La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota
|
|
- Juan Luis Macías Fernández
- hace 6 años
- Vistas:
Transcripción
1 La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas alturas de caída. Altura de caída Pelota Puesta en marcha del cronómetro Parada del cronómetro Tiempo Mis variables son la altura, el tiempo de los rebotes, la masa de la pelota, la superficie en que rebota y el número de rebotes. La variable independiente es la altura de caída A porque yo la elijo. La variable dependiente es el tiempo de los rebotes T porque depende de la altura de caída. Las constantes deben ser la masa de la pelota, la superficie en la que rebota, y el número de rebotes porque van a ser los mismos durante todo el experimento. La pregunta es cómo se relaciona el tiempo de seis rebotes con la altura de caída. Buscaré una relación lineal de proporcionalidad entre las variables independiente y dependiente. Mi idea es que si la altura aumenta, el tiempo aumentará. Si no se cumple este resultado trazaré las gráficas de lo que sea necesario para hallar la relación. 1
2 Tiempo de seis rebotes en función de la altura de caída Por tanto, la función de esta gráfica debería ser T = ma donde T es el tiempo, m el gradiente y A la altura. DISEÑO El método para realizar este experimento es fácil y simple. El equipo y los materiales que emplearé son: una pelota, un cronómetro, una regla de metro, la superficie del suelo, una mesa y materiales para escribir. Cuando tenga todo esto, comenzaré midiendo la variable independiente. Utilizaré la pata de una mesa y marcaré ligeramente sobre ella diferentes alturas con la regla. Comenzaré con 20, después 30, 40, 50, 60 y utilizaré la altura de la mesa y también la regla. Para realizar el experimento colocaré la regla horizontalmente a la marca de la mesa y en el extremo de la regla pondré la pelota. Entonces dejaré que la pelota caiga, por lo que ahora voy a explicar cómo mediré el tiempo (variable dependiente). Cuando la pelota esté en la regla estaré listo con el cronómetro en la mano. Dejaré caer la pelota desde la regla y presionaré el botón del cronómetro en ese mismo momento para comenzar a cronometrar. Observaré y escucharé que la pelota rebote 6 veces. En el momento del 6º rebote pararé el cronómetro. Además explicaré cómo voy a mantener controlada la variable. La superficie que elegiré será el suelo del aula y la pelota será una pelota llamativa y por tanto no la perderé de vista. A Mesa de laboratorio Pelota Regla de metro Suelo 2
3 Otra cuestión es cuántas veces mediré las variables. Mediré el tiempo de los seis rebotes cuatro veces para cada altura diferente y entonces tomaré el promedio. Para medir la altura lo repetiré 3 veces y tomaré el promedio. Voy a tomar 7 valores diferentes desde los 20 cm de la altura menor hasta los 100 cm de la mayor. DATOS Y ANÁLISIS Realizados todos los procesos debo medir y escribir los valores, por tanto preparo esta tabla de datos brutos. Datos brutos # Altura de caída A (cm) Incertidumbre ± 0,2 cm Tiempo de 6 rebotes T (s) Incertidumbre ± 0,2 s 1 20,0 19,0 20,0 1,68 1,78 1,79 1, ,0 30,0 29,5 1,97 2,10 2,34 2, ,0 40,0 39,0 2,35 2,46 2,75 2, ,0 50,5 50,5 2,72 2,73 2,72 2, ,0 60,1 60,6 3,19 3,01 3,09 3, ,5 77,9 77,2 3,32 3,28 3,59 3, ,3 100,9 4,03 4,00 3,97 4,03 Estimo que la incertidumbre en la altura es aproximadamente 0,2 cm. La incertidumbre en el tiempo de rebote es más difícil de calcular. Tomando la diferencia entre el mayor y el menor tiempo para cada altura encuentro el intervalo de incertidumbre. Esto es 0,22 s, 0,37 s, 0,42 s, 0,01 s, 0,18 s, 0,31 s y 0,06 s. El promedio de estos valores es 0,22 s, así que la mitad del rango es 0,11 s o ±0,1 s. Pero esto es demasiado preciso si tenemos en cuenta que cinco de los intervalos son mucho mayores, así que es mejor afirmar que la incertidumbre en tiempo es de ±0,2 s. Esto parece razonable. Por cierto, primero dibujé un gráfico con barras de incertidumbre de ±0,1 s y la recta de mejor ajuste no cortaba muchos de los rangos de incertidumbre, por lo que 0,2 segundos resulta mejor. Ahora necesito procesar los datos para calcular promedios. A1 + A2 + A3 Para la altura, Am =. Esto se hizo con una calculadora. Decidí mantener aquí la 3 incertidumbre en ±0,2 cm o ±0,002 m. También transformé la altura de cm a m. T1 + T2 + T3 + T4 Para los tiempos, Tm = y se hizo con calculadora. El promedio debería reducir la 4 incertidumbre pero debido a la variación en el rango de incertidumbre de las diferentes alturas, decidí mantener la incertidumbre en el tiempo como ±0,2 s.
4 Mantendré los números con tres cifras decimales aunque la incertidumbre sea únicamente de un decimal porque redondearé los números sólo al final. Datos procesados / Promedios # Altura promedio A (m) A = ± 0,002 m Tiempo promedio de 6 rebotes, T (s) T = ± 0,2 s 1 0,196 1,705 1,7 2 0,298 2,170 2,2 3 0,400 2,580 2,6 4 0,503 2,722 2,7 5 0,605 3,110 3,1 6 0,772 3,380 3,2 7 1,004 4,007 4,0 Ahora construyo una gráfica del tiempo en función de la altura. La incertidumbre en la altura es relativamente pequeña, así que la ignoraré, mientras que la incertidumbre en el tiempo es más significativa así que mostraré las barras de error para el tiempo.
5 Tiempo de seis rebotes en función de la altura de caída Tiempo (s) Ajuste lineal para: Conjunto de datos Tiempo t = ma+b m (Pendiente): 2,71 s/m b (Intersección Y): 1,35 s Correlación: 0,989 Error cuadrático medio: 0,122 0,0 0,5 1,0 Altura (m) Tiempo de seis rebotes en función de la altura de caída / Pendientes mín. y máx. Máx. pendiente (s) Mín. pendiente (s) Tiempo (s) Ajuste lineal para: Conjunto de datos Pendiente máx y = ma+b m (Pendiente): 3,34 s/m b (Intersección Y): 0,850 s Correlación: 1,00 Error cuadrático medio: 0 Ajuste lineal para: Conjunto de datos Pendiente mín y = ma+b m (Pendiente): 2,35 s/m b (Intersección Y): 1,44 s Correlación: 1,00 Error cuadrático medio: 0 0,0 0,5 1,0 Altura (m)
6 El gradiente de la recta de mejor ajuste m Mejor = 2,71, el gradiente máximo m Máx = 3,43 y el gradiente mínimo m Mín = 2,35. El rango es: m Máx m Mín = 3,43 2,35 = 1,08 La mitad de este rango es la incertidumbre de la recta de mejor ajuste. 1,08 mmejor = ± = ± 0,54 ± 0,5 2 Así, el gradiente y su incertidumbre son m Mejor = 2,71 ± 0,495 2,7 ± 0,5 La incertidumbre dividida entre el gradiente y multiplicada por 100 nos da un error de aproximadamente 19%, y eso no es bueno. La correlación entre T y A resulta dudosa. La ecuación general y = mx + c particularizada para mis datos es T = m A + c donde la constante de proporcionalidad es m Mejor 2,7 ± 0,5 y el desplazamiento sistemático en la línea es c, donde c = 1,19 s. Mi pregunta de investigación indicaba que c = 0, pero esto no es cierto. Examinemos los datos con más detalle. ANÁLISIS DE LOS PROBLEMAS Veo que la intersección con el eje y, para altura cero, es en el instante 1,35 s. Esto es imposible, por lo que el desplazamiento sistemático debe tener algún significado. Quizás el tiempo desde que se deja caer hasta el primer rebote afecta a todos los puntos. 1 2 Así, utilizando el tiempo teórico de A = caída 2 gt para 2A tcaída =, calculé con el programa g gráfico los tiempos de rebote revisados como t revisado = T 9,81 m s 2. Esta es la gráfica. 2A g donde g es la gravedad
7 Tiempo ajustado de rebotes en función de la altura Tiempo de rebote (s) Ajuste lineal para: Conjunto de datos Tiempo de rebote y = ma+b m (Pendiente): 2,40 s/m b (Intersección Y): 1,19 s Correlación: 0,988 Error cuadrático medio: 0,114 0,0 0,5 1,0 Altura (m) La desviación en el eje y es aún significativa, alrededor de 1,19 s, comparada con la de la gráfica previa de 1,35 s. Debe haber algún otro problema teórico. Observando de cerca los puntos y sabiendo que el tiempo debe ser cero para altura cero, podría sugerir una tendencia curva en los datos. Tal vez la verdadera forma de la gráfica no sea una línea recta. A continuación, pruebo logaritmos para hallar la relación entre el tiempo y la altura. El software gráfico lo hace una vez que defino los términos. 7
8 Log Tiempo 0,6 0,5 0,4 Log Tiempo en función de Log Altura Ajuste lineal para: Conjunto de datos Log Tiempo y = mx+b m (Pendiente): 0,506 b (Intersección Y): 0,597 Correlación: 0,996 Error cuadrático medio: 0,0114 0,3-0,8-0,6-0,4-0,2 0,0 Log Altura Este es un muy buen resultado. Hay una alta correlación de 0,996 y el gradiente es 0,506 o aproximadamente 0,5. El gradiente es el exponente n y la constante de proporcionalidad es ahora k. n T = ka logt = log k + n log A Con los logaritmos, podemos decir que n = 0,5 o T A 0,5 es decir T A o T 2 A. La siguiente es una gráfica del cuadrado del tiempo en función de la altura.
9 Tiempo al cuadrado en función de la altura Tiempo al cuadrado (s 2 ) Ajuste lineal para: Conjunto de datos Tiempo al cuadrado y = ma+b m (Pendiente): 15,7 s 2 /m b (Intersección Y): -0,0713 s 2 Correlación: 0,996 Error cuadrático medio: 0,442 0,0 0,5 1,0 Altura (m) Esto es genial. La recta de mejor ajuste pasa cercana al origen con una desviación de sólo 0,07 s 2. Podemos pasar por alto este error experimental. Además, la correlación es 0,996, ligeramente mejor que en los otros gráficos. Creo que es posible afirmar con seguridad que mis datos demuestran que T 2 = ma y no T = ma.
10 CONCLUSIÓN En mi conclusión voy a relacionar lo que hallé con lo que esperaba hallar. Mi experimento investigaba la relación entre el tiempo que tarda una pelota en dar 6 rebotes como función de la altura de caída. Cuando la altura aumenta esperaba que el tiempo aumentase. Mi gráfica mostraba esto. La gráfica era lineal pero no pasaba por el origen. Sospeché que había algún error sistemático en la teoría. Aunque era más o menos correcto, advertí una tendencia en la gráfica como si los datos formaran alguna especie de curva. Tracé el gráfico del log del tiempo frente al log de la altura y vi que la gráfica del cuadrado del tiempo frente a la altura era una línea recta mucho mejor y que pasaba por el origen. Por lo tanto, mi idea original era incorrecta e hice un nuevo descubrimiento, a saber que el cuadrado del tiempo es proporcional a la altura de caída. El problema más importante está en la tendencia de los datos tal como se ven distribuidos sobre la gráfica. Para mejorar la calidad de los datos y por tanto hallar mejor la tendencia correcta, consideraría los siguientes puntos. Construiría un mecanismo mejor para soltar la pelota, y no lo haría a mano. Quizás una abrazadera y un soporte, de modo que cuando se abriera la abrazadera dejase la pelota sin ningún giro o rotación y el soporte permitiría repetir las caídas desde exactamente la misma altura. Existe una dificultad al medir el tiempo de 6 rebotes. Podría usar un ordenador y un equipo de registro de datos para grabar el sonido al mismo tiempo. Los rebotes se reflejarían como picos en el nivel de sonido, y los tiempos serían más exactos. Esto supondría una gran mejora. Me gustaría disponer de un rango más amplio de datos, quizás hasta 1,60 metros. También querría graficar más puntos dentro de ese rango, digamos cada 10 cm. Quizás la pelota que rebota pudiera meterse en una caja cerrada para evitar que se mueva hacia un lado. Sin embargo, ésta podría tomar también energía de la pelota e invalidar mis datos. No hay respuesta conocida en los libros sobre la relación entre el tiempo del tiempo de un cierto número de rebotes y la altura de caída, pero mi descubrimiento de T 2 a debe estar oculto en la teoría del movimiento de caída libre y en las ecuaciones que aprendemos en clase. Sabemos (para aceleración uniforme) que la velocidad de impacto es proporcional a la raíz cuadrada de la altura de caída, y que el tiempo de rebote debería ser proporcional a la velocidad de impacto. 10
Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado
Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado La investigación Pregunta de investigación: Es constante la aceleración de un carrito que cae
Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido
Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6
Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS
ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos
Análisis de medidas conjuntas (conjoint analysis)
Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los
UNIDAD 1. LOS NÚMEROS ENTEROS.
UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar
Trabajo Práctico III Consigna:
Trabajo Práctico III Consigna: Realizar fotografías con tema libre, teniendo en cuenta las siguientes pautas: 1. Fotografiar un sujeto en movimiento para que aparezca completamente nítido y ( congelado
Ejercicio de estadística para 3º de la ESO
Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población
d s = 2 Experimento 3
Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición
Pronósticos. Pronósticos y gráficos Diapositiva 1
Pronósticos Pronósticos Información de base Media móvil Pronóstico lineal - Tendencia Pronóstico no lineal - Crecimiento Suavización exponencial Regresiones mediante líneas de tendencia en gráficos Gráficos:
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
Cómo mover y cambiar de tamaño zonas (versión turborresumida, ya llegará la versión completa en el
Cómo mover y cambiar de tamaño zonas (versión turborresumida, ya llegará la versión completa en el turbotutorial de LUA) Intro Lo primero que hay que saber es que LUA trabaja con identificadores, no con
3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?
Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;
Unidad: Representación gráfica del movimiento
Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
Qué es una fuerza? Cómo se relaciona con el movimiento?
Qué es una fuerza? Cómo se relaciona con el movimiento? Prof. Bartolomé Yankovic Nola, 2012 1 Cuando pateamos una pelota o empujamos una mesa, podemos afirmar que se está ejerciendo o se ha ejercido una
CURSILLO DE ORIENTACIÓN
CURSILLO DE ORIENTACIÓN MAPAS Un mapa es una proyección de una superficie sobre un plano, y reducido a través de una ESCALA. Esta escala nos da el grado de reducción y precisión de la realidad y se representa
8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...
Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría
Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE Objetivos 1. Medir la distancia recorrida y la velocidad de un objeto que se mueve con: a. velocidad constante y b. aceleración constante,. Establecer
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
MICROECONOMÍA II. PRÁCTICA TEMA II: Equilibrio parcial
MICROECONOMÍA II PRÁCTICA TEMA II: Equilibrio parcial EJERCICIO 1 A) En equilibrio, la cantidad demandada coincide con la cantidad ofrecida, así como el precio de oferta y demanda. Por lo tanto, para hallar
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
OBJETIVO MATERIAL. 1 resorte, 1 soporte, 1 regla de un metro, 1 gancho, 5 pesas ranuradas de 20 gf, 2 pesas de 50 gf y 4 balanzas TEORÍA
OBJETIVO Comprobar experimentalmente la ley de Hooke y examinar la ley de conservación de energía en un proceso de interacción entre un resorte que se ha estirado y una masa suspendida del resorte a cierta
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado
EL SISTEMA SOLAR A ESCALA
Cómo motivar a los estudiantes mediante actividades científicas atractivas EL SISTEMA SOLAR A ESCALA Introducción: Mª Teresa de la Calle García COLEGIO PÍO XII Valencia En la mayoría de los libros de texto
6. VECTORES Y COORDENADAS
6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que
Vectores no colineales.
Vectores no colineales. Por definición son aquellos vectores que no tienen igual dirección. La resultante de los mismos no surge de la suma algebraica de los módulos de dichos vectores, sino que deben
Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica
Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas
Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor
Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor 1. Generalidades 2. Qué se necesita para comenzar? 3. Qué hacer para sistemas opacos y translúcidos? 4. Qué hacer
FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS
AJUSTE POR MÍNIMOS CUADRADOS Existen numerosas leyes físicas en las que se sabe de antemano que dos magnitudes x e y se relacionan a través de una ecuación lineal y = ax + b donde las constantes b (ordenada
PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:
Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay
IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?
IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento
Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba
Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta
Determinación del equivalente eléctrico del calor
Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
MATEMÁTICA FINANCIERA
MATEMÁTICA FINANCIERA Hola amigos mi nombre es keplerín Yo los estaré guiando durante el desarrollo de esta cartilla, bienvenidos al mundo de las matemáticas financieras: Valor Presente Neto (VPN) Recordemos!
EL MAPA TOPOGRÁFICO curva de nivel
EL MAPA TOPOGRÁFICO El mapa topográfico es una representación de la superficie terrestre mediante curvas de nivel que tiene como finalidad mostrar las variaciones del relieve de la Tierra. Además de las
Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.
Laboratorio 1 Medición e incertidumbre La descripción de los fenómenos naturales comienza con la observación; el siguiente paso consiste en asignar a cada cantidad observada un número, es decir en medir
Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican:
Ejercicios. 1. Definir en Maxima las siguientes funciones y evaluarlas en los puntos que se indican: 2. Graficar las funciones anteriores, definiendo adecuadamente los rangos de x e y, para visualizar
PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED
PRINCIPIOS FINAN IEROS FUNDAMENTALE DEL FED Ahorradores inteligentes 100 AÑOS Descripción de la lección Conceptos Objetivos Los estudiantes calculan el interés compuesto para identificar las ventajas de
Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría
Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica
TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)
TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo
1. Funciones y sus gráficas
FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada
PRÁCTICA 2 CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
INGENIERÍA QUÍMICA 1 er curso FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 2 CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. II. Movimiento
Actividades con GeoGebra
Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde
Los números racionales
Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones
CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas
CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas Introducción En la economía, la variación de alguna cantidad con respecto a otra puede ser descrita por un concepto promedio o por un concepto
Física de los Procesos Biológicos Curso 2005/6
Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
No hay resorte que oscile cien años...
No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos
Creación de un Gráfico con OpenOffice.org Calc Presentación de los Datos Asistente para Gráficos
Creación de un Gráfico con OpenOffice.org Calc Los gráficos elaborados con OpenOffice.org son de gran importancia para ver la tendencia de los datos. Es una herramienta de análisis que permite mostrar
3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R
MATEMÁTICAS PARA EDUCACIÓN INFANTIL N Enseñamos y aprendemos llos números:: Método Siingapur y Fernández Bravo,, Porr Clarra Garrcí ía,, Marrtta Gonzzál lezz y Crri isstti ina Lattorrrre.. Ú M E R O S
Comparar las siguientes ecuaciones, y hallar sus soluciones:
TEMA. Iteraciones. % Hemos aprendido que para resolver una ecuación en x, se despeja la x y se evalúa la expresión que resulta. El siguiente ejemplo nos hará revisar ese esquema. Ejemplo. Comparar las
HOJA INFORMATIVA DE HORTICULTURA
HOJA INFORMATIVA DE HORTICULTURA COSECHA Y POST-COSECHA: Importancia y fundamentos Alejandro R. Puerta Ing. Agr. Agosto 2002 La cosecha y post - cosecha es una etapa de fundamental importancia en el proceso
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA INSTRUMENTOS DE MEDICION INFORME DE LABORATORIO Presentado por: Andrés González - 0329032 Andrea Herrera - 0327121 Hans Haeusler - 0332903 Rafael Triviño -
Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b
La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente
El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales
El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales By Luis Mederos Como todos sabemos, alrededor del 21 de Diciembre se produce el solsticio de invierno (en el hemisferio norte).
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Electrostática: ejercicios resueltos
Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos
Siguiendo la tendencia sobre las Acciones del Ibex35
WWW.CLASESDEBOLSA.COM Siguiendo la tendencia sobre las Acciones del Ibex35 Funcionan los sistemas seguidores de tendencia en las acciones? Estudio realizado por David Urraca con la ayuda de Jorge Ufano
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.
INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica
BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas
BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo
La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1
La Lección de Hoy es Distancia entre dos puntos El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La formula de la distancia dada a dos pares es: d= (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 De
REGRESION simple. Correlación Lineal:
REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)
Balanza de Corriente.
Balanza de Corriente. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En la presente práctica experimental,
Estimación en multiplicación y división
Estimación en multiplicación y división Una vez los estudiantes han adquirido experiencia con el redondeo de números y se sienten cómodos con estimación en adición y sustracción, parece ser que el aprender
Transformación de gráfica de funciones
Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir
Propuesta para la enseñanza de una clase de regularidades. Jóvenes: Liceo Mario Bahamondes Silva; Primer año medio G
Propuesta para la enseñanza de una clase de regularidades Jóvenes: Liceo Mario Bahamondes Silva; Primer año medio G Profesor en práctica: Nicanor Sánchez Trujillo Tema estudio de Poder realizar una clase
VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO
IAJANDO EN EL TELEFÉRICO EJERCICIO PRÁCTICO PARA APRENDER Y DIERTIRE CUADERNO DEL ALUMNO DECRIPCIÓN Un viaje tranquilo y sin sobresaltos de 2,4km de longitud a través del cielo de Madrid alcanzando una
Cómo funciona un control proporcional derivativo (PD)?
Cómo funciona un control proporcional derivativo (PD)? Adaptación del artículo: http://iesseveroochoa.edu.gva.es/severobot/2011/01/29/como-funciona-un-controlador-pd/ para el El tren de tracción diferencial
VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico
I.- En todos los problemas siguientes de esta sección, encuentra qué número (o números) debe seguir según la sucesión, y explica el por qué. 1) 1, 4, 27, 256,? (5 puntos) R = 3125 Observa que 1=1 1, 4=2
DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012
ORIENTACIÓN.1ºESO Carreras de Orientación Una Carrera de Orientación consiste en recorrer en el menor tiempo posible una ruta situada en un terreno desconocido pasando por unos puntos obligados en un orden
Profr. Efraín Soto Apolinar. Límites
Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial
Análisis de Datos. Práctica de métodos predicción de en WEKA
SOLUCION 1. Características de los datos y filtros Una vez cargados los datos, aparece un cuadro resumen, Current relation, con el nombre de la relación que se indica en el fichero (en la línea @relation
FUNCIONES 1. DEFINICION DOMINIO Y RANGO
1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad
La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.
Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque
CORRELACIÓN Y PREDICIÓN
CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una
Laboratorio Física I
Laboratorio Física I Guía Pedro Miranda y Fabián Juárez 1. Informes de laboratorio 1.1. Introducción Uno de los elementos más utilizados en la comunicación de conocimientos es el informe. El propósito
Ejercicios resueltos de cinemática
Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe
TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.
C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando
Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL
1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en
Cifras significativas e incertidumbre en las mediciones
Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades
CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de
CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,
CONCEPTOS BASICOS. Febrero 2003 Página - 1/10
CONCEPTOS BASICOS Febrero 2003 Página - 1/10 EL ESCRITORIO DE WINDOWS Se conoce como escritorio la zona habitual de trabajo con windows, cuando iniciamos windows entramos directamente dentro del escritorio,
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme
Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
Radiación de una lámpara de incandescencia
Prueba experimental. Radiación de una lámpara de incandescencia OBJETIVO. Se va a estudiar experimentalmente la radiación emitida por el filamento de una lámpara de incandescencia y su dependencia con
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)
Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.
RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol
1. Movimiento diurno del Sol RELOJES DE SOL Sin necesidad de utilizar instrumento alguno, todo el mundo sabe que el Sol, por la mañana sale por algún lugar hacia el Este, que hacia el mediodía está en
Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?
2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que
La conveniencia de erradicar de nuestro sistema educativo las preguntas que restan en los exámenes tipo test
DESARROLLO Y EXPLICACIONES ADICIONALES DEL ARTÍCULO DE LA VANGUARDIA RESTAR NO SUMA Por Fernando Trias de Bes La conveniencia de erradicar de nuestro sistema educativo las preguntas que restan en los exámenes
A continuación voy a colocar las fuerzas que intervienen en nuestro problema.
ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos