LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY"

Transcripción

1 Departamento de Física LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA LEY DE INDUCCIÓN DE FARADAY Relación de material: Osciloscopio Oscilador: Generador de señales de frecuencia variable 1 Solenoide de 485 espiras/m y 750mm de longitud 1 Solenoide de 300 espiras y diámetro 40 mm Multímetros 1 Cinta métrica Cables con bananas OBSERVACIONES: Antes de comenzar el experimento comprobar que todo el material que aparece en la relación se encuentra en la mesa de trabajo. Al finalizar, dejar el puesto ordenado y limpio, volviendo a comprobar que todo el material está en su lugar y listo para ser utilizado de nuevo. Al finalizar, desconectar todos los aparatos.

2 PRÁCTICA -/6 PRÁCTICA : LEY DE INDUCCIÓN DE FARADAY Con este experimento se pretende cumplir tres objetivos: 1) Comprender la ley de inducción de Faraday-Lenz. ) Analizar la dependencia de la fem inducida en un solenoide con la intensidad de corriente y con la frecuencia de oscilación de dicha corriente 3) Determinar de forma experimental el coeficiente de inducción mutua entre solenoides 1.- INTRODUCCIÓN AL EXPERIMENTO Verificación de la ley de Faraday y determinación del coeficiente de inducción mutua Realizar el montaje de la figura en donde el frecuencímetro se debe sustituir por un osciloscopio: Frecuencímetro Osciloscopio Fig.1 Si a un solenoide se alimenta con un voltaje que varía con el tiempo se genera una corriente eléctrica que da lugar a un campo magnético que varía con el tiempo y para puntos del interior del solenoide ese campo magnético depende de esa corriente I(t), que pasa por el mismo, de la forma: N I(t ) B(t) o (1) l donde o es la permeabilidad magnética del vacío, N el numero de espiras del solenoide y l su longitud. Si el campo magnético varía con el tiempo aparecerá un campo eléctrico inducido en toda la región. Así, si se coloca un segundo solenoide en su interior, se generará una fem inducida,, debida a este campo eléctrico, como consecuencia de la variación de flujo magnético que soporta.

3 PRÁCTICA -3/6 La ley de Faraday-Lenz predice dicho efecto según la expresión: d dt S B ds donde E dl C donde es la fem inducida en el solenoide pequeño, E el campo eléctrico inducido sobre las espiras del solenoide pequeño y B, el campo magnético que existe en el interior del solenoide pequeño. La fem inducida en el solenoide pequeño, que se ha introducido en el solenoide grande, es debida a dos causas; una debida a la variación del campo magnético del solenoide grande y otra por la variación de su propio campo magnético. En este experimento la primera de las causas es la más importante y será la única que se tenga en consideración al realizar las previsiones teóricas. Si el solenoide grande se alimenta con una señal de la forma V(t ) Vo sen( t), la corriente que le atraviesa será de la forma I(t ) Io sen( t ), por lo que en su interior se genera un campo magnético variable que sigue la ley expresada en (1), cuyo valor quedará determinado por la expresión: Bt N I sen ( t ) l o 1 o ( ) (3) 1 donde N 1 es el número de espiras del solenoide grande, l 1 la longitud del solenoide grande, o es la permeabilidad magnética del vacío y es el desfase que introduce el solenoide al que no se le puede obviar su carácter resistivo (circuito LR ). Cuando en el interior del solenoide grande se coloca uno de los pequeños, como se muestra en la Fig.1. éste será atravesado por las líneas de este campo magnético variable y por tanto el flujo magnético que soporta estará variando en el tiempo y dará lugar a la aparición de una fem inducida que podremos medir con un voltímetro de corriente alterna. Según la ley de Faraday, la fem inducida en el solenoide pequeño queda descrita por la siguiente expresión: () d d on1i0sen( t ) onn1 r I0 B ds - N( ) r ( )cos( t ) dt dt l S 1 l1 MI cos( t ) 0 (4) siendo 1 = o M r l1 y V MI Donde : 0 0 : Voltaje inducido en el solenoide pequeño, siendo V o la amplitud del voltaje inducido. Un voltímetro analógico de AC mide valores eficaces y su relación con la amplitud es: Vo V eficaz

4 PRÁCTICA -4/6 M: es el coeficiente de inducción mutua N 1 y N : número de espiras de los solenoides grande y pequeño respectivamente r : radio de la sección del solenoide pequeño l 1 : longitud del solenoide grande = : Donde es la frecuencia de la señal de alimentación y se mide con el Osciloscopio I o : Es la amplitud de la intensidad que atraviesa el solenoide grande, cuyo valor eficaz (I rms ) se mide con un amperímetro analógico de AC Io I eficaz De la expresión (4) se deduce que la fem inducida en el solenoide pequeño, introducido en el solenoide grande, crece con la frecuencia de oscilación de la corriente, con su sección, con el número de espiras, con el módulo de la intensidad de la corriente de alimentación y decrece con la longitud del mismo..- DESCRIPCIÓN DE LOS INSTRUMENTOS.1. GENERADOR DE FRECUENCIA VARIABLE: OSCILADOR Es el instrumento que suministra la señal de alimentación al circuito. Tiene la posibilidad de proporcionar señales de corriente alterna de diferentes amplitudes y frecuencias. Suministra diferentes formas de señal, senoidal, cuadrada y triangular. Se utilizarán señales senoidales en el rango entre 1kHz y 1 khz, por debajo y por encima de este intervalo no se garantiza la exactitud de los instrumentos de medida... OSCILOSCOPIO Es un instrumento que mide diferencias de potencial, tanto constantes como variables en función del tiempo. Es por ello, un voltímetro que puede medir tanto la amplitud como el periodo (frecuencia) de una señal. Los osciloscopios que poseen dos canales de entrada a eje Y, permiten visualizar de forma simultánea dos señales y de esa forma es posible compararlas y medir la variación en amplitud, periodo (frecuencia) y fase. La pantalla del osciloscopio muestra una representación en un sistema de ejes perpendiculares donde la escala elegida para el eje Y permitirá medir el voltaje pico- pico de la señal y la escala elegida para el eje X (base de tiempos) permitirá medir el periodo de la señal y, a partir del mismo, de forma indirecta la frecuencia angular. Se recuerda que la medida de la amplitud de una señal con el osciloscopio se realiza midiendo previamente el voltaje pico-pico, siendo la amplitud la mitad de ese valor. La escala que se ha de seleccionar es aquella en la que la señal a medir se observe la más grande posible en amplitud. Para medir el periodo, se determinará midiendo la separación temporal entre dos valores máximos del voltaje. La escala a elegir será aquella en la que los picos de las posiciones de los máximos se vean muy acusados..3.- MULTÍMETROS Son instrumentos que dependiendo de la posición en la que se coloque el cursor se comportan como voltímetros de DC o AC, como amperímetros de DC o AC o también como óhmetros. Disponen de diferentes escalas, se ha de seleccionar aquélla en la que la medida a realizar se encuentre en el centro de la escala.

5 PRÁCTICA -5/6.4. SOLENOIDES Son bobinados de cobre de forma cilíndrica. Se dispone de solenoides de diferentes longitudes, secciones y número de espiras. 3.- MÉTODO EXPERIMENTAL 3.1 Determinación de la fem inducida en un solenoide por una señal de corriente alterna de amplitud y frecuencia variable Montar el circuito de la Fig Datos suministrados por el fabricante del solenoide grande N 1 = 364 espiras l 1 = 750 mm Elegir el solenoide pequeño de: N = 300 espiras D = r = 40mm Dado que en una señal de alterna, I(t) = I o sen (t + ), se pueden variar dos magnitudes, la amplitud I o y la frecuencia angular, se analizará la fem inducida en dos fases: primero se mantendrá constante la frecuencia angular y se variará la amplitud y después se variará la frecuencia angular y se mantendrá constante la amplitud Elegir un valor de la frecuencia del oscilador entre 1kHz -1kHz *Variando la amplitud del voltaje de alimentación, tomar diez medidas de corriente I eficaz (amperímetro) y las correspondientes fem inducidas V eficaz (voltímetro) a frecuencia fija. Haciendo uso del Osciloscopio, medir la frecuencia de la señal de alimentación. Frecuencia elegida: = ; = = Construir la siguiente tabla: I eficaz V eficaz Elegir un valor de la amplitud de la corriente de alimentación I eficaz *Variando la frecuencia en el intervalo 1kHz -1kHz, tomar para diez medidas de frecuencia las correspondientes fem inducidas V eficaz (voltímetro) manteniendo constante I eficaz. Hay que asegurar que la amplitud de la intensidad se mantiene constante, para ello cada vez que se cambie de frecuencia comprobar que la intensidad elegida no ha cambiado. Si ha cambiado ajustar con el cursor de alimentación al valor inicialmente elegido. La intensidad no se mantiene constante porque al variar la frecuencia cambia la impedancia del circuito, es por ello, que si se desea mantener la amplitud de la intensidad constante, hay que ajustarlo en cada cambio de frecuencia para así poder realizar la experiencia propuesta, amplitud constante y variación de la f.e.m inducida sólo por el cambio de frecuencia de la señal de alimentación.

6 PRÁCTICA -6/6 Intensidad elegida I eficaz = I eficaz elegida frecuencia ω=π V eficaz 3. Justificación de la expresión teórica de la fem inducida en un solenoide y determinación de la inducción mutua. siendo su valor eficaz: 1 ( ) ( N N r t o ) I0 cos( t ) l 1 N N r V I M I (5) o 1 eficaz eficaz eficaz l1 REPRESENTACIONES GRÁFICAS 3..1 Representar gráficamente V eficaz frente a la corriente I eficaz, para el solenoide de 300 espiras para la frecuencia elegida. Explica a qué curva se ajustan los datos Determinar a partir de la pendiente el coeficiente de inducción mutua, M 3..3 Representar gráficamente V eficaz frente a la frecuencia para el solenoide de 300 espiras para la amplitud de intensidad elegida. Explica a qué curva se ajustan los datos Determinar a partir de la pendiente el coeficiente de inducción mutua, M Comparar los resultados obtenidos en los apartados 3.. y 3..4.Justifica la respuesta Comparar el valor del coeficiente de inducción mutua, M, obtenido experimentalmente con la previsión teórica que se deriva de la expresión (5).

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

Figura 1 Fotografía de varios modelos de multímetros

Figura 1 Fotografía de varios modelos de multímetros El Multímetro El multímetro ó polímetro es un instrumento que permite medir diferentes magnitudes eléctricas. Así, en general, todos los modelos permiten medir: - Tensiones alternas y continuas - Corrientes

Más detalles

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE aboratorio de Electricidad PACTCA - 10 CAACTEÍSTCAS DE NA NDCTANCA EN N CCTO SEE - Finalidades 1.- Estudiar el efecto en un circuito de alterna, de una inductancia y una resistencia conectadas en serie.

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

Laboratorio de Electrónica

Laboratorio de Electrónica Listado de materiales: Trabajo Práctico: ectificadores 4 Diodos 1N4001 1 esistencia de 1 KΩ/ ½W Preset 1 KΩ 1 Puente ectificador Integrado. 1 esistencia de 3,9 KΩ/ ½W Cables y herramientas básicas. 1 esistencia

Más detalles

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S OSCILOSCOPIO Objetivos - Conocer los aspectos básicos que permiten comprender el funcionamiento del osciloscopio - Manejar el osciloscopio como instrumento de medición de magnitudes eléctricas de alta

Más detalles

PRÁCTICA Nº 8: CICLOS DE HISTÉRESIS DE MATERIALES FERROMAGNÉTICOS. TRANSFORMADORES.

PRÁCTICA Nº 8: CICLOS DE HISTÉRESIS DE MATERIALES FERROMAGNÉTICOS. TRANSFORMADORES. PRÁCTICA Nº 8: CICLOS DE HISTÉRESIS DE MATERIALES FERROMAGNÉTICOS. TRANSFORMADORES. Objetivos: Medida de los ciclos de histéresis de un medio ferromagnético, observación de la saturación de la imanación,

Más detalles

PRÁCTICAS INTRODUCCIÓN A LA TECNOLOGÍA DE COMPUTADORES (Curso: 05/06) 1. (Práctica nº 2) Figura 1: Osciloscópio. Figura 2: Generador de Funciones

PRÁCTICAS INTRODUCCIÓN A LA TECNOLOGÍA DE COMPUTADORES (Curso: 05/06) 1. (Práctica nº 2) Figura 1: Osciloscópio. Figura 2: Generador de Funciones PRÁCTICAS INTRODUCCIÓN A LA TECNOLOGÍA DE COMPUTADORES (Curso: 05/06) 1 MANEJO DEL OSCILOSCOPIO (Práctica nº 2) 1. INSTRUMENTOS DE MEDIDA Figura 1: Osciloscópio Figura 2: Generador de Funciones Figura

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total

Más detalles

EJERCICIOS DE AUTOEVALUACIÓN "CIRCUITOS ALIMENTADOS EN CORRIENTE ALTERNA"

EJERCICIOS DE AUTOEVALUACIÓN CIRCUITOS ALIMENTADOS EN CORRIENTE ALTERNA EJERCICIOS DE AUTOEVALUACIÓN "CIRCUITOS ALIMENTADOS EN CORRIENTE ALTERNA" EJERCICIO 1 Simular con PSIM el siguiente circuito y obtener: a) Valores eficaces de la tensión en el generador, en la resistencia

Más detalles

Resistencia y resistividad

Resistencia y resistividad Resistencia y resistividad 2 Conductancia y conductividad Variación de la resistencia con la temperatura EE10Medicioneseléctricas Unidadeseléctricas Culombio(C,unidaddecargaeléctrica) Conexióndeunamperímetroenuncircuito.

Más detalles

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la

Más detalles

PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7:

PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7: PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7: MANEJO DEL OSCILOSCOPIO - MEDIDA DE ANGULOS DE FASE Y MEDIDA DE PARAMETROS DE UNA BOBINA 1. OBJETIVOS Adquirir conocimientos

Más detalles

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO

PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO PRÁCTICA Nº 1: EL VOLTÍMETRO Y EL AMPERÍMETRO Objetivos: Utilización de un voltímetro y de un amperímetro, caracterización de aparatos analógicos y digitales, y efecto de carga. Material: Un voltímetro

Más detalles

Instrumentación y Ley de OHM

Instrumentación y Ley de OHM Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO 19 EL OSCILOSCOPIO OBJETIVO Familiarizarse con el manejo del osciloscopio. Medida del periodo y del valor eficaz y de pico de una señal alterna de tensión. Visualización de las figuras de Lissajous. MATERIAL

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 01-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 06 NOMBRE DE LA PRACTICA: Análisis de Circuitos en Corriente Alterna

Más detalles

ASOCIACIÓN DE RESISTORES

ASOCIACIÓN DE RESISTORES ASOCIACIÓN DE RESISTORES Santiago Ramírez de la Piscina Millán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. INTRODUCCIÓN. Con esta práctica el alumno aprenderá a identificar los elementos

Más detalles

OSCILOSCOPIO FUNCIONAMIENTO:

OSCILOSCOPIO FUNCIONAMIENTO: OSCILOSCOPIO El osciloscopio es un instrumento electrónico - digital o analógico- que permite visualizar y efectuar medidas sobre señales eléctricas. Para esto cuenta con una pantalla con un sistema de

Más detalles

VATÍMETRO PARA MEDIDA DE LAS CARACTERÍSTICAS MAGNÉTICAS DE LOS NÚCLEOS DE TRANSFORMADORES Y MATERIALES BOBINADOS.

VATÍMETRO PARA MEDIDA DE LAS CARACTERÍSTICAS MAGNÉTICAS DE LOS NÚCLEOS DE TRANSFORMADORES Y MATERIALES BOBINADOS. VATÍMETRO PARA MEDIDA DE LAS CARACTERÍSTICAS MAGNÉTICAS DE LOS NÚCLEOS DE TRANSFORMADORES Y MATERIALES BOBINADOS. El vatímetro proporciona medidas de precisión en tiempo real para las pérdidas en chapas

Más detalles

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S.

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S. CORRIENTE ALTERNA 1. En el circuito de la figura R1 = 20 Ω, R2 = 30Ω, R3 =40Ω, L= 2H. Calcular: (INF-ExSust- 2003-1) a) La potencia entrega por la batería justo cuando se cierra S. S b) La potencia disipada

Más detalles

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso:

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso: INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO Alumnos 1.- Fecha: 2.- 3.- Curso: OBJETIVO Usar el osciloscopio como instrumento para visualizar señales y medir en ellas voltaje, frecuencia

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Transformador. Transformador

Transformador. Transformador E L E C T R I C I D A D Y M A G N E T I S M O Transformador Transformador ELECTRICIDAD Y MAGNETISMO Bajo ciertas condiciones un campo magnético puede producir una corriente eléctrica. Este fenómeno, conocido

Más detalles

Campo Magnético. Campo creado por espiras de corriente Campo Magnético Terrestre

Campo Magnético. Campo creado por espiras de corriente Campo Magnético Terrestre Campo Magnético Campo creado por espiras de corriente Campo Magnético Terrestre 1. OBJETVOS - Estudiar el campo magnético que crea una espira circular en función de la intensidad de corriente y del radio.

Más detalles

1. Fenómenos de inducción electromagnética.

1. Fenómenos de inducción electromagnética. 1. Fenómenos de inducción electromagnética. Si por un circuito eléctrico, en forma de espira, por donde no circula corriente, se aproxima un campo magnético originado por la acción de un imán o un solenoide

Más detalles

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Circuitos Magnéticamente Acoplados Contenidos Desfase de una señal. Inductancia. Inductancia Mutua.

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

LEY DE FARADAY-LENZ BREVE EXPLICACIÓN DE LA LEY DE FARADAY Y DE LA LEY DE LENZ

LEY DE FARADAY-LENZ BREVE EXPLICACIÓN DE LA LEY DE FARADAY Y DE LA LEY DE LENZ LEY DE FARADAY-LENZ LÓPEZ, Luciano Federico Instituto Senderos Azules, Monte Grande, Buenos Aires Profesor Guía: BARRESI, Abel Alberto INTRODUCCIÓN Consultando con mi profesor de física sobre los posibles

Más detalles

SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO

SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO I. OBJETIVOS Analizar componentes. Montaje del circuito. Análisis de CA y CD. Sistema de rectificación tipo fuente. Filtraje. Uso del osciloscopio. Gráfico

Más detalles

1.1 La Bobina Ideal. Preguntas conceptuales

1.1 La Bobina Ideal. Preguntas conceptuales 1. RESPUESTA DEL CIRCUITO EN ESTADO TRANSITORIO (DOMINIO DEL TIEMPO) 1.1 La Bobina Ideal Preguntas conceptuales 1. La inductancia de cierta bobina está determinada por la ecuación 1.2. Si se desea construir

Más detalles

LISTA DE FIGURAS... VII NOMENCLATURA... IX ABREVIACIONES... XI CAPÍTULO

LISTA DE FIGURAS... VII NOMENCLATURA... IX ABREVIACIONES... XI CAPÍTULO Tabla de Contenidos LISTA DE FIGURAS... VII NOMENCLATURA... IX ABREVIACIONES... XI CAPÍTULO 1. INTRODUCCIÓN... 1 1.1. INTRODUCCIÓN GENERAL... 1 1.2. TRABAJOS PREVIOS... 3 1.2.1 Equipos Comerciales... 3

Más detalles

Introducción ELECTROTECNIA

Introducción ELECTROTECNIA Introducción Podríamos definir la Electrotecnia como la técnica de la electricidad ; desde esta perspectiva la Electrotecnia abarca un extenso campo que puede comprender desde la producción, transporte,

Más detalles

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA 4.1. Medidas con el osciloscopio El osciloscopio es un instrumento que sirve para visualizar señales periódicas. Nos permite,

Más detalles

Condensador con tensión alterna sinusoidal

Condensador con tensión alterna sinusoidal Capacitancia e Inductancia en Circuito de Corriente Alterna 1.- OBJETIVO: Experiencia Nº 10 El objetivo fundamental en este experimento es el estudio de la corriente alterna en un circuito RC y RL. 2.-

Más detalles

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN

CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN CÁLCULO SECCIÓN CABLEADO DE ALIMENTACIÓN V 1.0 SEPTIEMBRE 2005 Corriente máxima en el cable (A) CÁLCULO DE LA SECCIÓN MÍNIMA DEL CABLEADO DE ALIMENTACIÓN Longitud del cable en metros 0 1.2 1.2 2.1 2.1

Más detalles

Práctica 2. Circuitos con bobinas y condensadores en CC y CA

Práctica 2. Circuitos con bobinas y condensadores en CC y CA Electrotecnia y Electrónica (34519) Grado de Ingeniería Química Práctica 2. Circuitos con bobinas y condensadores en CC y CA Francisco Andrés Candelas Herías Con la colaboración de Alberto Seva Follana

Más detalles

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES.

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. 1.1. Introducción Teórica. (a) El osciloscopio El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

Utilizar adecuadamente el multímetro para mediciones de voltaje, corriente y resistencia eléctrica.

Utilizar adecuadamente el multímetro para mediciones de voltaje, corriente y resistencia eléctrica. GUIA PAA USO DEL MULTIMETO OBJETIVOS : Utilizar adecuadamente el multímetro para mediciones de voltaje, corriente y resistencia eléctrica. INTODUCCIÓN : El multímetro es un instrumento de medición que

Más detalles

Integrantes: 2. Introducción

Integrantes: 2. Introducción Facultad de Ciencias Departamento de Física Fundamentos de Electricidad y Magnetismo Laboratorio N 7 Campo Magnético Ovidio Almanza Noviembre 28 de 2011 Integrantes: Diana Milena Ramírez Gutiérrez Cod.

Más detalles

Inducción de fuerzas electromotrices por un campo variable en el tiempo

Inducción de fuerzas electromotrices por un campo variable en el tiempo ELECTRICIDAD Y MAGNETISMO Inducción de fuerzas electromotrices por un campo variable en el tiempo UNIDAD 5 PRÁCTICA 14 ING. ELECTROMECÁNICA PRESENTA: DANIEL ABARCA ANALCO DANIEL CEBRERO PRIETO YAMANI DE

Más detalles

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace PRACTICA 3. EL OSCILOSCOPIO ANALOGICO 1. INTRODUCCION. El Osciloscopio es un voltímetro que nos permite representar en su pantalla valores de tensión durante un intervalo de tiempo. Es decir, nos permite

Más detalles

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS

AUTOMATIZACIÓN INDUSTRIAL DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS 3º INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA AUTOMATIZACIÓN INDUSTRIAL PRÁCTICA 5 DESCRIPCIÓN Y MANEJO DEL SERVOMOTOR DE PRÁCTICAS OBJETIVOS DE LA PRÁCTICA Identificar sobre un montaje real

Más detalles

MEDIR EL TIEMPO DE INYECCIÓN

MEDIR EL TIEMPO DE INYECCIÓN MEDIR EL TIEMPO DE INYECCIÓN Vicente Blasco Introducción En este artículo vamos exponer como se mide el tiempo de inyección en motores de gasolina utilizando el osciloscopio y pese a que el tiempo de inyección

Más detalles

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Comprender el principio de funcionamiento del osciloscopio

Más detalles

FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010

FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Proyecto: Transformador Casero

Más detalles

1.1. Sección del núcleo

1.1. Sección del núcleo 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario

Más detalles

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos.

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Circuitos RC y LR Objetivo Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Equipamiento Computador PC con interfaz

Más detalles

Circuitos RLC resonantes acoplados

Circuitos RLC resonantes acoplados Pág. 1 Circuitos RLC resonantes acoplados Cano, Ramiro Díaz, Federico Trebisacce, Carlos cramirocano@.com.ar Facil7@hotmail.com trevicjt@hotmail.com Universidad Favaloro, Facultad de Ingeniería Bs. As.

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

PRACTICA Nº 4 EL OSCILOSCOPIO

PRACTICA Nº 4 EL OSCILOSCOPIO PRACTICA Nº 4 EL OSCILOSCOPIO Objetivos Comprender el principio de funcionamiento del osciloscopio analógico y estar en capacidad de identificar los diferentes bloques de controles en los instrumentos

Más detalles

Espiras y brújulas: medición del campo magnético de la Tierra

Espiras y brújulas: medición del campo magnético de la Tierra Espiras y brújulas: medición del campo magnético de la Tierra María Inés Aguilar 1, Mariana Ceraolo 2, Mónica Pose 3 1 Centro Educativo San Francisco Javier, Buenos Aires, miaguilar@ciudad.com.ar 2 Colegio

Más detalles

Apunte LTspice: Acoplamiento magnético y transformadores

Apunte LTspice: Acoplamiento magnético y transformadores Apunte LTspice: Acoplamiento magnético y transformadores Ayudante: Marco Guerrero Ilufi - Felipe Vega Prado Contacto: m.guerrero144@gmail.com - felipe.vegapr@gmail.com 2 de junio de 2011 Introducción En

Más detalles

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA TEMA 6 CORRIENTE ALTERNA TRIÁSICA VI.1 Generación de la CA trifásica VI. Configuración Y-D VI.3 Cargas equilibradas VI.4 Cargas desequilibradas VI.5 Potencias VI.6 actor de potencia Cuestiones 1 VI.1 GENERACIÓN

Más detalles

Medida de magnitudes mecánicas

Medida de magnitudes mecánicas Medida de magnitudes mecánicas Introducción Sensores potenciométricos Galgas extensiométricas Sensores piezoeléctricos Sensores capacitivos Sensores inductivos Sensores basados en efecto Hall Sensores

Más detalles

Mejora del factor de potencia

Mejora del factor de potencia Práctica de corriente alterna. Mejora del factor de potencia Luis Íñiguez de Onzoño Sanz Fundamentos Físicos para Ingenieros III 28 de noviembre de 2007 Índice 1. Conceptos relacionados I 2. Principios

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

USO DE INSTRUMENTOS DE LABORATORIO

USO DE INSTRUMENTOS DE LABORATORIO 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). USO DE INSTRUMENTOS DE LABORATORIO Objetivo General Obtener

Más detalles

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS.

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. 9.. Potencias en sistemas equilibrados y simétricos en tensiones Un sistema trifásico puede considerarse como circuitos monofásicos, por lo que la potencia total

Más detalles

www.autoexactomexico.com

www.autoexactomexico.com COMPROBACION DE FUNCIONAMIENTO DE CAPTADORES DE GIRO DE CIGÜEÑAL Y PUNTO MUERTO SUPERIOR (PMS) DE RELUCTANCIA VARIABLE O RELUCTORES Este tipo de captadores, como es de vuestro conocimiento, constan de

Más detalles

Símbolo. EXPERIENCIA DE LABORATORIO No. 6 TRANSFORMADOR - CIRCUITOS RLC. Area de Física Experimental Manual de Laboratorio 1

Símbolo. EXPERIENCIA DE LABORATORIO No. 6 TRANSFORMADOR - CIRCUITOS RLC. Area de Física Experimental Manual de Laboratorio 1 rea de Física Experimental Manual de Laboratorio 1 EXPEIENI DE LBOTOIO No. 6 TNSFOMDO - IUITOS L En esta experiencia de laboratorio Ud. realizará mediciones en circuitos de corriente alterna que involucran

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA INSTRUMENTOS DE MEDICION INFORME DE LABORATORIO Presentado por: Andrés González - 0329032 Andrea Herrera - 0327121 Hans Haeusler - 0332903 Rafael Triviño -

Más detalles

CIRCUITOS ELECTRÓNICOS DIGITALES (II-IS) Práctica 3: Función combinacional con puertas NAND

CIRCUITOS ELECTRÓNICOS DIGITALES (II-IS) Práctica 3: Función combinacional con puertas NAND CIRCUITOS ELECTRÓNICOS DIGITALES (II-IS) Práctica 3: Función combinacional con puertas NAND 1. OBJETIVOS DE LA PRÁCTICA - Comprobar que la puerta NAND es un operador completo en la realización de funciones

Más detalles

Instrumentos eléctricos y sus aplicaciones. 18 de septiembre de 2012 INSTRUMENTOS ELECTRICOS Y SUS APLICACIONES.

Instrumentos eléctricos y sus aplicaciones. 18 de septiembre de 2012 INSTRUMENTOS ELECTRICOS Y SUS APLICACIONES. INSTRUMENTOS ELECTRICOS Y SUS APLICACIONES. AUTORES. Orellana Vargas, Carlos Heriberto 00046311. Orellana Vargas, Fermín José 00046411. Grande Cóbar, Mauricio José 00098111. Reinoza Miranda, Verónica Gissel

Más detalles

REVISTA COLOMBIANA DE FÍSICA, VOL. 34, No. 1. 2002

REVISTA COLOMBIANA DE FÍSICA, VOL. 34, No. 1. 2002 POSICIONADOR PARA BANCO ÓPTICO A PARTIR DE VARIACIÓN DE INDUCTANCIA Y LVDT CON SISTEMAS DE ADQUISICIÓN ANÁLOGO DIGITAL Y PROGRAMACIÓN LABVIEW C. G. López b y L. C. Jiménez 1 Grupo de Películas Delgadas,

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz"

Práctica No. 6 del Curso Meteorología y Transductores. Mediciones de valor medio y valor eficaz Objetivo. Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz" Graficar varias señales del generador de señales y comprobar en forma experimental el voltaje

Más detalles

III. Aparatos de medición

III. Aparatos de medición III. Aparatos de medición Voltímetro - Amperímetro - Ohmímetro Objetivos Conocer y manejar el multímetro digital para hacer mediciones de voltaje, corriente y resistencia en un circuito eléctrico que contiene

Más detalles

MEDIDA DE LA VELOCIDAD DEL SONIDO. TUBO DE RESONANCIA

MEDIDA DE LA VELOCIDAD DEL SONIDO. TUBO DE RESONANCIA eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2 GUIA DE LABORATORIO Nº2 Universidad Nacional de Misiones MÉTODOS CLÁSICOS PARA MODELACIÓN DE SISTEMAS 1. Objetivo de la práctica. Modelación a través de la Respuesta en frecuencia Este laboratorio tiene

Más detalles

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba.

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba. INSTRUMENTACIÓN ELÉCTRICA Medición de tensión con diferentes instrumentos de medida MULTÍMETROS ANALOGOS De todas las herramientas y equipos que un electricista pueda poseer en su banco o en su maletín

Más detalles

Pontificia Universidad Javeriana-Cali Facultad de Ingeniería Departamento de Ciencias Naturales y Matemáticas-Área de Física

Pontificia Universidad Javeriana-Cali Facultad de Ingeniería Departamento de Ciencias Naturales y Matemáticas-Área de Física ELECTRICIDAD Y MAGNETISMO PRÁCTICA DE LABORATORIO No. 7a CIRCUITO RC 1. INTRODUCCIÓN El condensador es un dispositivo de gran utilidad en circuitos eléctricos y electrónicos. Una de sus características

Más detalles

Mediciones eléctricas

Mediciones eléctricas Mediciones eléctricas Unidades eléctricas Culombio (C, unidad de carga eléctrica) Conexión de un amperímetro en un circuito. La introducción de las magnitudes eléctricas requiere añadir una nueva unidad

Más detalles

CORRIENTE ALTERNA. Fig.1 : Corriente continua

CORRIENTE ALTERNA. Fig.1 : Corriente continua CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones

Más detalles

Escuela Superior de Economía y Negocios. Electromagnetismo. Ciclo 2-2014

Escuela Superior de Economía y Negocios. Electromagnetismo. Ciclo 2-2014 Página 1 Escuela Superior de Economía y Negocios Electromagnetismo Ciclo 2-2014 Elena Mónica Fernández Monterroza 20121052 Juan José Rodríguez Cruz 20120086 José Felipe Véjar Torres 20123198 Santa Tecla,

Más detalles

Sesión 6 Instrumentación básica y técnicas de medida

Sesión 6 Instrumentación básica y técnicas de medida Sesión 6 Instrumentación básica y técnicas de medida Componentes y Circuitos Electrónicos Isabel Pérez /José A. Garcia Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO TRABAJO PRACTICO No 7 MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO INTRODUCCION TEORICA: La distorsión es un efecto por el cual una señal pura (de una única frecuencia)

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

Funcionamiento de un generador de imanes permanentes aplicando la expresión de Lorentz

Funcionamiento de un generador de imanes permanentes aplicando la expresión de Lorentz Funcionamiento de un generador de imanes permanentes aplicando la expresión de Lorentz Introducción: fórmula de Lorentz Un generador de imanes permanentes consta de un conjunto de imanes que se mueen frente

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

Electrotecnia General Tema 17 TEMA 17 APARATOS DE MEDIDA

Electrotecnia General Tema 17 TEMA 17 APARATOS DE MEDIDA TEMA 17 APARATOS DE MEDIDA 17.1. DEFINICIÓN. Un aparato de medida es un sistema que permite establecer la correspondencia entre una magnitud física que se pretende medir, con otra susceptible de ser percibida

Más detalles

Interferómetro de Fizzeau Física III

Interferómetro de Fizzeau Física III Interferómetro de Fizzeau Física III Universidad Nacional de Mar del Plata Facultad de Ingeniería Fecha de Entrega: Jueves 20 de noviembre de 2014 Alumnos: Avalos Ribas, Ramiro Cardoso, Federico Furno,

Más detalles

Práctica 3: Señales en el Tiempo y Dominio de

Práctica 3: Señales en el Tiempo y Dominio de Práctica 3: Señales en el Tiempo y Dominio de Frecuencia Número de Equipo: Nombres: Fecha: Horario: Dia de clase: Profesor: Objetivos: Al finalizar esta práctica, usted será capaz de: Predecir el contenido

Más detalles

MEDICIONES ELECTRICAS II

MEDICIONES ELECTRICAS II Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS II Trabajo Práctico N 3 Tema: MEDICION DE FASE CONTRASTE DE COFIMETRO. Conceptos Fundamentales El período de una señal senoidal se corresponde con

Más detalles

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL 8.1. CAMPO MAGNÉTICO CREADO POR UN ELEMENTO DE CORRIENTE Una carga eléctrica en movimiento crea, en el espacio que la rodea, un campo magnético.

Más detalles

Práctica 2. Diseño y medida de una Red Resonante. Laboratorio de medidas e instrumentación. Nombres. Grupo

Práctica 2. Diseño y medida de una Red Resonante. Laboratorio de medidas e instrumentación. Nombres. Grupo Red resonante Laboratorio de medidas e instrumentación i Laboratorio de medidas e instrumentación. Práctica 2. Diseño y medida de una Red Resonante. Nombres Grupo Red resonante Laboratorio de medidas e

Más detalles

INSTRUMENTOS de medición

INSTRUMENTOS de medición INSTRUMENTOS de medición Medir: Es comparar una cantidad desconocida que queremos determinar y una cantidad conocida de la misma magnitud, que elegimos como unidad. Al resultado de medir lo llamamos Medida

Más detalles

Física 2º Bach. Óptica 01/04/09

Física 2º Bach. Óptica 01/04/09 Física 2º Bach. Óptica 0/04/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTO /UNO]. Un objeto O está situado a 30 cm del vértice de un espejo cóncavo, tal y como indica la figura. Se observa

Más detalles

Laboratorio de Electricidad PRACTICA - 15 CARGA Y DESCARGA DE UN CONDENSADOR

Laboratorio de Electricidad PRACTICA - 15 CARGA Y DESCARGA DE UN CONDENSADOR PRATIA - 15 ARGA Y DESARGA DE UN ONDENSADOR I - Finalidades 1.- Estudiar las características de carga y descarga de un circuito R y la temporización implicada en el fenómeno. 2.- Estudiar la constante

Más detalles

Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora

Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora Martin, Laura Leibovich, Débora laura_martin1@hotmail.com debbie@megabras.com Laboratorio de física -

Más detalles