APLICACIONES DE LA DERIVADA
|
|
- Alejandra Rocío Macías Barbero
- hace 3 años
- Vistas:
Transcripción
1 APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Creimiento y dereimiento. APLICACIONES DE LA DERIVADA Cundo un funión es derivle en un punto, podemos onoer si es reiente o dereiente en diho punto: Un funión f() es reiente en un punto, si su derivd es positiv Un funión f() es dereiente en un punto, si su derivd es negtiv. Es deir, Si Si f ( ) f ( ) f f esreienteen esdereiente en f(+h) f() reiente t f ( ) lím h f ( h) h f ( ) +h Como f ( h) f ( ) f ( h) f ( ),es deir, l funión es reiente en f() dereiente f(+h) f ( ) lím h f ( h) h f ( ) +h En este so f ( h) f ( ) f ( h) f ( ), es deir, l funión es dereiente en = Estudir l monotoní de un funión es hllr los intervlos en los que es reiente y dereiente. Se proede de l siguiente form: Se hll l derivd, se igul ero y se resuelve l euión resultnte Con los puntos en los que se nul l derivd dividimos el dominio en intervlos.
2 APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. Se estudi el signo de l derivd en un punto ulquier de d uno de los intervlos resultntes. Ejemplo 1. Hll los intervlos de reimiento y dereimiento de l funión 3 f ( ) 6 9 Hllmos l derivd: f ( ) L igulmos ero y resolvemos l euión resultnte: Dividimos el dominio R por los puntos 3 y 1 y otenemos los intervlos (,1), ( 1,3) y ( 3, ) Estudimos el signo de l derivd en un punto ulquier de d intervlo: Pr =, f ( ) 9, es deir, positiv Pr =, f ( ) 3, es deir, negtiv Pr =, f ( ) 9, positiv L monotoní de l funión qued reflejd en l siguiente tl: Intervlos (-, 1) (1, 3) (3, + ) Signo de l derivd Funión Máimos y mínimos. Son los puntos en que l funión mi de monotoní. Si un funión derivle present un máimo o un mínimo en un punto (, ), entones f ( ) En el punto de sis = l funión ps de reiente dereiente Geométrimente signifi que l tngente en el punto = es horizontl Si f ( ) y eiste l segund derivd, se verifi: Si f ( ), hy un mínimo reltivo en el punto Si f ( ), hy un máimo en diho punto. Demostrión: Lo hemos pr el so de mínimo:
3 APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 3 Si f ( ) l funión y f () es reiente en luego f ( h) f ( ) f ( h) Y omo f ( ), f ( h) f ( h), es deir, l derivd es negtiv l izquierd de (funión dereiente) y positiv l dereh (funión reiente), por tnto, eiste mínimo reltivo en. Pr l determinión de máimos y mínimos podemos utilizr los siguientes riterios: Criterio de l primer derivd: Se determinn los intervlos de reimiento y dereimiento. Eiste máimo reltivo en los puntos en que l funión ps de reiente dereiente. Eiste mínimo reltivo en los puntos en que ps de dereiente reiente. Criterio de l segund derivd: Clulmos l primer derivd, l igulmos ero y resolvemos l euión resultnte. Hllmos l segund derivd. Ls ríes de l euión otenid se sustituyen en l segund derivd. Si el resultdo otenido es positivo eiste mínimo y si es negtivo máimo. Ejemplo. 3 Hll los máimos y mínimos de l funión f ( ) 3 Hllmos l primer derivd y resolvemos l euión f ( ) : f ( ) ª derivd: f ( ) 6 Vlores de l segund derivd en los puntos otenidos: f ( 1) 6( 1) 6 mínimo pr = - 1 f ( 1) máimo pr = 1 Máimo(1, ) Mínimo(-1,-) Convidd y onveidd. Los oneptos on onveidd y onvidd son reltivos. Adoptremos el siguiente riterio:
4 APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. L funión es onve en un intervlo si l gráfi de l funión qued enim de l ret tngente en un punto ulquier del intervlo. L funión es ónv undo l gráfi qued por dejo. ónv onve Puntos de infleión son quellos en los que l funión mi de onve ónv o de ónv onve. Un funión derivle es onve en un intervlo (, ), si f ( ), (, ) Un funión derivle es ónv en un intervlo (, ), si f ( ), (, ) Estudir l urvtur de un funión onsiste en hllr los intervlos en los que es ónv y onve. Se proede de l siguiente form: Se hll l segund derivd, se igul ero y se resuelve l euión resultnte. Con los puntos en los que se nul l derivd dividimos el dominio en intervlos. Se estudi el signo de l derivd en un punto ulquier de d uno de los intervlos resultntes. Ejemplo. Hll los intervlos de onvidd y onveidd y los puntos de infleión de l funión f ( ) 6 Primer derivd: f ( ) 3 1 Segund derivd: f ( ) Dividiendo el dominio R por los puntos 1 y 1 se otienen los siguientes intervlos: (, 1), ( 1,1) y (1, ) Estudimos el signo de l segund derivd en un punto ulquier de d intervlo: Pr = - f ( ) 1.( ) 1 36, funión onve. Pr =, f ( ) 1, funión ónv Pr =, f ( ) 36, funión onve L urvtur qued reflejd en l siguiente tl:
5 APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 5 Intervlos (-, -1) (-1, 1) (1, + ) Signo de l ª derivd Funión Eisten puntos de infleión pr = -1 y pr = 1
6 APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 6 Ejeriios resueltos. 1.- Estudi el reimiento y dereimiento de ls siguientes funiones en los puntos que 5 se indin: ) f ( ) en = - 1; ) f ( ) en = 1 1 Soluión: 1 f ( ) ; f ( ) ) f ( 1) L funión es dereiente en = -1 ( 1) 1 5 ) f ( ) 1 5( 1) (5 ) f ( ) ( 1) ( 1) ( 1) f ( 1) L funión es reiente en = 1 (.1 1) 9 Osérvese que en l derivd otenid el numerdor es positivo y el denomindor es siempre positivo por estr elevdo l udrdo por lo que l funión es reiente no solo en = 1 sino en todos los puntos de su dominio..- Estudi l monotoní de l funión y e Soluión: y e y 1. e e. e (1 )
7 APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 7 e e ( 1 ) ó 1 e es siempre myor que ero, luego l úni soluión posile se otiene de l euión 1 = -1 El dominio de l funión dd es R por trtrse del produto de un eponenil (de dominio R) y un polinómi (de dominio tmién R). Dividiendo el dominio por el punto 1 se otienen dos intervlos (, 1) y ( 1, ) Estudimos el signo de l derivd en un punto ulquier de d intervlo: 1 1 Pr = -, y ( ) e (1 ).( 1) (negtiv) e e Pr =, y () e (1 ) 1 (positiv) Se otienen sí los siguientes intervlos de reimiento y dereimiento: Intervlos (-, -1) (-1, + ) Signo de l derivd - + Funión 3.- Hll los vlores de y en l funión f ( ) siendo que ps por el punto P(-, 1) y tiene un etremo reltivo en el punto de sis = -3 Soluión: Si ps por el punto (-, 1), pr = - l funión vle 1, es deir, ( ) ( ) 1 3 Como tiene un etremo pr = -3 su derivd se nul en diho punto, es deir, f ( ) ( 3) = 6 Y sustituyendo en l euión = -3 se otiene el vlor de 6 3 = Hll, y en l funión f ( ) d siendo que el punto P(,) es un máimo y el punto Q(,) un mínimo. Soluión: 3 L funión ps por (,), por tnto,... d d = 3 L funión ps por (,), por tnto,... d Luego 8 d Por otr prte, el punto P(, ) es un máimo lo que indi que su derivd se nul pr =, es deir, f ( ) 3 ; f () 3.. = Como el punto Q(,) es un mínimo, su derivd se nul pr = :
8 APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág Formndo un sistem on ls euiones otenids result: 1 8 d d = 1; = -3
9 APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 13 Ejeriios propuestos 1.- Estudi l monotoní de l funión f ( ) ( 1) e.- Estudi l monotoní de l funión f ( ) e ( 3 3) y mínimos reltivos. y determin los máimos 3.- Dd l funión f ( ), hll los intervlos de reimiento y dereimiento y 1 los etremos reltivos..- Hll los máimos y mínimos de l funión (Soluión: mínimo pr = e ) y L y determin los puntos de infle- 5.- Estudi l urvtur de l funión ión. f ( ) Hll l euión de l tngente l gráfi de f ( ) 6 en su punto de infleión. (Soluión: y = ) Hll los vlores de y pr que l urv y 1 teng en el punto (, 1) un infleión y l pendiente de l ret tngente en diho punto vlg 1. (Soluión: = ; = 1 )
Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1)
º BACHILLERATO. Resuelve los siguientes ites: Opión A ) L= os sen (Indeterminión) g Pr resolver est indeterminión se pli l órmul: Por tnto, L os sen os sen e e Se resuelve el siguiente ite: os sen (Indeterminión)
a b c =(b a)(c a) (c b)
E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos
IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests
2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.
.3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como
Hacia la universidad Análisis matemático
Soluionrio Hi l universidd Análisis mtemátio OPCIÓN A. ) Define el onepto de funión ontinu en un punto. ) Si e e f( ), indi de form rzond en qué vlor no está definid f (). ) Clul el vlor R pr que l funión
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)
ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,
SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES
Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según
TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.
TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi
ECUACIONES DE PRIMER Y SEGUNDO GRADO
UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.
Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í
Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(
DETERMINANTES SELECTIVIDAD ZARAGOZA
DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0
BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1.
Pág. de 7 x si x Ì Hll el vlor de k pr que l función fx = x + k si x > se continu en x =. b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =, h de ser fx = f. x 8
BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1
II BLOQUE II ANÁLISIS Págin 3 3x si x Ì Hll el vlor de k pr que l función fx = continu en x =. x + k si x > se b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =,
1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.
º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems
En donde x representa la incógnita, y a, b y c son constantes.
FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.
Aplicaciones de la derivada
1 CAPÍTULO 8 Aplicciones de l derivd 8.1 Derivilidd monotoní 1 Como se se, si f es un función derivle en 0, entonces l derivd de f en 0 es un número rel fijo f 0. 0 /, el cul puede ser f 0. 0 / > 0 o ien
se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.
Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se
INTEGRALES IMPROPIAS
INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES
Eje normal. P(x,y) LLR Eje focal
. L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se
1. Función primitiva. Integral de una función.
. Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí
Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b):
TEMA 6: INTEGRAL DEFINIDA. 6.1 Integrl efini omo límite e sums superiores o inferiores. 6. Propiees e l integrl efini. 6. Regl e Brrow. 6.4 Apliiones e l integrl efini (Áre). 6.1 Integrl efini. Se f un
x x = 0 es una ecuación compatible determinada por que sólo se
Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +
1.-Algunas desigualdades básicas.
Preprión Olimpid Mtemáti Espñol. Curso 05-6. Desigulddes (y polinomios, y funiones). 3 de Noviemre de 05. Fernndo Myorl..-Alguns desigulddes ásis. ) 0 pr ulquier R. L iguldd sólo se umple pr = 0. ) (Desiguldd
TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS
Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].
ECUACIONES DE PRIMER GRADO
IES Jun Grí Vldemor Deprtmento de Mtemátis TEMA : ECUACIONES º ESO Mtemátis B ECUACIONES DE PRIMER GRADO PASOS PARA RESOLVER UNA ECUACIÓN DE PRIMER GRADO. Eliminr préntesis si los hy). Eliminr denomindores
UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE
UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.
CAPÍTULO. Aplicaciones
CAPÍTULO Aliiones. Longitud de urvs Entre los roblems que dieron origen l integrl, menionmos en el ítulo el de lulr l longitud de un urv, dd omo l gráfi de un funión f./ ontinu en un intervlo Œ; b. f./
Unidad 2 Determinantes
Unidd Determinntes PÁGIN SOLUCIONES. Ls mtries usds son ls siguientes: 5 Est mtriz no tiene invers.. Hiendo eros eslonmos ls mtries, oteniendo:, luego el rngo es. 4 4 4 El rngo es. PÁGIN 45 SOLUCIONES.
1 - Resolver los siguientes determinantes usando propiedades 1/10
- Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores
DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES
DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el
TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal
. ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los
f(t)dt para todo x [a, b].
ANÁLISIS MATEMÁTICO BÁSICO. EL TEOREMA FUNDAMENTAL DEL CÁLCULO. L integrl lnz todo su poder undo se li on l derivd. Esto ourre en el Teorem Fundmentl del Cálulo. Funiones definids trvés de l integrl. Dd
Ejercicios de optimización
Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y
+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior.
MATEMÁTICAS II ACTIVIDADES REFUERZO ª EVALUACIÓN Ejercicio 1. Sen f : y g : ls funciones definids por f() = -( + 1) + + b y g() = ce Se sbe que ls gráfics de f y g se cortn en el punto ( 1, ) y tienen
Si este proceso de subdivisión se repitiese muchas veces, se obtendrían dos sucesiones, s i y S
Integrles LA INTEGRAL DEFINIDA Integrl definid: áre jo un urv L integrl definid permite lulr el áre del reinto limitdo, en su prte superior por l gráfi de un funión f (, ontinu y no negtiv, en su prte
1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO.
TEMA 9 Integrl Definid. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. y = f() Un trpeio urvilíneo (o mitilíneo) T es un figur pln omo l que pree en l figur: T O Está limitd por:
c a, b tal que f(c) = 0
IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se
MATEMÁTICAS APLICADAS A CC.SS. I TEMA 1 Y 2: LOS NÚMEROS RADICALES. LOGARITMOS
http://olmo.pnti.me.es/dms000 MATEMÁTICAS APLICADAS A CC.SS. I TEMA Y : LOS NÚMEROS RADICALES. LOGARITMOS HOJA Nº Feh de entreg: Viernes, de Oture de 00 Ejeriios. 7. Etre ftores y simplifi l máimo l epresión
EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función
Unidd 3 Funciones Cudrátics EJERCICI0S PARA ENTRENARSE 4 Represent en los mismos ejes ls siguientes funciones: )) y y -. )) y 0,5 y - 0,5. c)) y 6 y - 6. Hcemos un tl de vlores y después representmos l
Cálculo Diferencial. Álgebra y Cálculo. Curso Propedéutico. Diplomado en Administración de Riesgos. Expositor: Juan Francisco Islas
Curso Propedéutio Álgebr y Cálulo Diplomdo en Administrión de Riesgos Cálulo Diferenil Epositor: Jun Frniso Isls Monterrey, N.L. Julio 0 X Sumtori Sen dos vribles y que tomn los vlores X X 5 X X 8 Y Y
Taller: Sistemas de ecuaciones lineales
Deprtmento de ienis ásis Asigntur: Mtemátis I Doente: Vitor Hugo Gil Avendño Apellidos-Nomres: 0 de mrzo de 08 Tller: Sistems de euiones lineles Un sistem de euiones es un onjunto de dos o más euiones
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o
SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14
R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo
Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral.
TEMA Ojetivos. álulo de rimitivs. L integrl deinid. Funiones integrles. Integrles imrois. Aliiones geométris de l integrl. Plnter y lulr integrles de uniones de un vrile y lirls l resoluión de rolems reltivos
a vectores a y b se muestra en la figura del lado derecho.
Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l
m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular
Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
α A TRIGONOMETRÍA PLANA
TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.
MATE 3013 LA FUNCIÓN DERIVADA
MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál
La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ
Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn
Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.
APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo
determinante haciendo todos los productos, Tema 8. Determinantes.
Tem. Determinntes.. Definiión de determinntes.. Propieddes de los determinntes.. Cálulo de determinntes de orden myor que (No entr en seletividd).. Rngo de un mtriz.. Mtriz invers... Definiión del determinnte
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
Elipse: Ecuación de la elipse dados ciertos elementos
Elipse: Euión de l elipse ddos iertos elementos Tinoo, G. (013). Euión de l elipse ddos iertos elementos. [Mnusrito no publido]. Méxio: UAEM. Espio de Formión Multimodl Elipse vertil Si l elipse tiene
, donde a y b son números cualesquiera.
Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.
INTRODUCCIÓN: PRIMITIVA DE UNA FUNCIÓN.
Mt. Apl. ls C. Soiles II: Fniones V: Interles. Cállo de primitivs y de áres. pá. INTRODUCCIÓN: PRIMITIVA DE UNA FUNCIÓN. Nos plntemos si dd n nión, eiste otr F tl qe F =. Se llm primitiv de n nión otr
ANALISIS MATEMATICO II INTEGRAL DEFINIDA - 2 PARTE
ANALISIS MATEMATICO II INTEGRAL DEFINIDA - 2 PARTE Mrí Susn Montelr Fultd de Cienis Exts, Ingenierí y Agrimensur - UNR EXTENSIÓN DEL SÍMBOLO INTEGRAL < b f(x) dx = g(x) dx b = b f(x) dx = 0 PROPIEDADES
Características 1) Es siempre cuadrado (igual cantidad de filas y columnas) 2) Está formado por número que determina un valor 3) Se resuelve
Colegio Ténio Nionl y Centro de Entrenmiento Voionl Arq. Rúl Mrí Benítez Perdomo Segundo urso de l Eduión Medi y Téni - Mtemáti Determinntes mtriz) On x n Es un funión que sign un número un mtriz (es deir
UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA
UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.
DETERMINANTES. GUIA DETERMINANTES 1
GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado
Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:
Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006
Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente
TEMA 2. Determinantes Problemas Resueltos
Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l
SISTEMAS DE ECUACIONES LINEALES
UNEFA C.I.N.U. Mtemátis Mteril dptdo on fines instruionles por Teres Gómez, de: Oho, A., González N., Lorenzo J. Gómez T. (008) Fundmentos de Mtemátis, Unidd 5: Euiones e Ineuiones, CIU 008, UNEFA, Crs.
LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1
LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bch 1 LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de un función en un punto f () l Se lee: El
que verifican A 2 = A.
. Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A
1. Definición de Semejanza. Escalas
Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión
INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x
en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este
( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.
DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest
5. RECTA Y PLANO EN EL ESPACIO
Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un
SISTEMAS DE ECUACIONES
SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.
TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de
1.6. BREVE REPASO DE LOGARITMOS.
.. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos
Teoría de Sistemas y Señales
Teorí de Sitem y Señle Criterio lgerio de etilidd Criterio de Routh Autor Dr. Jun Crlo Gómez Criterio Algerio de Etilidd pr SE en TC Promo que l ondiión neeri y ufiiente pr que un SE en TC repreentdo por
Hacia la universidad Álgebra lineal
Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l
CÁLCULO DIFERENCIAL. Lím h. Definición: Se dice que f(x) es derivable en A cuando es derivable en todo punto de A.
CÁLCULO DIFERENCIAL MATEMÁTICAS II Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci 1.- CONCEPTO DE DERIVADA. Se un unción rel deinid en un entorno del punto. Deinición: Se dice que es derivle en
a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA
UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo
2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente:
) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: 6 ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: + + 6 ) (No pr quienes tengn suspendid l ª evlución)
DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión
DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno
OPTIMIZACION = 5. Para comprobar que se trata de un mínimo acudimos al citerior de la segunda derivada
0 OPTIMIZACION En un eperimento en un lbortorio se hn relizdo medids del mismo objeto, que hn ddo los resultdos siguientes: m 0.9; m 0.9; m 0.9; m 0.90; m 0.9. Se tomrá como resultdo el vlor de tl que
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer emen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, eplicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
Matemáticas Bachillerato
Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente
Tema 5. Semejanza. Tema 5. Semejanza
Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión
24. Estudia la continuidad de la siguiente función: Dominio : . 3. lim f(x) lim. 3x 1. x 2. x x
. Estudi l continuidd de l guiente unción: () Dominio : Dom () : ( ),, Present discontinuiddes en, y () () Presentun discontinuidd ntótic de primer especie de slto ininito.., : ( ) () () No está deinid.
MATRICES Y DETERMINANTES
Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: info@drioestudio.es www.drioestudio.es. Dds ls tries A y B, lulr: ) A B ) A t B t. Dds ls tries A, B, C y D, relizr todos los produtos que sen posiles..
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)
UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como
Integrales impropias
Integrles impropis Ejeriios resueltos CRESLINE, S.L. Integrles impropis Ejeriio : Estudir l onvergeni de l impropi os x y en so de onvergeni, lulr su vlor. Soluión: Pr b>, se tiene b os x= [sin x]b = sin
Tema 11: Integral definida. Aplicaciones al cálculo de áreas
Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd
Matemáticas aplicadas a las Ciencias Sociales II. ANAYA
Unidd Nº Resoluión de sises edine deerinnes! eáis plids ls Cienis Soiles II. NY Esudi el rngo de ls siguienes ries: ))! Coo h vrios eleenos no nulos el rngo es.! Coo el rngo es.! unque oo, el rngo es,
PAEG de Matemáticas Ciencias Sociales II. Castilla La Mancha. Junio 2011
PEG de Mtemátis Cienis Soiles. Cstill L Mnh. Junio Soluiones.-. Siemre que eist l invers de se obtendrá l mtriz. b Como tiene invers y que det, l mtriz se obtendrá lulndo es invers que omo sbemos es duntos