M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, Capítulos 6, 15 y 16. Introducción a la Electrónica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, 1999. Capítulos 6, 15 y 16. Introducción a la Electrónica"

Transcripción

1 AMPLIFICADOR OPERACIONAL M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, Capítulos 6, 15 y 16.

2 Introducción Amplificador Operacional ideal. Modelo Diferentes tipos de conexionados y características. Parámetros reales de un Amplificador Operacional. Análisis en frecuencia. Aplicaciones típicas.

3 Qué es un Amplificador Operacional? Es un amplificador diferencial de alta ganancia, que está acoplado en continua; es decir que amplifica desde DC. v o =A o v d v d =v + -v A o 10 6 (80 120dB)

4 Circuito equivalente

5 Amplificador Operacional ideal Características de un Amplificador Operacional ideal: R in = infinito R o = 0 A v = infinito I in =0 v d = V o / A v = 0 Ancho de banda infinito

6 Amplificador No Inversor v S v d v x For v d 0 v S v x ( 1 ) i 1 i f i 2 ( ) i 0 x For i i =0, we get

7 Amplificador No Inversor For i i =0, we get i 1 i f () 3 which gives v x v x v o () 4 R 1 R F Since v x = v S, Eq. (4) becomes v S v s v o () 5 R 1 R F which gives the closed-loop voltage gain as A f v o 1 v S R F () 6 R1

8 Seguidor de tensión (buffer) For R F = 0 and R 1 = infinte, Eq. (6) becomes v o A f 1 ( 7 ) v S El seguidor de tensión tiene una elevada impedancia de entrada y una muy baja impedancia de salida Actúa como un adaptador de impedancias entre una fuente con alta impedancia de salida y una carga de baja impedancia

9 Efecto de la ganancia finita Using Eq. (3), we get i 1 i f v x v x v o R 1 R F ( 8 ) which gives R 1 v x v R 1 R o F ( 9) v d v o A o ( 10)

10 Efecto de la ganancia finita Using the KVL around the loop I, we get v S v x v d ( 11 ) Substituting v x from Eq. (9) and v d from Eq. (10) into Eq. (11), we get A f v o 1 v S R F R1 1 1 x ( 12) which can be simplified to v o A f 1 v S R F ( R1 ( 1 x) ( 13) where 1 x 1 A o R F R 1 ( 14)

11 Efecto de la ganancia finita R F R F % Error x( z) R R A f 1 R F R 1 A f 80 x ( z ) 100 R F 1 z R 1 z A o z Open-Loop Op-amp Gain Observar dependencia del error con la ganancia

12 Ejemplo Diseñe un amplificador no inversor con ganancia A f =100 La frecuencia de ganancia n unidad d es f u = 10 6 Hz Sea R = R f = (A f 1) R 1 R 5 f = f s (max)= f u / A f f s (max) =

13 Amplificador Inversor Using the KCL at the inverting terminal, we get i S i f i i ( 15 ) For an ideal op-amp i i = 0 and we get i S i f ( 16)

14 Amplificador Inversor Using the KVL around the loop from the input signal source v S to the output t terminal v o, we get v S R 1 i S v d ( 17) v d R F i f v o ( 18) which, for v d = 0, give i S i f v S R 1 v o R F

15 Amplificador Inversor Therefore, for i S = i f, we get v S R 1 v o R F which h gives the closed-loop l voltage gain v o R F A f v S R1 19 ( )

16 Inversor con ganancia unitaria By making R 1 = R F, we get A f v o 1 v S 20 ( ) Thus, for R 1 = R F, the inverting amplifie becomes an unity gain inverter

17 Efectos de la ganancia finita From Eq. (17), we find i S as v o v v S v S d A o i S R 1 R ( 21) 1 From Eq. (18), we find v o as v o v d R F i f v d R F i S v o v v S o A o v o RR A o R F ( 22) 1

18 Efectos de la ganancia finita Solving Eq. (22), we get the closed-loop v gain as A f v o R F v S R x 23 ( ) Since 1/(1+x) can be approximated to as we can simplify Eq. (23) as A f v o v S R F ( 1 x) R 1 24 ( ) where x 1 1 A o R F R 1 ( 25)

19 Efectos de la ganancia finita R F R F R R R F A f R 1 A f 80 xz ( ) R F % Error z R z A o 1 Open-Loop Op-amp Gain xz ( ) z 10 5

20 Ejemplo Diseñe un amplificador inversor con ganancia A f =100 La frecuencia de ganancia unidad es f u = 10 6 Hz Sea R 1 = R f = A f R 1 R f = f s (max):= f u / A f f s (max) =

21 Estructura interna Opamp

22 Estructura interna Opamp

23 Opamp LM741

24 Parámetros de un Opamp

25 Corriente de polarización de entrada Las magnitudes comunes de las corrientes de polarización son de 10 a 100nA para transistores BJT, y de 1 a 10pA para JFET.

26 Corriente de offset de entrada Las corrientes de polarización serán iguales solo si los transistores de entrada tienen betas igual. Sin embargo, incluso transistores en circuitos integrados que, en teoría son idénticos, uno al lado del otro, exhiben diferencias.

27 Voltaje de offset de entrada El voltaje diferencial que debe aplicarse a los terminales de entrada de un amplificador para llevar la salida a cero, se conoce como voltaje de offset de entrada.

28 Deriva térmica El cambio enel voltaje de offset de entrada V OS por unidad d de cambio de temperatura se conoce como deriva térmica de voltaje.

29 Relación de rechazo de modo común (CMRR) Se define como la relación de la ganancia en voltaje diferencial respecto a la ganancia en voltaje en modo común. Valores típicos son entre 60 y 100dB

30 Resistencia de entrada La resistencia de entrada para una etapa de entrada FET esta en el intervalo de 10 9 a Ω. Sin embargo, para una etapa de entrada BJT, la resistencia i de entrada está normalmente en el intervalo de 100kΩ a 1MΩ.

31 Resistencia de salida Usualmente, la etapa de salida es un seguidor de emisor en operación clase AB, lo que da una resistencia de salida baja del orden de 40 a 100 Ω.

32 Slew rate (SR)

33 Integrador Inversor Derivador Amplificador de instrumentación Sumador Inversor Sumador no Inversor Fotodetector Conversor Tensión Corriente Superdiodo Detector de señal más positiva Detector de voltaje pico Rectificador de media onda Rectificador de onda completa Limitador de voltaje Aplicaciones

34 Integrador Inversor

35 Integrador Inversor

36 Integrador Inversor práctico En la practica, como consecuencia de sus imperfecciones (por ejemplo, deriva, corriente de offset de entrada), el amplificador operacional produce un voltaje de salida aún si la señal de entrada es cero (vs=0), ),y el capacitor se carga con la pequeña corriente que circula por él hasta que el operacional llega a su saturación. Por eso se conecta un resistor RIntroducción F en paralelo a con la Electrónica el capacitor C F.

37 Integrador - ejemplo

38 Integrador - ejemplo

39 Integrador - ejemplo

40 Integrador - formas de onda

41 Integrador - esquemático

42 Integrador - respuesta en frecuencia

43 Derivador

44 Derivador El circuito diferenciador sirve para producir pulsos de disparo de corta duración para excitar otros circuitos.

45 Derivador práctico Si el voltaje de entrada experimenta un cambio abrupto, aparece la señal muy amplificada en la salida, y el circuito se comporta como un amplificador de ruido. Por tanto, en la práctica se suele conectar una pequeña resistencia R 1 (<R F ) en serie con C 1 para limitar la ganancia a altas frecuencias.

46 Derivador - ejemplo

47 Derivador - esquemático

48 Derivador respuesta en frecuencia

49 Amplificador de instrumentación Es un amplificador diferencial con una impedancia de entrada extremadamente grande. Tiene una relación de rechazo de modo común grande lo cual es muy útil para recibir señales pequeñas inmersas en voltajes de offset grandes o en ruido. Por tanto, se utilizan como acondicionadores de señal.

50 Sumador no Inversor

51 Sumador Inversor

52 Convertidor tensión-corriente

53 Convertidor 4-20mA

54 Superdiodo Las aplicaciones tales como detectores de pico, rectificadores de precisión, circuitos comparadores y limitadores requieren funciones no lineales. Sin embargo, por lo general el diodo experimenta una caída de voltaje finita (V D ) de aproximadamente 0,7V.

55 Detector de señal más positiva El diodo que tenga la señal positiva más grande conduce, y dicha señal aparece a la salida del circuito. La fuente de corriente I DC mantiene constante la corriente del diodo, independientemente del valor de la señal de entrada lo que mantiene una caída de voltaje constante en el diodo.

56 Detector de voltaje pico

57 Rectificador de media onda

58 Rectificador de media onda

59 Rectificador de media onda Se puede obtener un comportamiento similar invirtiendo los diodos. No se necesita un inversor a la salida.

60 Rectificador de onda completa

61 Limitadores de voltaje

62 Limitadores de voltaje

63 Limitadores de transición abrupta La limitación abrupta también se logra conectando dos diodos zener. Los circuitos prácticos exhiben pendientes finitas i después de los puntos de corte debido a las resistencias finitas de los diodos d zener. Estas pendientes se muestran el la figura (b).

64 Comparadores Ganancia real de 3000 a Tiempo de transicion de 10ns a 1us

65 Comparador de Umbral

66 Comparador de Umbral

67 Comparador de Umbral

68 Detector de cruce por cero Problemas de oscilación ió en el cruce por cero si la señal es lenta.

69 Disparador Schmitt (Schmitt Trigger) Compara una forma de onda regular o irregular con una señal de referencia, y convierte la forma de onda en una onda cuadrada o pulso. Se conoce como circuito de conversión a onda cuadrada o multivibrador biestable. Pasará de un estado a otro cuando se le aplica una señal de disparo. Se pueden clasificar en dos tipos: Disparador de Schmitt inversor Disparador de Schmitt no inversor

70 Schmitt Trigger Inversor MAL!!!!

71 Schmitt Trigger No Inversor MAL!!!!

72 Schmitt Trigger No Inversor

73 Schmitt Trigger con voltaje de referencia

74 Efecto de la Histéresis Si no existiese i histéresis, i el voltaje de salida conmutará entre sus límites de saturación cuando la señal de entrada cruce por cero. Si la señal es ruidosa, aparecerán sobre la salida múltiples cambios de estado cerca del cruce por cero. Al agregar g histéresis, la salida solamente cambiará cuando la señal de entrada exceda los límites de voltaje especificados V Lt. yv Ht.. La elección de los umbrales es tal que garantice que el nivel de ruido se encuentre dentro de la banda de histéresis.

75 Generador de Onda Cuadrada Se conecta un RC en realimentación ió negativa para obligar al circuito a oscilar entre +Vsat y Vsat. Este generador se conoce también como multivibrador libre o astable, debido a que la salida no tiene ningún estado estable

76 Generador de Onda Triangular Se puede obtener un generador de onda triangular integrando la salida de una onda cuadrada.

77 Oscilador controlado por Tensión (VCO) Un oscilador controlado por voltaje produce una frecuencia proporcional a la tensión de entrada Las aplicaciones mas comunes son: - Modulación en frecuencia (FM). - Generación de tonos. - Manipulación de corrimiento de frecuencia (FSK módems-).

78 Oscilador controlado por Tensión

79 Timer NE555

80 Monostable

81 Astable

Amplificadores Operacionales (I)

Amplificadores Operacionales (I) Amplificadores Operacionales (I) Concepto general de amplificador operacional: Amplificador diferencial con una ganancia de tensión elevada, acoplo directo y diseñado para facilitar la inclusión de una

Más detalles

Comparadores de tensión

Comparadores de tensión Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica ELECTRÓNICA II NOTAS DE CLASE Comparadores de tensión OBJETIVOS - CONOCIMIENTOS

Más detalles

El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple.

El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple. Comparador simple El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple. Vo +Vcc Vi-Vref El comparador analógico se denomina también ADC de un bit.

Más detalles

FUNDAMENTOS DE AMPLIFICADORES

FUNDAMENTOS DE AMPLIFICADORES FUNDAMENTOS DE AMPLIFICADORES OPERACIONALES CARRERA: ISC GRADO: 7 GRUPO: C INTEGRANTES: ARACELI SOLEDAD CASILLAS ESAUL ESPARZA FLORES OMAR OSVALDO GARCÍA GUZMÁN AMPLIFICADOR OPERACIONAL Amplificador de

Más detalles

solecméxico Circuitos de disparo 1 CIRCUITOS DE DISPARO SCHMITT - TRIGER

solecméxico Circuitos de disparo 1 CIRCUITOS DE DISPARO SCHMITT - TRIGER solecméxico Circuitos de disparo 1 CIRCUITOS DE DISPARO SCHMITT - TRIGER Cuando la señal de entrada se encuentra contaminada con ruido, la conmutación de un circuito digital o analógico ya no se efectúa

Más detalles

Regulación decarga= V NL V FL V FL

Regulación decarga= V NL V FL V FL Práctica 6: Reguladores de Voltage Objetivo: FISI 3144: Laboratorio de Electrónica II Construir y comprobar funcionamiento de circuitos reguladores de voltaje. Referencias: 1. Notas y enlaces en página

Más detalles

Circuitos no lineales con amplificador operacional Guía 8 1/7

Circuitos no lineales con amplificador operacional Guía 8 1/7 1/7 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 8 Circuitos no lineales con amplificador operacional Problemas básicos 1. El comparador de la figura 1 tiene una ganancia a lazo abierto de 110 db. Cuánto

Más detalles

Tema 07: Acondicionamiento

Tema 07: Acondicionamiento Tema 07: Acondicionamiento Solicitado: Ejercicios 02: Simulación de circuitos amplificadores Ejercicios 03 Acondicionamiento Lineal M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx

Más detalles

Comparadores electrónicos

Comparadores electrónicos Comparadores electrónicos. Introduión En este capítulo se estudian los circuitos comparadores electrónicos con énfasis en los comparadores regenerativos y en los comparadores monolíticos, amplificadores

Más detalles

Unidad Orientativa (Electrónica) Amplificadores Operacionales

Unidad Orientativa (Electrónica) Amplificadores Operacionales Unidad Orientativa (Electrónica) 1 Amplificadores Operacionales Índice Temático 2 1. Que son los amplificadores operacionales? 2. Conociendo a los Amp. Op. 3. Parámetros Principales. 4. Circuitos Básicos

Más detalles

ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES

ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES ANÁLISIS BÁSICO DE CIRCUITOS CON AMPLIFICADORES OPERACIONALES Prof. Gerardo Maestre González Circuitos con realimentación negativa. Realimentar un amplificador consiste en llevar parte de la señal de salida

Más detalles

Electrónica Básica. Gustavo A. Ruiz Robredo Juan A. Michell Mar<n. Tema A.1. El amplificador operacional y de transconductancia: conceptos básicos

Electrónica Básica. Gustavo A. Ruiz Robredo Juan A. Michell Mar<n. Tema A.1. El amplificador operacional y de transconductancia: conceptos básicos Electrónica Básica Tema A.1. El amplificador operacional y de transconductancia: conceptos básicos Gustavo A. Ruiz Robredo Juan A. Michell Mar

Más detalles

UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES

UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- Amplificadores operacionales Amplificador de alta ganancia, que tiene una impedancia de entrada muy alta (por lo general mega-ohms) y una impedancia

Más detalles

PROBLEMA. Diseño de un DIMMER.

PROBLEMA. Diseño de un DIMMER. PROBLEMA Diseño de un DIMMER. Solución, como las especificaciones vistas en clase fueron muy claras el DIMMER controlara la velocidad de los disparos que se harán en la compuerta de el tiristor, es decir

Más detalles

Unidad Académica de Ingeniería Eléctrica. Programa del curso: Circuitos Integrados Lineales y Lab.

Unidad Académica de Ingeniería Eléctrica. Programa del curso: Circuitos Integrados Lineales y Lab. Universidad Autónoma de Zacatecas Unidad Académica de Ingeniería Eléctrica Programa del curso: Circuitos Integrados Lineales y Lab. Carácter Semestre recomendado Sesiones Créditos Antecedentes Obligatorio

Más detalles

CAPITULO 4. Inversores para control de velocidad de motores de

CAPITULO 4. Inversores para control de velocidad de motores de CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR DPTO. DE TECNOLOGÍA INDUSTRIAL GUÍA DE CIRCUITOS ELECTRÓNICOS I TI-2225. Prof. Alexander Hoyo http://prof.usb.

UNIVERSIDAD SIMÓN BOLÍVAR DPTO. DE TECNOLOGÍA INDUSTRIAL GUÍA DE CIRCUITOS ELECTRÓNICOS I TI-2225. Prof. Alexander Hoyo http://prof.usb. UNIVESIDAD SIMÓN BOLÍVA DPTO. DE TECNOLOGÍA INDUSTIAL GUÍA DE CICUITOS ELECTÓNICOS I TI-2225 Prof. Alexander Hoyo http://prof.usb.ve/ahoyo Guía de Circuitos Electrónicos I Prof. Alexander Hoyo 2 ÍNDICE

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales José Luis Rodríguez, Ph.D., Agosto del 2004 1 Amplificadores Operacionales Un Amplificador Operacional (AO) es un amplificador modular de multietapas con una entrada diferencial que se aproxima mucho en

Más detalles

EL TIMER 555. Descripción del Timer 555:

EL TIMER 555. Descripción del Timer 555: EL TIMER 555 Este excepcional Circuito Integrado muy difundido en nuestros días nació hace 30 años y continúa utilizándose actualmente, veamos una muy breve reseña histórica de este C.I.. Jack Kilby ingeniero

Más detalles

Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR

Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR Tema 7: Introducción Qué es un amplificador operacional? Un amplificador operacional ideal es un amplificador diferencial con ganancia infinita e impedancia

Más detalles

APLICACIONES CON OPTOS

APLICACIONES CON OPTOS APLICACIONES CON OPTOS Los modos básicos de operación de los optoacopladores son: por pulsos y lineal, en pulsos el LED sé switchea on-off (figura 4). En el modo lineal, la entrada es polarizada por una

Más detalles

AMPLIFICACION EN POTENCIA. Figura 1. Estructura Básica de un Convertidor DC/AC.

AMPLIFICACION EN POTENCIA. Figura 1. Estructura Básica de un Convertidor DC/AC. INTRODUCCION: Los convertidores DC/AC conocidos también como inversores, son dispositivos electrónicos que permiten convertir energía eléctrica DC en alterna AC. En el desarrollo de esta sesión de laboratorio,

Más detalles

Nombre de la asignatura: Amplificadores Operacionales. Créditos: 4 2-6. Aportación al perfil:

Nombre de la asignatura: Amplificadores Operacionales. Créditos: 4 2-6. Aportación al perfil: Nombre de la asignatura: Amplificadores Operacionales Créditos: 4 2-6 Aportación al perfil: Diseñar, analizar y construir equipos y/o sistemas electrónicos para la solución de problemas en el entorno profesional,

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales OP-AMP Prof. Caroline González ELEN 3311 OP AMP Un amplificador operacional es un amplificador de alta ganancia y un circuito integrado capaz de realizar un gran número de

Más detalles

Practica 5 Amplificador operacional

Practica 5 Amplificador operacional Practica 5 Amplificador operacional Objetivo: Determinar las características básicas de un circuito amplificador operacional. Examinar las ventajas de la realimentación negativa. Equipo: Generador de funciones

Más detalles

Práctica 2. Circuitos comparadores

Práctica 2. Circuitos comparadores Laboratorio ntegrado de ngeniería ndustrial Práctica 2 Práctica 2. Circuitos comparadores. Objetivos Conocer el funcionamiento de circuitos comparadores empleando Amplificadores Operacionales. Conocer

Más detalles

PROGRAMA DE MATERIA OBJETIVOS PARTICULARES

PROGRAMA DE MATERIA OBJETIVOS PARTICULARES DATOS DE IDENTIFICACIÓN MATERIA: CENTRO ACADÉMICO: DEPARTAMENTO ACADÉMICO: AMPLIFICADORES OPERACIONALES CIENCIAS BÁSICAS SISTEMAS ELECTRÓNICOS PROGRAMA EDUCATIVO: AÑO DEL PLAN DE ESTUDIOS: 2003 SEMESTRE:

Más detalles

VOLTIMETRO VECTORIAL

VOLTIMETRO VECTORIAL VOLTIMETRO VECTORIAL El voltímetro vectorial HP 8405 tiene un voltímetro y un fasímetro que permiten medir la amplitud y la relación de fase entre 2 componentes fundamentales de una tensión de RF. El rango

Más detalles

UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO FACULTAD DE SISTEMAS TELECOMUNICACIONES Y ELECTRONICA SYLLABUS

UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO FACULTAD DE SISTEMAS TELECOMUNICACIONES Y ELECTRONICA SYLLABUS UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO FACULTAD DE SISTEMAS TELECOMUNICACIONES Y ELECTRONICA SYLLABUS MATERIA: Laboratorio de Electrónica III HORARIO: 19:25 20:45 PROFESOR(A): Ing. Marcos Tobar Moran

Más detalles

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO:

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: Electrónica ACADEMIA A LA QUE PERTENECE: Electrónica Analógica Aplicada NOMBRE DE LA MATERIA: ELECTRONICA ANALOGICA CLAVE DE LA MATERIA: ET217 CARÁCTER DEL

Más detalles

CAPITULO 4 IMPLEMENTACIÓN Y PRUEBAS EXPERIMENTALES. En este capítulo se mostrarán los resultados de la simulación del Corrector de Factor

CAPITULO 4 IMPLEMENTACIÓN Y PRUEBAS EXPERIMENTALES. En este capítulo se mostrarán los resultados de la simulación del Corrector de Factor CAPITULO 4 IMPLEMENTACIÓN Y PRUEBAS EXPERIMENTALES 4.1 INTRODUCCIÓN En este capítulo se mostrarán los resultados de la simulación del Corrector de Factor de Potencia, la cual fue realizada con el software

Más detalles

Polarización Análisis de circuitos Aplicaciones. Introducción a la Electrónica

Polarización Análisis de circuitos Aplicaciones. Introducción a la Electrónica TRANSISTOR BIPOLAR Funcionamiento general Estructura, dopados, bandas de energía y potenciales Curvas, parámetros relevantes Niveles de concentración de portadores Ecuaciones de DC Modelo de Ebers-Moll

Más detalles

ASIGNATURA: Sistemas Electrónicos

ASIGNATURA: Sistemas Electrónicos ASIGNATURA: Sistemas Electrónicos A EXTINGUIR I. T. en Informática de Sistemas Universidad de Alcalá Curso Académico 10/11 Curso 2º Cuatrimestre 1º GUÍA DOCENTE Nombre de la asignatura: Sistemas Electrónicos

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139 DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 019 TRABAJO DE LECTURA.101 Práctica introductoria de electrónica analógica Práctica En

Más detalles

Introducción. 3.1 Modelo del Transistor

Introducción. 3.1 Modelo del Transistor 3 Celdas Básicas Introducción Muchas de las celdas utilizadas a lo largo de este trabajo están conformadas por circuitos más pequeños que presentan un comportamiento particular. En capítulos posteriores

Más detalles

Fuentes de alimentación

Fuentes de alimentación Fuentes de alimentación Electrocomponentes SA Temario Reguladores lineales Descripción de bloques Parámetros de selección Tipos de reguladores Productos y aplicaciones Reguladores switching Principio de

Más detalles

Práctica 3. LABORATORIO

Práctica 3. LABORATORIO Práctica 3. LABORATORIO Electrónica de Potencia Convertidor DC/AC (inversor) de 220Hz controlado por ancho de pulso con modulación sinusoidal SPWM 1. Diagrama de Bloques En esta práctica, el alumnado debe

Más detalles

INTRODUCCION A PRÁCTICAS DE AMPLIFICADORES CON TRANSISTOR BIPOLAR, DISEÑADOS CON PARAMETROS HIBRIDOS

INTRODUCCION A PRÁCTICAS DE AMPLIFICADORES CON TRANSISTOR BIPOLAR, DISEÑADOS CON PARAMETROS HIBRIDOS INTRODUCCION A PRÁCTICAS DE AMPLIFICADORES CON TRANSISTOR BIPOLAR, DISEÑADOS CON PARAMETROS HIBRIDOS OBJETIVO: El objetivo de estas practicas es diseñar amplificadores en emisor común y base común aplicando

Más detalles

Unidad temática 4 Tema 2 OSCILADORES NO SINUSOIDALES

Unidad temática 4 Tema 2 OSCILADORES NO SINUSOIDALES Unidad temática 4 Tema OSCILADOES NO SINUSOIDALES APUNTE TEÓICO Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos Díaz. Ay. Diplomado: Ing. Alejandro Giordana

Más detalles

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA 1 SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA I. OBJETIVOS 1. Implementar un modulador de frecuencia utilizando el XR-2206. 2. Complementar

Más detalles

UNIDAD 1 RESUMEN DE CONCEPTOS BÁSICOS. UNIDAD 2 TEORÍA DE LOS SEMICONDUCTORES

UNIDAD 1 RESUMEN DE CONCEPTOS BÁSICOS. UNIDAD 2 TEORÍA DE LOS SEMICONDUCTORES UNIDAD 1 RESUMEN DE CONCEPTOS BÁSICOS. 1. CONCEPTO DE ELECTRONICA Y TEORÍA ELECTRÓNICA. 2. LA TEORIA DE LOS SEMICONDUCTORES. 3. COMPONENTES ELECTRÓNICOS. 4. AMPLIFICADORES OPERACIONALES 5. OSCILADORES.

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica La función amplificadora consiste en elevar el nivel de una señal eléctrica que contiene una determinada información. Esta señal en forma de una tensión y una corriente es aplicada

Más detalles

Apuntes para el diseño de un amplificador multietapas con TBJs

Apuntes para el diseño de un amplificador multietapas con TBJs Apuntes para el diseño de un amplificador multietapas con TBJs Autor: Ing. Aída A. Olmos Cátedra: Electrónica I - Junio 2005 - Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACIONAL DE TUCUMAN

Más detalles

EL AMPLIFICADOR OPERACIONAL

EL AMPLIFICADOR OPERACIONAL EL AMPLIFICADOR OPERACIONAL La microelectrónica ha pasado a ser una industria próspera que interviene cada día más en la tecnología y en la economía. La microelectrónica está basada en el desarrollo de

Más detalles

OSCILADOR DE RELAJACIÓN

OSCILADOR DE RELAJACIÓN Electrónica II. Guía 7 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADOR DE RELAJACIÓN Objetivos específicos

Más detalles

CAPITULO V GENERADORES DE ONDA

CAPITULO V GENERADORES DE ONDA CAPIULO V GENEADOES DE ONDA Objetivos: Explicar el funcionamiento de un circuito multivibrador, trazar las formas de onda de su voltaje de salida y calcular la frecuencia de oscilación. Analizar y explicar

Más detalles

2 El Ampli cador Operacional Ideal

2 El Ampli cador Operacional Ideal El Ampli cador Operacional Ideal J.I.Huircan Uniersidad de La Frontera January 4, 202 Abstract El Ampli cador Operacional Ideal es un ampli cador de oltaje de alta ganancia, controlado por oltaje, que

Más detalles

DISEÑO CON AMPLIFICADORES OPERACIONALES

DISEÑO CON AMPLIFICADORES OPERACIONALES 1 DISEÑO CON AMPLIFICADORES OPERACIONALES Introducción Muchos de los circuitos con amplificadores operacionales que efectúan operaciones matemáticas se usan con tal frecuencia que se les ha asignado su

Más detalles

CONTROL DE TEMPERATURA

CONTROL DE TEMPERATURA CONTROL DE TEMPERATURA 1.- OBJETIVO.- El objetivo de este trabajo es controlar la temperatura de un sistema ( Puede ser una habitación), usando un control por Histeresis. 2.- INTRODUCCION.- Como podríamos

Más detalles

4.2 Acción de Control.

4.2 Acción de Control. CAPÍTULO IV. PRUEBAS Y RESULTADOS. 4.1 Introducción. En este capítulo se exponen los resultados obtenidos después de efectuar las pruebas sobre el programa Control de Movimiento Empleando LabVIEW, que

Más detalles

TEMA 9 Comparadores de tensión

TEMA 9 Comparadores de tensión Tema 9 TEMA 9 Comparadores de tensión 9.1.- Introducción: El OA como comparador Los comparadores son circuitos no lineales que, como su nombre indica, sirven para comparar dos señales (una de las cuales

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

MODULO Nº6 TIRISTORES UNIDIRECCIONALES

MODULO Nº6 TIRISTORES UNIDIRECCIONALES MODULO Nº6 TIRISTORES UNIDIRECCIONLES UNIDD: CONVERTIDORES C - CC TEMS: Tiristores. Rectificador Controlado de Silicio. Parámetros del SCR. Circuitos de Encendido y pagado del SCR. Controlador de Ángulo

Más detalles

Práctica 3: Amplificador operacional II: Regulador lineal realizado con un operacional

Práctica 3: Amplificador operacional II: Regulador lineal realizado con un operacional Práctica 3: Amplificador operacional II: Regulador lineal realizado con un operacional 1. Introducción. En esta práctica se diseña un regulador de tensión de tipo serie y se realiza el montaje correspondiente

Más detalles

Capítulo I. Convertidores de CA-CD y CD-CA

Capítulo I. Convertidores de CA-CD y CD-CA Capítulo I. Convertidores de CA-CD y CD-CA 1.1 Convertidor CA-CD Un convertidor de corriente alterna a corriente directa parte de un rectificador de onda completa. Su carga puede ser puramente resistiva,

Más detalles

TRANSISTORES DE EFECTO DE CAMPO

TRANSISTORES DE EFECTO DE CAMPO TRASISTORES DE EFECTO DE CAMO Oscar Montoya Figueroa Los FET s En el presente artículo hablaremos de las principales características de operación y construcción de los transistores de efecto de campo (FET

Más detalles

Circuitos Básicos con OAs

Circuitos Básicos con OAs Circuitos Básicos con OAs Manuel Toledo 8 de octubre de 2015 1. Introduction El amplificador operacional (abreviado opamp u OA) es uno de los componentes más importantes para el diseño de circuitos analógicos.

Más detalles

CAPITULO VIII - Amplificadores Operacionales: su utilización:

CAPITULO VIII - Amplificadores Operacionales: su utilización: CAPITULO VIII - Amplificadores Operacionales: su utilización: VIII.1. - INTRODUCCIÓN: De acuerdo a los conceptos adquiridos en los Capítulos precedentes, en general puede afirmarse que un amplificador

Más detalles

Osciloscopios de Visualización de Dos Señales

Osciloscopios de Visualización de Dos Señales Osciloscopios de Visualización de Dos Señales 1- Osciloscopio de Doble Trazo. Los osciloscopios de Trazo múltiple permiten graficar dos ó más señales simultáneamente en la pantalla. A diferencia de un

Más detalles

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,

Más detalles

MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN

MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN MULTIMETRO DIGITAL (MARCA FLUKE. MODELO 87) INTRODUCCIÓN Este es un compacto y preciso multímetro digital de 4 ½ dígitos, opera con batería y sirve para realizar mediciones de voltaje y corriente de C.A.

Más detalles

Control de motores de CC

Control de motores de CC Control de motores de CC Control por modulación de ancho de Pulso (PWM) Prof: Bolaños D (versión 1-8-11) Aportes propios y de Internet Uno de los problemas más fundamentales de la robótica es el control

Más detalles

Esta fuente se encarga de convertir una tensión de ca a una tensión de cd proporcionando la corriente necesaria para la carga.

Esta fuente se encarga de convertir una tensión de ca a una tensión de cd proporcionando la corriente necesaria para la carga. Página 1 de 9 REGULADOR DE VOLTAJE DE cc La mayor parte de los circuitos electrónicos requieren voltajes de cd para operar. Una forma de proporcionar este voltaje es mediante baterías en donde se requieren

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

MODULO Nº12 TRANSISTORES MOSFET

MODULO Nº12 TRANSISTORES MOSFET MODULO Nº12 TRANSISTORES MOSFET UNIDAD: CONVERTIDORES CC - CC TEMAS: Transistores MOSFET. Parámetros del Transistor MOSFET. Conmutación de Transistores MOSFET. OBJETIVOS: Comprender el funcionamiento del

Más detalles

AMPLIFICADOR PUSH PULL BJT.

AMPLIFICADOR PUSH PULL BJT. Electrónica I. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). AMPLIFICADOR PUSH PULL BJT. Objetivos

Más detalles

HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS

HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS INFORMACIÓN REQUERIDA POR ASIGNATURA. NOMBRE DE LA ASIGNATURA: ELECTRÓNICA. NIVEL DEL : ESPECÍFICO 3. ÁREA DE CONOCIMIENTO: CONOCIMIENTOS TÉCNICOS

Más detalles

MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL. FAMILIA DE ESPECIALIDADES: INFORMÁTICA Y LAS COMUNICACIONES.

MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL. FAMILIA DE ESPECIALIDADES: INFORMÁTICA Y LAS COMUNICACIONES. MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL. FAMILIA DE ESPECIALIDADES: INFORMÁTICA Y LAS COMUNICACIONES. ESPECIALIDAD: AUTOMÁTICA PROGRAMA DE LA ASIGNATURA: ELECTRÓNICA NIVEL:

Más detalles

POLARIZACION DEL TRANSISTOR DE EFECTO DE CAMPO DE UNION J-FET (JUNTION FIELD EFFECT TRANSISTOR)

POLARIZACION DEL TRANSISTOR DE EFECTO DE CAMPO DE UNION J-FET (JUNTION FIELD EFFECT TRANSISTOR) POLAZACON DEL TANTO DE EFECTO DE CAMPO DE UNON J-FET (JUNTON FELD EFFECT TANTO) TEOA PEA El transistor de efecto de campo (JFET) tiene las siguientes ventajas y desventajas con respecto del transistor

Más detalles

Universidad Nacional de Piura APLICACIONES DE LOS AMPLIFICADORES OPERACIONALES: 1. MEDICION DE LA CORRIENTE DE UN FOTOREDUCTOR:

Universidad Nacional de Piura APLICACIONES DE LOS AMPLIFICADORES OPERACIONALES: 1. MEDICION DE LA CORRIENTE DE UN FOTOREDUCTOR: APLICACIONES DE LOS AMPLIFICADORES OPERACIONALES: 1. MEDICION DE LA CORRIENTE DE UN FOTOREDUCTOR: Con el interruptor en la posición 1, en la figura de abajo, una celda fotoconductora, algunas veces denominada

Más detalles

EL TRANSISTOR COMO CONMUTADOR INTRODUCCIÓN

EL TRANSISTOR COMO CONMUTADOR INTRODUCCIÓN EL TRANSISTOR OMO ONMUTADOR INTRODUIÓN 1.- EL INTERRUPTOR A TRANSISTOR Un circuito básico a transistor como el ilustrado en la Figura 1 a), conforma un circuito inversor; es decir que su salida es de bajo

Más detalles

TEMA 5. MICROELECTRÓNICA ANALÓGICA INTEGRADA

TEMA 5. MICROELECTRÓNICA ANALÓGICA INTEGRADA TEMA 5. MCOEECTÓCA AAÓGCA TEGADA 5.. esistencias activas En el capítulo tercero se puso de manifiesto la dificultad que conlleva la realización de resistencias pasivas de elevado valor con tecnología CMOS,

Más detalles

LECCIÓN B07: CIRCUITOS LIMITADORES Y FIJADORES

LECCIÓN B07: CIRCUITOS LIMITADORES Y FIJADORES LECCIÓN B07: CIRCUITOS LIMITADORES Y FIJADORES OBJETIVOS MATERIAL Pruebas en vacío y en carga en los circuitos limitadores. Utilización de un circuito fijador de límite superior. Utilización de un circuito

Más detalles

Ángel Hernández Mejías (angeldpe@hotmail.com) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1

Ángel Hernández Mejías (angeldpe@hotmail.com) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 Índice Índice... Pág. 2 Breve descripción de la práctica... Pág. 3 Enumeración de recursos comunes... Pág. 3 Desarrollo

Más detalles

TEMA 4. FUENTES DE ALIMENTACIÓN

TEMA 4. FUENTES DE ALIMENTACIÓN TEMA 4. FUENTES DE ALIMENTACIÓN http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 125 Aniversary: http://www.flickr.com/photos/ieee125/with/2809342254/ 1 TEMA 4. FUENTES

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

TEMA 5 TRANSISTORES DE EFECTO DE CAMPO

TEMA 5 TRANSISTORES DE EFECTO DE CAMPO TEMA 5 TRANSISTORES DE EFECTO DE CAMPO TTEEMAA 55: :: TTrraanss issttoorreess i dee eeffeeccttoo dee ccaamppoo 11 1) Cuál de los siguientes dispositivos no es un transistor de efecto de campo? a) MOSFET

Más detalles

CAPITULO 1 CONCEPTOS BASICOS

CAPITULO 1 CONCEPTOS BASICOS CONTENIDO Prefacio v Introducción para el estudiante xi CAPITULO 1 CONCEPTOS BASICOS 1.0 Introducción 1 1.l Historia 2 1.2 Modelos de circuitos de estado sólido 3 1.3 Elementos de circuitos lineales y

Más detalles

INDICE. VXII Capitulo 1 Introducción a la electrónica

INDICE. VXII Capitulo 1 Introducción a la electrónica INDICE Prefacio VXII Capitulo 1 Introducción a la electrónica 4 1.1. Breve historia de la electrónica: de los tubos de vacío a la integración a gran escala 1.2. Clasificación de señales electrónicas 8

Más detalles

Controladores digitales con protección excepcional

Controladores digitales con protección excepcional Controladores digitales con protección excepcional Controladores de puerta digitales para módulos IGBT de alta potencia hasta 6500 V Los controladores digitales inteligentes IPS reducen las pérdidas de

Más detalles

Acondicionamiento de Señal. Unidad 3

Acondicionamiento de Señal. Unidad 3 Acondicionamiento de Señal Unidad 3 Contenido Puentes de resistencias e impedancias Amplificadores Circuitos de salida Muestreadores Retentores Multiplexores Convertidores digital analógico Convertidores

Más detalles

β = 2.4 Para el primer nilo de la portadora, por lo tanto J ELECTRONICA Y TELECOMUNICACIONES Competencia Individual Nivel 2 Segunda Ronda

β = 2.4 Para el primer nilo de la portadora, por lo tanto J ELECTRONICA Y TELECOMUNICACIONES Competencia Individual Nivel 2 Segunda Ronda ELECTONICA Y TELECOMUNICACIONES Competencia Individual Nivel Segunda onda 1. Se transmite un tono utilizando FM. Cuando no hay mensaje, el transmisor emite 100 W sobre 50 ohmios. La desviación de frecuencia

Más detalles

Diodos: caracterización y aplicación en circuitos rectificadores

Diodos: caracterización y aplicación en circuitos rectificadores Diodos: caracterización y aplicación en circuitos rectificadores E. de Barbará, G. C. García *, M. Real y B. Wundheiler ** Laboratorio de Electrónica - Facultad de Ciencias Exactas y Naturales Departamento

Más detalles

Capítulo 2. Breve descripción de los convertidores electrónicos de potencia.

Capítulo 2. Breve descripción de los convertidores electrónicos de potencia. Capítulo.- Breve descripción de los convertidores electrónicos de potencia. Capítulo. Breve descripción de los convertidores electrónicos de potencia. Un convertidor electrónico de potencia es un circuito

Más detalles

J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET

J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET I. FET vs BJT Su nombre se debe a que el mecanismo de control de corriente está basado en un campo eléctrico establecido por el voltaje aplicado al terminal de control, es decir, a diferencia del BJT,

Más detalles

PROBLEMAS. EL AMPLIFICADOR OPERACIONAL. 1. El circuito de la figura(1) muestra un Amplificador Operacional ideal salvo que tiene una ganancia finita A. Unas medidas indican que vo=3.5v cuando vi=3.5v.

Más detalles

Nociones básicas sobre adquisición de señales

Nociones básicas sobre adquisición de señales Electrónica ENTREGA 1 Nociones básicas sobre adquisición de señales Elaborado por Juan Antonio Rubia Mena Introducción Con este documento pretendemos dar unas nociones básicas sobre las técnicas de medida

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción Conseguir que la tensión de un circuito en la salida sea fija es uno de los objetivos más importantes para que un circuito funcione correctamente. Para lograrlo, se

Más detalles

Tema 1E Amplificadores Operacionales COMPARADORES. Prof. A. Roldán Aranda 1º Ing. Informática

Tema 1E Amplificadores Operacionales COMPARADORES. Prof. A. Roldán Aranda 1º Ing. Informática Tema E Amplificadores Operacionales COMPAADOES Prof. A. oldán Aranda º Ing. Informática Características del A.O. real I Tensiones de entrada limitadas por la alimentación CC La tensión de las entradas

Más detalles

Componentes Electrónicos. Prácticas - PSPICE. Práctica 3: Transistores

Componentes Electrónicos. Prácticas - PSPICE. Práctica 3: Transistores "#$%&'()*&+,-#.+#'(/$%1+*1(2%(&#3%( 4*5*.%.,%"(&%#,16.+#*"( 71%'(2%(8%#.*&*9:'(&%#,16.+#'(( Prácticas - PSPICE Práctica 3: Transistores PRÁCTICA COMPLETA "#$%&'()*+,-.-*-##( Práctica 3: Transistores (Simulación

Más detalles

Comparadores. Comparadores

Comparadores. Comparadores Comparadores Comparadores La utilización del OpAmp como comparador es una de las funciones más importantes del dispositivo en instrumentación Electrónica Los comparadores son dispositivos que se saturan

Más detalles

Inversores De Frecuencia

Inversores De Frecuencia Inversores De Frecuencia QUÉ ES UN INVERSOR? Un inversor es un control para motores, que hace variar la velocidad a motores C.A. De inducción. Esta variación la logra variando la frecuencia de alimentación

Más detalles

Última actualización: 1 de julio de 2010. www.coimbraweb.com

Última actualización: 1 de julio de 2010. www.coimbraweb.com RUIDO Y COMUNICACIONES Contenido 1.- Definición de ruido eléctrico. 2.- Formas de ruido eléctrico. 3.- Ruido térmico. 4.- Relación señal a ruido S/N. 5.- Temperatura de ruido. 6.- Diafonía o crosstalk.

Más detalles

ELECTRÓNICA ANALÓGICA

ELECTRÓNICA ANALÓGICA Universidad Nacional de Misiones ELECTRÓNICA ANALÓGICA Introducción a los Amplificadores Operacionales y sus principales aplicaciones 1 Historia 1947 Surge el transistor 1954 Primer transistor de Si 1959

Más detalles

GUÍA 7: AMPLIFICADORES OPERACIONALES

GUÍA 7: AMPLIFICADORES OPERACIONALES 3º Electrónica ogelio Ortega B GUÍA 7: AMPLIFICADOES OPEACIONALES El término de ampliicador operacional (operational ampliier o OA o op -amp) ue asignado alrededor de 940 para designar una clase de ampliicadores

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

CONTROL AUTOMATICO DE TEMPERATURA

CONTROL AUTOMATICO DE TEMPERATURA CONTROL AUTOMATICO DE TEMPERATURA Oscar Montoya y Alberto Franco En este artículo presentamos un circuito de control automático de temperatura, el cual, como es obvio, permite controlar la temperatura

Más detalles

Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción

Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción Práctica Amplificadores de RF. Objetivo En primer lugar, en esta práctica montaremos un amplificador de banda ancha mediante una etapa emisor común y mediante una etapa cascodo, con el findeestudiar la

Más detalles

Laboratorio 6: Control de temperatura on/off

Laboratorio 6: Control de temperatura on/off Electrónica y Automatización Año 5 Laboratorio 6: Control de temperatura on/off En este laboratorio se analizará un circuito de control de temperatura basado en el sensor de temperatura integrado LM5.

Más detalles