La derivada. 5.2 La derivada de una función
|
|
- Juan Manuel Pérez Silva
- hace 6 años
- Vistas:
Transcripción
1 Capítulo 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado a la recta tangente, a la velocidad instantánea y en general a la razón de cambio de una variable con respecto a otra. Recordemos que la recta tangente a una curva y f(x) en el punto [x 0,f(x 0 )] a sido definida como la recta que tiene por pendiente el número f(x) f(x 0 ) m t x x0 x x 0 en el supuesto caso de que este ite exista. Cuando este ite existe lo llamamos la derivada de la función f en x 0 y lo denotamos por f (x 0 ). Es decir: f f(x) f(x 0 ) (x 0 ) x x0 x x 0 Si acemos x x 0 (o sea x x 0 + ), podemos escribir: f f(x 0 + ) f(x 0 ) (x 0 ) 0 A veces se usa x (incremento de x) en lugar de y en lugar de f(x 0 + x) f(x 0 ), en cuyo caso: f (x 0 ) x 0 x. Aora sí podemos definir: Si existe el número: f f(x) f(x 0 ) f(x 0 + ) f(x 0 ) (x 0 ) x x0 x x 0 0 Se dice que: La función f es derivable en x 0 y que f (x 0 ) es la derivada de f en x 0. canek.azc.uam.mx: 4/ 0/ 006 x 0 x
2 5.. LA DERIVADA DE UNA FUNCIÓN CAPÍTULO 5. Si no existe f (x 0 ), podemos afirmar que la función f no es derivable en x 0 o bien que la función f no tiene derivada en x 0 Otras notaciones para f (x 0 ) son: df (x) dx, df xx0 dx, dy xx0 dx, y (x 0 ) xx0 Ejemplo 5. Demostrar que la función f(x) 3x 4x 5 es derivable en x 0 Demostraremos la existencia de f (x 0 )f () f (x 0 ) 0 f(x 0 + ) f(x 0 ) f () 0 f( + ) f() f () 8 0 [3( + ) 4( + ) 5] [3() 4() 5] 0 3( ) (8 + 3) (8 + 3) 8 + 3(0) 8 Luego f () existe, por lo cual f es una función derivable en x 0. Además la derivada de f en x 0 es f () 8 Ejemplo 5. Si f(x) 4 x, usando la definición de la derivada, calcular f (a) usando la definición de la derivada. Calcular también, usando lo anterior, f ( ) y f (). Así: Calculamos el cociente diferencial f(x) f(a) (4 x ) (4 a ) 4 x 4+a (x a ) ()(x + a) f (a) x a f(x) f(a) x + a (x + a) si 0., esto es si x a x a [ (x + a)] a. Hemos demostrado por lo tanto que, en todo punto [a, f(a)] (a, 4 a ) la función es derivable y su derivada es f (a) a. Concluimos con esto que f (x) x para x R.
3 CAPÍTULO LA DERIVADA DE UNA FUNCIÓN Usando este resultado, tenemos que f ( ) 4; f (). Ejemplo 5.3 Sea f(x) x +. Aplique la definición de la derivada para encontrar f (a), cona D f [, + ). Calculamos el cociente diferencial del cual obtendremos el ite: f(x) f(a) x + a + x + a + x ++ a + x ++ a + (x +) (a +) ()( x ++ a +) () ()( x ++ a +) si 0, esto es, si x a. x ++ a + Así: f f(x) f(a) (a) x a a ++ a + x a x ++ a + a +. a + Esta última expresión sólo tiene sentido si a +> 0, es decir, si a>. Vemos que D f pero aí la función f no es derivable, de eco ni siquiera está definida a la izquierda de. Ejemplo 5.4 Demostrar que la función g(x) no es derivable en el origen. Demostraremos la no existencia de g (x 0 )enx 0 0. g (x 0 ) x x0 g(x) g(x 0 ) x x 0 g (0) x 0 g(x) g(0) x 0 x 0 0 x x 0 x? Calculamos los ites laterales x 0 x &. Recuerda que ya lo icimos en la Introducción a x 0 + x la unidad sobre Límites.. x 0 x<0 x x x 0 x x x 0 x ( ) x 0 3
4 5.. LA DERIVADA DE UNA FUNCIÓN CAPÍTULO 5.. x 0 + x>0 x x Entonces x 0 + x x x 0 x x 0 x 0 x x 0 + x no existe x 0 x g (0) no existe la derivada de g en x 0 0 no existe. Por lo tanto, la función g no es derivable en x 0 0. En cualquier otro punto sí es derivable y se tiene:. g (a) sia>0 Pues. g (a) sia<0 Pues g(x) g(a) g(x) g(a) a a x ( a), si x está cerca de a x + a (), si x está cerca de a Ejemplo 5.5 Si g(x) +x Usando la definición de la derivada calcular g (a) para a R. Calcular también, usando lo anterior, g ( 3) y g () Calculamos el cociente diferencial: g(a + ) g(a) +(a + ) +a ( + a ) [ + (a + ) ] [ + (a + ) ]( + a ) ( + a ) ( + a +a + ) [ + (a + ) ]( + a ) +a a a [ + (a + ) ]( + a ) ( a ) [ + (a + ) ]( + a ) a si 0 [ + (a + ) ]( + a ) 4
5 CAPÍTULO LA DERIVADA DE UNA FUNCIÓN Así: g g() g(a) (a) 0 0 Hemos demostrado, por lo tanto, que en todo punto [a, g(a)] la pendiente de la recta tangente vale g (a) a [ + (a + ) ]( + a ) a ( + a ) ) a ( + a ). Concluimos con esto que g (x) x ( + x ) para x R. Usando este resultado tenemos que: g ( 3) ( a, ( 3) [ + ( 3) ] 6 g () a de la gráfica de la función g, f(x) Esta tangente tiene pendiente g ( 3) 6 Esta tangente tiene pendiente g () 9 3 x 5.. La regla de los cuatro pasos Considerando la definición de la derivada de y f(x) enx 0 : f f(x) f(x 0 ) f(x 0 + ) f(x 0 ) (x 0 ) x x0 x x 0 0 se puede decir que para obtener la derivada de f en x 0 tenemos que calcular x 0 x. f(x 0 ) o bien f(x 0 + ) & f(x 0 ).. El incremento de la función: f(x) f(x 0 )f(x 0 + ) f(x 0 ) 3. El cociente de incrementos o cociente diferencial: el cociente x f(x) f(x 0) f(x 0 + ) f(x 0 ) x x 0 5
6 5.. LA DERIVADA DE UNA FUNCIÓN CAPÍTULO El ite del cociente diferencial: x 0 x f(x) f(x 0 ) x x 0 x x 0 0 f(x 0 + ) f(x 0 ) Algunos autores a este proceso para calcular la derivada de una función le llaman la regla de los cuatro pasos. Ejemplo 5.6 Utilizando la regla de los cuatro pasos, calcular la derivada de la función f(x) 4x 3 5x 6x +7 en x a. Utilizamos la igualdad f (a) x 0 x f(x) f(a) x a. f(a) 4a 3 5a 6a +7. f(x) f(a) (4x 3 5x 6x +7) (4a 3 5a 6a +7) 4(x 3 a 3 ) 5(x a ) 6() 3. f(x) f(a) x 4(x3 a 3 ) 5(x a ) 6() 4()(x + xa + a ) 5()(x + a) 6() () 4(x + ax + a ) 5(x + a) 6, para x a 4. x 0 x x a f(x) f(a) x a [4(x + ax + a ) 5(x + a) 6] 4(a + a + a ) 5(a + a) 6 4(3a ) 5(a) 6a 0a 6 Entonces f (a) x 0 x a 0a 6 para cualquier a R Ejemplo 5.7 Mediante la regla de los cuatro pasos, calcular f (x) para f(x) x 6
7 CAPÍTULO LA DERIVADA DE UNA FUNCIÓN Para calcular f (x) en un x D f arbitrario, utilizamos la igualdad f (x) x 0 x f(x + ) f(x) 0. f(x + ) x +. f(x + ) f(x) x + x 3. f(x + ) f(x) x x + x 4. x 0 x f(x + ) f(x) 0 x + x 0 [ ] x + x x + + x 0 x + + x ( x + ) ( x ) 0 ( x + + x ) (x + ) (x ) 0 ( x + + x ) x + x + 0 ( x + + x ) 0 ( x + + x ) 0 x + + x x + x x Luego x 0 x f(x + ) f(x) 0 x Por lo tanto, f (x) x o bien d x dx x 7
8 5.. LA DERIVADA DE UNA FUNCIÓN CAPÍTULO 5. f(x) f (x) x x Esta derivada existe para cada x>. Aunque D f izquierda de y por lo tanto no tiene sentido calcular [, + ), observa que f no está definida a la x 0 x f( + ) f() 0 ni 0 f( + ) f() 8
Unidad 5. La derivada. 5.2 La derivada de una función
Unidad 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado
Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones
Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C
Estudio de ceros de ecuaciones funcionales
Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)
1. El teorema de la función implícita para dos y tres variables.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(
Límites. Problemas básicos de límites. José de Jesús Angel Angel
Límites Problemas básicos de ites José de Jesús Angel Angel jjaa@math.com.mx c 2007-2008 Contenido 1. Límites 2 2. Límites con ɛ δ 4 3. Límites con simple evaluación 12 4. Límites con una diferencia de
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
1. Derivadas parciales
Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para
2.1.5 Teoremas sobre derivadas
si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la
1. Teorema del Valor Medio
1. l Valor Medio Uno de los teoremas más importantes del cálculo diferencial de funciones reales de una variable real es el l Valor Medio, del que se obtienen consecuencias como el Taylor y el estudio
March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO
March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
Funciones de varias variables reales
Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =
5 Ecuaciones lineales y conceptos elementales de funciones
Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
1. Hallar los extremos de las funciones siguientes en las regiones especificadas:
1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el
Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim
Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.
JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA
CALCULO INTEGRAL LA ANTIDERIVADA Así como las operaciones matemáticas de la adición, la multiplicación y la potenciación tienen sus inversas en la sustracción, la división y la radicación, la diferenciación
La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.
Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque
Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
Variedades Diferenciables. Extremos Condicionados
Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación
Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.
Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se
Profr. Efraín Soto Apolinar. Función Inversa
Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor
Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,
Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y
4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada
f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11
1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el
3. OPERACIONES CON FUNCIONES.
3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
Ejemplos y problemas resueltos de análisis complejo (2014-15)
Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
3. Operaciones con funciones.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente
CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas
CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas Introducción En la economía, la variación de alguna cantidad con respecto a otra puede ser descrita por un concepto promedio o por un concepto
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
Integrales y ejemplos de aplicación
Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir
TEMA 3: CONTINUIDAD DE FUNCIONES
TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número
SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL
SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,
Aplicaciones Lineales y Multilineales Continuas
Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones
(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g
Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como
CÁLCULO PARA LA INGENIERÍA 1
CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos
Ampliación de Matemáticas. Integrales de línea
Ampliación de Matemáticas Integrales de línea En Física la idea intuitiva de trabajo queda recogida en la fórmula Trabajo = Fuerza x Espacio Si f(x) es la fuerza aplicada, a lo largo del eje x, a un objeto
Matrices invertibles. La inversa de una matriz
Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad
Calculadora ClassPad
Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
1. Funciones de varias variables
Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables
Aplicaciones abiertas y cerradas
44 3. POSICIÓN DE UN PUNTO CON RESPECTO A UN CONJUNTO Tema 7. Aplicaciones abiertas y cerradas Hasta ahora nos hemos centrado en propiedades de puntos con respecto a conjuntos, y las únicas propiedades
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
MLM 1000 - Matemática Discreta
MLM 1000 - Matemática Discreta L. Dissett Clase 04 Resolución. Lógica de predicados c Luis Dissett V. P.U.C. Chile, 2003 Aspectos administrativos Sobre el tema vacantes: 26 personas solicitaron ingreso
El concepto de integral con aplicaciones sencillas
El concepto de integral con aplicaciones sencillas Eliseo Martínez Marzo del 24 Abstract Este artículo trata de ejemplos sencillos del concepto de integral con aplicaciones a la Física, la Teoría de la
Guía 2 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO ADMINISTRACIÓN TURÍSTICA Y HOTELERA II SEMESTRE
Guía 2 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO ADMINISTRACIÓN TURÍSTICA Y HOTELERA II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL.
1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.
Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
4 APLICACIONES LINEALES. DIAGONALIZACIÓN
4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos
Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim
IES Fco Ayala de Granada Junio de 013 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 013 x cos(x) + b sen(x) [ 5 puntos] Sabiendo que lim es finito, calcula b
Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales.
Problemas y Ejercicios Resueltos. Tema : Espacios vectoriales. Ejercicios 1.- Determinar el valor de x para que el vector (1, x, 5) R 3 pertenezca al subespacio < (1,, 3), (1, 1, 1) >. Solución. (1, x,
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
1.- Primitiva de una función (28.01.2015)
1.- Primitiva de una función (28.01.2015) 1.1. Definición. Sea f : I R. Se dice que F : I R es una primitiva de f si F es derivable y F = f en I. En ese caso escribimos F (x) = f(x)dx Si F es una primitiva
Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}
Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones
Campos conservativos. f(x) = f (x) = ( f x 1
Capítulo 1 Campos conservativos En este capítulo continuaremos estudiando las integrales de linea, concentrándonos en la siguiente pregunta: bajo qué circunstancias la integral de linea de un campo vectorial
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su
1. Números Reales 1.1 Clasificación y propiedades
1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,
EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO
MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle
DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA
(Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular
Unidad: Representación gráfica del movimiento
Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce
Funciones uno-uno, sobre y biunívocas
Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo
Descripción: dos. función. decreciente. Figura 1. Figura 2
Descripción: En éste tema se utiliza la primera derivada para encontrar los valores máximo y mínimo de una función, así como para determinar los intervalos en donde la función es creciente o decreciente,
Departamento de Matemáticas
MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente
48 Apuntes de Matemáticas II para preparar el examen de la PAU
48 Apuntes de Matemáticas II para preparar el eamen de la PAU Unidad. Funciones. Derivabilidad TEMA FUNCIONES.DERIVABILIDAD.. Tasa de variación media. Derivada en un punto. Interpretación.. Tasa de variación
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
Funciones polinomiales de grados cero, uno y dos
Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,
Función exponencial y Logaritmos
Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes
SISTEMAS DE NUMERACIÓN. www.portalelectrozona.com
SISTEMA DECIMAL El sistema decimal, como su nombre indica, tiene diez cifras o dígitos distintos, que son 4 5 Por lo tanto, diremos que la BASE del sistema de numeración DECIMAL es (base ). 6 7 8 9 Pongamos
Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x).
2 Integrales Indefinidas y Métodos de Integración La integral Indefinida o antiderivada es el nombre que recibe la operación inversa a la derivada. Es decir, dada una función F aquella consiste en encontrar
2.5 Linealización de sistemas dinámicos no lineales
25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal
(Ec.1) 2α + β = b (Ec.4) (Ec.3)
Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'.
.- Dada la función: f(x) = x 9 x a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'..a.- Lo primero que hacemos es buscar el dominio,
Métodos Iterativos para Resolver Sistemas Lineales
Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas, CCIR/ITESM 17 de julio de 2009 Índice 3.1. Introducción............................................... 1 3.2. Objetivos................................................
IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
164 Ecuaciones diferenciales
64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación
Capítulo 2: Concepto y Cálculo de Límites
Capítulo : Concepto y Cálculo de Límites Geovany Sanabria Contenido Concepto de Límite Una definición intuitiva de Límite Ejercicios 6 Problemas con la utilización de sucesiones para calcular límites 7
Relaciones entre conjuntos
Relaciones entre conjuntos Parejas ordenadas El orden de los elementos en un conjunto de dos elementos no interesa, por ejemplo: {3, 5} = {5, 3} Por otra parte, una pareja ordenada consiste en dos elementos,
VII. Estructuras Algebraicas
VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación
1. Producto escalar, métrica y norma asociada
1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la
Aplicaciones lineales continuas
Lección 13 Aplicaciones lineales continuas Como preparación para el cálculo diferencial, estudiamos la continuidad de las aplicaciones lineales entre espacios normados. En primer lugar probamos que todas
Soluciones a los problemas Olimpiada de Matemáticas Fase local Extremadura Enero de 2015
Olimpiada atemática Española RSE Soluciones a los problemas Olimpiada de atemáticas Fase local Extremadura Enero de 2015 1. lrededor de una mesa circular están sentadas seis personas. ada una lleva un