1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día.
|
|
- Raquel Córdoba
- hace 3 años
- Vistas:
Transcripción
1 Est documto coti las actividads o prscials propustas al trmiar la clas dl día qu s idica. S sobrtid qu tambié s db ralizar l studio d lo plicado clas auqu o s icluya sa tara st documto. Clas 5 d ovimbr Ralizar los jrcicios rsultos úmros y dl tma d Itgració d fucios rals (págia ) Nota: No s csario ralizar l código para dibujar los rctágulos qu prmit ralizar la itrprtació gométrica. Clas 7 d ovimbr Trmiar los jrcicios d la práctica ralizada st día. Clas 8 d ovimbr D la págia d la asigatura ariabl.html utiliza l applt Sumas d Rima para lgir distitas opcios a la hora d cosidrar putos l subitrvalo. Eligido la vista Hoja d Cálculo s pud vr los cálculos qu prmit obtr la suma d Rima. Pág.
2 4 Ralizar dl tma d itgració d fucios d ua variabl siguits jrcicios: Rsulto úmro, 7, 8, 9 (págia 6 a ) Propustos úmros, 4, 5 (págia 6) Clas d ovimbr 5 Ralizar dl tma d itgració d fucios d ua variabl siguits jrcicios: Rsulto úmro 4, 5, 6, (págia 6 a ) Propustos 6, 7, 8 y 9 (págia 8 y 9) Clas d ovimbr 6 Dsd la págia d la asigatura, haz clic l lac R. Cálculo d primitivas Ralizar los jrcicios d itgració d: Itgració imdiata (hasta págia 7) Itgració por cambio d variabl (hasta págia ) Itgració por parts (págias a ) Pág.
3 Clas 4 d ovimbr 7 Trmiar los jrcicios propustos la práctica dl 4 d ovimbr 8 Clas 5 d ovimbr Ralizar los jrcicios d itgració d: Itgració d fucios d sos y cosos (págia 9 a ) Itgració d fucios irracioals (págia a 4) 9 Problma d am f 4 l itrvalo (a) Calcula l valor mdio d la fució [,]. (b) Calcula la primitiva d f log qu pasa por l puto (,) Apartado a) El valor mdio s 4 Para calcular la itgral, s hac l siguit cambio, Pág.
4 s t costdt t 6 t S obtdría: 4 4 s t cost 4 / / 4 4 cost 4 cos t dt dt /6 /6 t st 4 t t 6 Apartado b) S calcula las primitivas d la fució f log itgrado por parts: u log du dv v log log log log log log log C Para qu pas por l puto (,) s tdrá qu cumplir qu C, la primitiva pdida s F log log log Problma d am Dada la fució ( ) -t F dt, s pid (a) Escribir la prsió qu aproima F () mdiat la suma d Rima ctrada cosidrado ua partició d é,ù êë úû iguals. subitrvalos Pág. 4
5 (b) Escribir l código Matlab para calcular l valor aproimado d F () mdiat la suma d Rima dl apartado atrior. Apartado a) y b) Cosidrado f ci i i,,..., s tdrá, F f c i i i c i Para ralizar los cálculos Matlab s dbrá scribir l siguit código: ; ic/; i:; ciic/:ic:; sum(p(-ci.^))/ Apartado c) Como f s cotiua, aplicado l Torma Fudamtal dl Cálculo s ti qu F' El código Matlab para rprstar la fució drivada l itrvalo [,] s :.:; plot(,p(-.^)) Problma d am Calcula las siguits itgrals + 5 arctg (b) (a) ( ) Apartado a) La primitiva s obti itgrado por parts: - ( ) ï + 9 arctg( ) arctg( ) ì ü u arctg du ï + 9 í ï ý dv v ï î ïþ ( ) Pág. 5
6 æ ö arctg( ) - - ç è æ ö arctg( ) - arctg( ) ( ) arctg + C ç è Apartado b) ( ) æ - ö log( ) + log ( 4 ) arctg C æ ö ç çè - ç + çè Problma d am l itrvalo é, ù êë úû cosidrado ua suma d Rima rgular ligido como puto d cada subitrvalo l trmo suprior. (a) Calcular la itgral d la fució f ( ) (b) Si calcular su valor, ordar las siguits itgrals justificado la rspusta: I I 8 + I I (c) Calcular l ára d la rgió plaa D, crrada por las curvas d cuacios: y, y itgrado la variabl y la variabl y. (d) Calcular las primitivas d las siguits fucios (d.) f ( ) 9-4 (d.) f ( ) Apartado a) Como la fució s itgrabl, calcularmos la itgral mdiat l límit d ua suma d Rima rgular d subitrvalos, cosidrado cada subitrvalo l puto ci l trmo suprior f ( ) lim ç å f( c ) D i ( ) S tdrá qu æ ö ç çè i i f D c + i Pág. 6
7 æ ö i æ + æ i ö ö æ iö å å + ç ç + ç è ç ø ç ç çè lim lim i i lim ç å ç i ç i å ç è ø è ø ç ( ) æ ö - + æ + -ö lim lim ç çè ø ç çè Por lo tato, utilizado la dfiició, s ti ( ) Apartado b) f Utilizado las propidads d las itgrals s ti qu: I ya qu la fució itgrado s impar l itrvalo simétrico d itgració [,]. Las dmás itgrals so positivas ya qu s itgra fucios positivas cada itrvalo d itgració. I I ya qu l itrvalo [,], s cumpl, I I ya qu la fució a itgrar s positiva y l itrvalo s mayor l caso d la itgral I. Apartado c) Los putos d cort d las dos curvas, y, y, so (,) y (,) ya qu y 4 y y y y y yy 8 8 y y Pág. 7
8 Itgrado rspcto a, l ára crrada por las dos curvas s é ù / æ / ö ( ) ( ) ára ç è (-) êë úû - Itgrado rspcto a y, l ára crrada por las dos curvas s y é ù / æ / ö ( ) y y ára y ( y ) dy ç è 6 6 êë úûy Apartado d.) Para calcular hacmos l cambio st cost st tdt - st tdt cos cos cost 9æ stö 9 9 cos tdt dt t t st C ç çè 4 8 Dshacido l cambio: Tido cuta qu æ ö æ æ ö ö s tarcs 9 æ ö èç èç ø ç è ø ç çè arcs C 4 4 st st cost st - s t podría scribirs tambié Pág. 8
9 9æ æö ö ç è ç è 9 ø arcs C Apartado d.) Dscompoido fraccios simpls: s ti qu A -, ( ) f 7 B, C + - A B + C Por lo tato, log æ ö ç + çè 7 - log + log( + ) + arctg æ ö + C 4 ç çè Pág. 9
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS
Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.
Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su
1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:
.- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.
al siguiente límite si existe: . Se suele representar por ( x )
UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D
Integral Indefinida o Antiderivada
Dpartamto d Matmática Aplicada Cálculo II (0) Smstr -08 Profsor: José Luis Quitro Marzo 08 FACULTAD DE INGENIERÍA UNIVERSIDAD CENTRAL DE VENEZUELA Itgral Idfiida o Atidrivada. Comprub los siguits rsultados
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3
Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más
EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho.
6 Itgral dfiida Ejrcicio rsulto EJERCICIOS PROPUESTOS Obté, co l método visto, l ára dl trapcio limitado por la rcta y +, l j X y las vrticals y Calcula l ára gométricamt y compara los rsultados S divid
ACTIVIDADES NO PRESENCIALES
E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Grado e Igeiería Mecáica Este documeto cotiee las actividades o preseciales propuestas al termiar la clase del día que se idica. Se sobreetiede
MATEMÁTICA D Módulo I: Análisis de Variable Compleja. Teoría de Residuos
Matmática D MATEMÁTIA D Módulo I: Aálisis d Variabl omplja Uidad Toría d siduos Mag. María Iés Baragatti Sigularidads S dic qu s ua sigularidad aislada d f( si f( o s aalítica pro sí s aalítica u toro
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas
Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.
El error con ese presupuesto será aproximadamente del 3,1% Ejercicio 8.2
EJERCICIO 8.1 U ivstigador dispo d 0.000 para ralizar las trvistas d ua custa ua gra ciudad. El custioario s admiistrará mdiat trvistas tlfóicas, sido l cost d cada trvista d 0. Qué marg d rror dbrá asumir
PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)
PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad
TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS
Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar
F U N D A D O POR DON 0SE B A T l L E Y O R D O Ñ E Z EL > 6 DE J U N I O DE « '»eriarclóo 0 E O O A4 I N C O A LLAMENOS CHURRASOUERA
$ Ñ $ $ & $ [ & Ó Ü Ó É & à # ú Î à Ö # Ç # # Î# ~ ì & & # ~ ì ï + ú Ü ö Ù ì ï # Û à Ö Ö Ä # ç & Ú Î Ü æ ~ ò ú ì ] ~ ~ ì ~ à ì Ì & û ú ~ # ~ ò & Î # Ì Ï = ~ = = ~ ò ô Î & ï à Á û ô ß æ + ì ] Ä ò æ Ï ]
1 E N V I T E 2 R E C H I F L E T R I S T O N G O 3 P A L I Z A M O R M O S A 4 C H U C E A D A F U L E R A 5 G A R R O T E E M B R E T A D O
1 E N V I T E 2 R E C H I F L E T R I S T O N G O 3 P A L I Z A M O R M O S A 4 C H U C E A D A F U L E R A 5 G A R R O T E E M B R E T A D O 6 E L C U E R O A T R A V E S A D O 7 E S P I A N T E 1983
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
Derivada de una función
ACTIVIDADES f ()-f() 9-5 f(6) -f() -5 T. VM..([,] ) TVM...([, 6] ) - 6- f() -f() 5-5 TVM...([, ] ) 5 - f(5) -f() -5 TVM...([, 5] ) 6 5- f(5) -f() -9 TVM...([, 5] ) 5- f(6) -f() -9 TVM...([, 6] ) 8 6- a)
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
Señales y Sistemas. Análisis de Fourier.
Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas
NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.
E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Pág. Grado Ig. Tec. Telecomuicació NOTA: E todos los ejercicios se deberá justificar la respuesta eplicado el procedimieto seguido e la resolució
2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros
.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito
! 1 3 <1 la serie converge (y confirma a n! 0 ). a n. x 2 >0; f 0 (x)<0 si x>1; R 1 f (x)dx = 1 2 e x2 1 = 1 2e. ) Convergente. n! 0 ) Convergente.
Solucios d los roblmas d Matmáticas (07-08) {a } acotada ifriormt or 0 (los a so ositivos) y dcrcit us + + )9líma a ) a a ) a0 Como a + a < la sri covrg (y cofirma a 0 ) a) (a ) / Divrgt (O orqu {a
Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria.
Rspusta frcucia. Procsado Digital d Sñals.4º Igiría Elctróica. Uivrsitat d Valècia. Profsor Emilio Soria. 1 Itrés uso PDS. Ti l mismo uso qu sistmas cotiuos: dtrmiar la salida d u sistma stado stacioario;
Grado en Ingeniería Mecánica
Tema O Grado en Ingeniería Mecánica INTEGRAL INDEFINIDA DEFINICIONES Primitiva Definición (Función primitiva). Se dice que F ( ) es una función primitiva de otra función f () si y sólo si se verifica F
T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A
T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A Q U E S E E N C U E N T R A E N I N T E R N E T E N : h t t p : / / w w w. l a n d e r. e s / w e b m
Sistemas de ecuaciones diferenciales lineales
695 Aálisis matmático para Igiría M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO Sistmas d cuacios difrcials lials d primr ord Cuado s studia matmáticamt ua situació d la ralidad, l modlo qu s
1 Ejemplos de Aproximaciones de Integrales con Sumas de Riemman
Ejmplos d Aproximacios d Itgrals co Sumas d Rimma Esta Ru Hurtado Cruz UNAM. Itrodució Estos jmplos d aproximacios d sumas d Rima s usaro l curso d Calculo II, durat l smstr 003- d la Facultad d Cicias
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
Tema 2. Derivada. Técnicas de Derivación. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 2
Tma Drivaa. Técicas Drivació 0.- Itroucció.- Tasa Variació Mia.- Drivaa ua ució u puto..- Drivaas Latrals...- Itrprtació gométrica la rivaa..- Rlació tr cotiuia y rivabilia..- Sigiicao graico la rivaa.
El vapor Ortega fué ren olcado a la Habana seiridestruido por un incendio. La dictadura no ha de íavorecei a un solo partido sino a la nación entera
Ñ - [ - - - - - 6 - - - - / - - - -- - - - - - - - - - ] 8 / / / ] - / - - Ó - - 8 - - Ü - -- / - - - - - - Ó -- - - - / - Ü - - $ 8 - / $ - - - -------------------------- - ] - - - - - - - Ü - - - Q --
TEMA 1: CALCULO DIRECTO DE LÍMITES
INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL
Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Derivadas Tema 6. Derivadas 1. Derivada de una función en un punto
Matmáticas Aplicadas a las Cicias Socials II Aálisis: Drivadas Tma 6 Drivadas Drivada d ua fució u puto Tasa d variació d ua fució S llama tasa d variació mdia d ua fució f (), l itrvalo [a, b], al valor
TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo.
TALLER : Prparació parcial fial Cálculo Itgral UdA 5- Profsor: Jaim Adrés Jaramillo jaimaj@cocptocomputadorscom Sucsios Mustr los primros cuatro térmios d la sucsió y dtrmi si s covrgt o divrgt: a) d)
MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 1
MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O Fcios aalíticas Dmostrar q s aalítica todo l plao complo Z. Siglaridads d a ció Estdiar las siglaridads d las sigits cios calclado límit: a b c 9 cos d 7 Trasormació
TALLER 4: Preparación parcial final. Cálculo Integral. UdeA Profesor: Jaime Andrés Jaramillo.
TALLER : Prparació parcial fial Cálculo Itgral UdA - Profsor: Jaim Adrés Jaramillo jaimaj@cocptocomputadorscom Sucsios Mustr los primros cuatro térmios d la sucsió y dtrmi si s covrgt o divrgt: a) d) +
Desde California llegan ya donativos para los niños pobres de Puerto Rico
- Ñ / ü // < [ $ ü
Ejercicios de Integrales resueltos
Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5
página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),
Prob PI-1. Forma débil de un problema de flujo de calor estacionario en 2D (Cálculos a mano) T k. Q y
p Q S d ds d S q d ds d ] [ ] [ ] ([ d Q d ] [ j i Prob PI-. Forma débil d u problma d flujo d calor stacioario D (Cálculos a mao Cosidérs l problma dfiido la figura siguit: La EDP asociada s: co Q ua
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
^^conocerán los EE. UU, en H. América a los gobiernos creados por las revoluciones
- X - Í w ü Ñ É X X Ü4 0 «/ ( - - - ««4! ««- 0 0 (/) - - ««- ««- «-?! Q - - / X-? w!! -! w - «- - w -X - - ) - - w - ü! /) - (--) - - =! ( - - - -!!? ) - - ( Q - ü - - ( () ()! - 9? ] -? - 9 8 --- {/?
P a u l C e l a n ( A n t e m í )
P A L O M A N A V A R E S D e d i c a t o r i a s P a l o m a N a v a r e s : L a m a n o q u e p a s a s t e p o r t u s o j o s... P i l a r R i b a l A n t e m i r o d i l l a r e l a m p a g u e a
2. Utilizando el método adimensional basado en el factor de calidad Q, determine:
Uivrsidad Simó Bolívar Dpartamto d Covrsió y Trasport d Ergía Autor: Eduardo Albaz. Cart: 06-391 Profsor: J. M. Allr Máquias Eléctricas II CT-311 U motor d iducció coxió strlla d 100 kw, 416 V, rdimito
Tema 8. Limite de funciones. Continuidad
. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.
Prueba 18 de octubre. c) x=0:0.1:4; x1=x 2; plot(x1,(x1.^3+sin(x1))./(x1+1)) d) x= 2:0.2:2; plot(x,(x^3+sin(x))/(x+1))
E.T.S.I. Idustriales y Telecomuicació Curso 7 8 Grado Igeiería Mecáica Asigatura: : Prueba 8 de octubre Para represetar la fució f puede utilizar el siguiete código Solució: c) a) Nigua de las ateriores
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla
W F l. ù û = Nxm º Joule. En SI: éë W. ù û. = Dinaxcm º Ergio. En CGS: é
El trabajo W hecho sobre un objeto, por un agente externo ejerciendo una fuerza constante en el objeto, es el producto de la fuerza y de la magnitud del desplazamiento: W = F * l A F B W F l En SI: éë
11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS)
INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) Los sistmas o lials pud llgar a tr comportamitos ralmt sorprdts alguos casos: por u lado pud llgar a tr diámicas totalmt difrts sgú l valor qu
TEMA 5: LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS
Dpartamto d Matmáticas. IE.S. Ciudad d Arjoa º Bach Socials. LÍMITES Propidads: TEMA : LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS. LÍMITES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES. RESOLUCIÓN DE INDETERMINACIONES.
( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)
ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y
1 8 0 x c m. A c r í l i c o / Te l a
S A N T I A G O Y D Á Ñ E Z P a r a í s o P e r d i d o C o n v e r g e n c i a e n l a i m a g e n Á l v a r o d e l o s Á n g e l e s U n a c a r a c t e r í s t i c a i m p o r t a n t e d e l a r t
2. ALGEBRA LINEAL (2.1_AL_T_062, Revisión: , C12)
. ALGEBRA LINEAL (._AL_T_06, Rvisió: 8-03-06, C). CONCEPTOS FUNDAMENTALES: ESPACIOS VECTORIALES, BASES, DIMENSIONES... INTRODUCCIÓN. Notació: utilizamos abcdario latio para vctors, grigo para scalars (úmros).
Tema 11. Limite de funciones. Continuidad
Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito
Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2
Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl
ú
ť ú ú ď ř Ž ú ť ě ř ú Í ú ř Í ú ř ř ú č Ó ú ě Í Ť ý ř ú Í ŤÉ ř š ú Í ť ť ů ú ť ť Á Á Ř ř ú Ú Í ě ě Ó Í ě ě ě Í ú ú ú É ú ú ú Í ú ř ú ú ú ú Í Í Á Ť Ž Ř Í ú ú ú Í ú ů ř Í ě ú ú ú Í ú ú
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
CÁLCULO NUMÉRICO ( )
CÁLCULO NUMÉRICO (808068) Tma. Fudamtos d la Toría d Errors Octubr 0. Al studiar l fómo diario d la variació qu primta las codicios mtorológicas, s suprim muchas variabls qu dbría d itrvir los cálculos.
Hoja de Problemas Tema 3. (Sucesiones y series)
Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar
1. Entrar en la página de Lemat
PRÁCTICA SUCESIONES Prácticas Lemat Práctica 6: Sucesioes uméricas Objetivos Ayudar a compreder los coceptos de sucesió, mootoía, acotació y límite de ua sucesió utilizado las herramietas gráficas y de
105 EJERCICIOS de DERIVABILIDAD 2º BACH.
105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular
MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos
Clase 13 de febrero. Ejercicios propuestos números 1, 2 (página 19)
Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. Se sobreentiende que también se debe realizar el estudio de lo explicado en clase aunque no
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta
8 Derivadas. Página 239. Página 247. Función derivada
8 Derivadas Págia 9 Fució derivada E el itervalo (a, b ), f () es decreciete. Por tato, su derivada es egativa. Es lo que le pasa a g () e (a, b ). La derivada de f e b es 0: f ' (b ) 0. tambié es g (b
REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES
Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (
1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto
INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.
INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.
e l E n i, 241) C anal S t., N e w Y o rk. T e l é f o n o : C an al
: 4) : - : Ñ? #» ) > ' ] ] 4 - (/) (/) «-» [ ú - :! Q! ~4 - - - (6 «(/) - -»»?! 5»»» 6 '! X " > 4 ) X X 45 ( ú ü - ( - - ( Z 5 Z 5 } ' 6 Z ú : 5-6 : $ 5 $ $ 5 ú ú $ 4 5 ( 5 >Ú) - Q
* S P A N A ABRIO SUS CONSTITUYENTES
>! w Ñ >> ( 9 Ü X ) ( ) ) ü ( > >> ) X > > w / Í > Í ( Í ü >w! ( > >! w Í /! ]]!!! (! ) ü 9 ú ú (>) ( > ( ü (> ú ( ú ú ú [ > = ú ú ú ú Z ú > ) ú Z & ú Z ú Ñ () ú () ú ()! ü [ (>! Ú ú () ( >) Z / /) ú ú
Capítulo IV. Estadísticas cuánticas.
Capítulo I. stadísticas cuáticas. Lcció 6 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. stadísticas d Bos-isti y d rmi-dirac. Lcció 7 Gas idal d rmi: lctros mtals. Lcció 8
98 EJERCICIOS de DERIVABILIDAD 2º BACH.
98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
O f ic in a s : T i e m p o p r o b a b le ; C a n a l S t., N e w T o r K. T e le fo n o : C a n a! 1200.
6 Í 200 Ü Ñ 03 6 929 á 3000 - [ 20 ó ó ú á á - - ú ó ó á ú ú - / ó á á á á á Q Q ó ó ó ó á á ó á á ó ó ó á ó ó 2 0 0 á / Z - - ó ú - ó ó ú á ó á 000 ó á ó - ó ó ú - á - ó 3 ú ó - á á - ó ó á á ó ú ú -
NOTICIAS DE ULTIMA HORA CONFIRMAN QUE LA NORMALIDAD REINA EN ESPAÑA : L as versiones que llegan de
2 5 / w 2 Ñ X X 5 5 3 929 X ú Ñ Ñ Í ú ú ú ú ú Ó - - - ) - - - - ú - ú 55 - - ú Z - " ü " Í ---------- - - - - - Í 6 Ó / " " - - - - Z - - - ) - - - - / - - 2 5 " " - - - - - " - - - -- - 3 5 5 - -ú ú -
3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.
MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por
MATEMÁTICAS Y CULTURA B O L E T Í N No. 273 COORDINACIÓN DE MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE
MATEMÁTICAS Y CULTURA B O L E T Í N 23.04.20 No. 273 COORDINACIÓN DE MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE E l Boltí Matmáticas Y Cultura No. 257 dl 23 d abril
DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE
DEIVACIÓN Y DIFEENCIACIÓN DE FUNCIONES DE UNA VAIABLE EAL. APOXIMACIÓN POLINÓMICA. DESAOLLOS EN SEIE.- Calcular, aplicado la defiició, las derivadas de las siguietes fucioes e el puto : a) f ( ) se( )
EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen:
CÁLCULO I EXAMEN FINAL 15 de eero de 16 Apellidos: Titulació: Duració del exame: horas 3 Fecha publicació otas: -1-16 Fecha revisió exame: -1-16 Todas las respuestas debe de estar justificadas acompañádolas
5 MECÁNICA ESTADÍSTICA CUÁNTICA DE GASES IDEALES
ma 5 MCÁICA SADÍSICA CUÁICA D GASS IDALS stadística d rmi-dirac y stadística d Bos-isti. l límit clásico. Gas idal d rmi: lctros mtals. Gas idal d Bos: fotos y 4H líquido. Codsació d Bos-isti. [RI-9; HUA-8;
Ayuntamiento de Madrid
25 w k w / k 6-200 Q 7 Ñ Ó - í;;; k í / \ Q 5 í \ w í " í < í 7 > / " Ü x Q 3 Í í wk < > k > k 3 ------------------------------------------------------------------- > ;
erí^m acropianos lanzan a Sandino bombas los jg p^pej proponiendo la paz en Nicaragua
Q w - Ñ ü ~ [? 8-8 8 } - - -- - - - - / x x - - -ü - - - x - - x- 6 - - - - - - - w - - -? - ü - - - --- - --? - - - - x x - - x - - - - - {- - - - - - - - - ü - Ó - - - - - x - ü - Ñ x x - -Ó - x [ -
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)
IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:
1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)
IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
Soluciones de los problemas de la HOJA 2B
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Igeiería Idustrial (GITI/GITI+ADE) Igeiería de Telecomuicació (GITT/GITT+ADE) CÁLCULO Curso 5-6 Solucioes de los
8 Límites de sucesiones y de funciones
Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...
1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:
EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +
HOOVER ESTUDIARA LOS PROBLEMAS DE PUERTO RICO SOBRE EL TERRENO
/ w Ñ Z 3 XX 2 Ñ ]? w - Z [ ( 7 ( Í -? Q 3 2 2 Z Z 7 ( 7! -2 > W- Z # > >? 7 ( ( 7 ( - - < 2 - - - - -? 7 ( -? 7 ( - ( # < 2 # >! - - - 2 > 7 - - ------- X? _ W 3 X Í -------------- 7 - ( - -? / 2 - -