dversas técncas de dervacón e ntegracón numérca. Al fnal de esta práctca el alumno podrá:. Resolver ejerccos que contengan dervadas e ntegrales, por medo de métodos
Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.
1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas
Capítulo Estimación del modelo de Nelson y Siegel Introducción Estimación del modelo de Nelson y Siegel
Capítulo 4... 91 Estmacón del modelo de Nelson y Segel... 91 4.1. Introduccón... 91 4.2. Estmacón del modelo de Nelson y Segel... 92 4.2.1. Tratamento prevo a la estmacón... 92 4.2.2. Defncón del crtero
Optimización de la ecualización del histograma en el procesamiento de imágenes digitales
Optmzacón de la ecualzacón del hstograma en el procesamento de mágenes dgtales Roberto Depaol Lus A. Fernández Danel Daz rd-ng@unlm.edu.ar lfernand@unlm.edu.ar ddaz@unlm.edu.ar Departamento de Ingenería
Modelado de un Robot Industrial KR-5
RESUMEN Modelado de un Robot Industral KR-5 (1) Eduardo Hernández 1, Samuel Campos 1, Jorge Gudno 1, Janeth A. Alcalá 1 (1) Facultad de Ingenería Electromecánca, Unversdad de Colma, km 2 Carretera Manzanllo-Barra
a) Cuando tomamos como parámetros la longitud y la latitud. b) Cuando usamos la parametrización en forma explícita.
PROBLEMA DE INTEGRALE DE UPERFICIE. (20 I.T.I.MECÁNICA). -2008-09- 1.-Encontrar los puntos sngulares de la semesfera superor: x 2+y 2+z 2=R 2.z 0 a) Cuando tomamos como parámetros la longtud y la lattud.
TEORÍA DE ESTRUCTURAS
TEORÍA DE ESTRUCTURAS TEA 4: CÁCUO DE ESTRUCTURAS POR E ÉTODO DE A DEFORACIÓN ANGUAR DEPARTAENTO DE INGENIERÍA ECÁNICA - EKANIKA INGENIERITZA SAIA ESCUEA TÉCNICA SUPERIOR DE INGENIERÍA DE BIBAO UNIVERSIDAD
MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.
TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,
ECUACIONES DIFERENCIALES Problemas de Valor Inicial
DIVISIÓN DE IENIAS FÍSIAS Y MATEMÁTIAS DTO. TERMODINÁMIA Y FENÓMENOS DE TRANSFERENIA MÉTODOS AROXIMADOS EN ING. QUÍMIA TF-33 EUAIONES DIFERENIALES roblemas de Valor Incal Esta guía fue elaborada por: rof.
Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011
Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se
Geometría convexa y politopos, día 1
Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n
3.- Programación por metas.
Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del
La representación Denavit-Hartenberg
La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado
ANEXO C: Estimación del Orden de Error de Colocación TH en una Dimensión
Estmacón de Orden de Error de Coocacón TH en una Dmensón ANEXO C: Estmacón de Orden de Error de Coocacón TH en una Dmensón Sean û ŵ as aproxmacones de u w, respectvamente. Además, defnmos ex ( ) ux ( )
Hidrología superficial
Laboratoro de Hdráulca Ing. Davd Hernández Huéramo Manual de práctcas Hdrología superfcal 7o semestre Autores: Héctor Rvas Hernández Juan Pablo Molna Agular Rukmn Espnosa Díaz alatel Castllo Contreras
Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas
. Dferencas Fntas Dferencas Fntas. Introduccón La técnca de las dferencas fntas fue la prmera técnca ue surgó para resolver problemas práctcos en ngenería. Ho en día ésta técnca a está obsoleta con lo
CAPÍTULO 4 MARCO TEÓRICO
CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.
Descripción de la deformación y de las fuerzas en un medio continuo
Descrpcón de la deformacón y de las fuerzas en un medo contnuo Mecánca del Contnuo 15 de marzo de 2010 1. Temas tratados con anterordad: Descrpcón cualtatva de un medo contnuo Hpótess del contnuo Elementos
CAPÍTULO III ACCIONES. Artículo 9º Clasificación de las acciones. Artículo 10º Valores característicos de las acciones. 10.
CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural serán las establecdas por la reglamentacón específca vgente o
( ) 2 3 a ( ) % τ ia. Solución:
Problema 1: El clndro unforme de rado a de la fgura pesaba en un prncpo 80 N. Después de taladrársele un agujero clíndrco de eje paralelo al anteror su peso es de 75 N. Suponendo que el clndro no deslza
Capítulo 11. Movimiento de Rodamiento y Momentum Angular
Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular
Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:
Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón
Mecánica Estadística: Estadística de Maxwell-Boltzmann
Ludwg Boltzmann 1844-1906 James Clerk Maxwell 1831-1879 E. Martínez 1 Lápda de Boltzmann en el cementero de Vena S=k ln W E. Martínez 2 S=k ln W Entropía, una propedad termodnámca Una medda de nuestra
TECNOLOGIA DE LA ENERGIA TERMICA
TECNOLOGIA DE LA ENERGIA TERMICA RADIACION S-S Marano Manfred Tecnología de la Energía Térmca 1 RADIACION S-S Indce 1. Objetvos 2. Alcance 3. Desarrollo Energía radante Absortvdad, reflectvdad y transmsvdad
CI42A: ANALISIS ESTRUCTURAL. Programa CI42A
CI4A: ANALISIS ESTRUCTURAL Prof.: Rcardo Herrera M. Programa CI4A NÚMERO NOMBRE DE LA UNIDAD OBJETIVOS DURACIÓN 4 semanas Prncpo de los trabajos vrtuales y teoremas de Energía CONTENIDOS.. Defncón de trabajo
CI63G Planificación de Sistemas de Transporte Público Urbano. Clase 8 Semestre Otoño 2008
CI63G Planfcacón de Sstemas de Transporte Públco Urbano Clase 8 Semestre Otoño 2008 Undades Temátcas 1. La oferta de transporte públco urbano (2 semanas) 2. La demanda por TPU (1,5 sem.) 3. Dseño y optmzacón
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz
TEMA 4. TRABAJO Y ENERGIA.
TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero
6 Minimización del riesgo empírico
6 Mnmzacón del resgo empírco Los algortmos de vectores soporte consttuyen una de las nnovacones crucales en la nvestgacón sobre Aprendzaje Computaconal en la década de los 990. Consttuyen la crstalzacón
EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA
EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de
Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.
ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla
Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P v =P L = =P π
EQUILIBRIO DE FASES Reglas de las fases. Teorema de Duhem S consderamos un sstema PVT con N especes químcas π fases en equlbro se caracterza por: P, T y (N-1) fraccones mol tal que Σx=1 para cada fase.
b) Encuentra el criterio de formación de la siguiente sucesión recurrente:
Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Solucón: b) log log log 9 log log log log log 9 9 Ejercco nº.-
Variable aleatoria: definiciones básicas
Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado
Cifrado de imágenes usando autómatas celulares con memoria
Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano
b) Encuentra el criterio de formación de la siguiente sucesión recurrente:
Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Ejercco nº.- Avergua el térmno general de la sucesón: ; 0,;
Por: Ing César Chilet León
Por: Ing César Chlet eón 1 El flujo de potenca tambén es conocdo tambén como flujo de carga. El flujo de potenca es una herramenta para el análss de redes. En tareas de planfcacón de redes Determnacón
Capítulo 11. Movimiento de Rodamiento y Momentum Angular
Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular
CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES
CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón
Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.
Guía de Laboratoro de Físca Mecánca. ITM, Insttucón unverstara. Práctca 0. Colsones. Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla corta,
Coordenadas Curvilíneas
Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,
Algoritmos matemáticos para:
Algortmos matemátcos para: sstemas de ecuacones lneales, nversón de matrces y mínmos cuadrados Jose Agular Inversón de matrces Defncón(Inversadeunamatrz):SeaAunamatrz nxn.unamatrzcde nxn esunanversadeascaaci.
17/02/2015. Ángel Serrano Sánchez de León
Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,
CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información
IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.
Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico
Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología