METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS"

Transcripción

1 SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008.

2 Departamento de Investgacón y Desarrollo Encuesta a las Pequeñas y Medanas Empresas Coordnadora Departamento I+D Clauda Matus Correa Jefe Carles Durán Artgas Analstas Carles Durán Artgas - -

3 ÍNDICE. Introduccón Marco Conceptual Objetvo Clasfcacón de las Actvdades Dseño Muestral Poblacón Objetvo y Cobertura Marco Muestral Estratfcacón Tamaño de la Muestra Método de Seleccón Factor de expansón Nveles de Estmacón

4 . Introduccón El crecente nterés e mportanca que a do adqurendo, en la actvdad económca del país, las Pequeñas y Medanas Empresa a orgnado la realzacón de dversos estudos de nsttucones públcas y prvadas que a través de encuestas y regstros an caracterzado dferentes temátcas para este tpo de empresas. El INE entre los años 2000 y 2006 realzó una sere de encuestas a través de convenos con la Corporacón de Fomento de la Produccón (CORFO), además en los años 200 al 2003 se ncorporó a estos convenos BANCOESTADO amplando la nvestgacón al sector de las mcroempresas. Los estudos anterores muestran la relevanca de contar con nformacón ofcal que satsfaga las petcones, tanto de los organsmos del estado como de prvados. Para dar cumplmento de las demandas de nformacón sobre las pequeñas y medanas empresas a nvel naconal, se ace necesaro realzar un estudo permanente que entregue nformacón de temas como: emprendmento, evolucón, modernzacón, etc. 2. Marco Conceptual 2.. Objetvo El INE, en su msón de entregar estadístcas ofcales y de caldad a los agentes públcos que srvan como nsumos para la generacón de polítcas públcas y consderando la mportanca de las PYMES para la economía a nvel naconal, se a vsto la necesdad de contnuar con el proceso de produccón, análss y dfusón de nformacón relevante respecto a las pequeñas y medanas empresas. Para cumplr con estos objetvos, se realza un estudo basado en un dseño muestral de las pequeñas y medanas empresas del país, medante el cual se estman estadístcas sobre: edad del empresaro, año de nco de actvdad, educacón y experenca, ventas, exstenca, empleo y remuneracones, gastos, actvos, stuacón fnancera, nstrumento de fomento productvo, relacones productvas, aproxmacón a problemas, nnovacón tecnológca, certfcacón con normas técncas, tecnología de nformacón y comuncacón Clasfcacón de las Actvdades Consderando que es necesaro facltar la comparacón de la nformacón en el tempo y tambén con respecto a otros países y de acuerdo a normas nternaconales, se utlzó la Clasfcacón Industral Internaconal Unforme de todas las actvdades económcas, CIIU Rev

5 Cuadro. Descrpcón de actvdades consderadas según CIIU Rev 3. Categoría CIIU Rev. 3 Descrpcón C D E F G (50) G (5) G (52) H I Explotacón de mnas y canteras Industras manufactureras Sumnstro de electrcdad, gas y agua Construccón Ventas, mantenmento y reparacón de veículos automotores y motoccletas; ventas al por menor de combustble para automotores Comerco al por mayor y en comsón, excepto el comerco de veículos automotores y motoccletas Comerco al por menor, excepto el comerco de veículos automotores y motoccletas; reparacón de efectos personales y enseres doméstcos Hoteles y restaurantes Transporte, almacenamento y comuncacones 3. Dseño Muestral 3. Poblacón Objetvo y Cobertura La poblacón objetvo del estudo está consttuda por todas las empresas naturales o jurídcas, que cuenten con ncacón de actvdades y que desarrollan una de las actvdad económca descrtas en el cuadro 2, cuyas ventas alcanzadas durante el año 2006 se encuentren entre 2.400, U.F. y U.F. 3.2 Marco Muestral El marco muestral se construyó a partr de los drectoros que regstra el Servco de Impuestos Internos, S.I.I., de los contrbuyentes que desarrollaron actvdades económcas de nterés del estudo en el año Estratfcacón De acuerdo a los objetvos del estudo, se procede a estratfcar el marco muestral consderando actvdades de nterés del estudo de acuerdo a la CIIU Rev. 3. y tamaño en funcón al nvel de ventas

6 Cuadro 2. Tamaño de empresas según el nvel de ventas. Tamaño Límte Inferor U.F. Límte Superor U.F. Medanas-Grandes , ,0 Medanas , ,0 Medanas-Pequeñas , ,0 Pequeñas Grandes 0.000, ,0 Pequeñas-Pequeñas 2.400, ,0 Como una forma de obtener una mejor representacón y dsmnur el error de muestreo que provene de la dspersón observada en las ventas, se consderó, una vez ordenados los estratos por la varable de nterés, ntegrar las undades más grandes como Tramo a Censar (TC), y el resto como Tramo a Muestrear (TM). El punto de corte para estos tramos, se determnó según el aporte de las ventas de las empresas a censar y el error de muestreo que resulta de restar al marco muestral las empresas que afectan notoramente la precsón de las estmacones. Estas empresas adqueren carácter censal o de Inclusón Forzosa (IF). 4. Tamaño de la muestra La estmacón del tamaño de la muestra a nvel regonal, es obtenda a partr de un muestreo probablístco estratfcado, según categoría de tabulacón CIIU Rev. 3, con un nvel de confanza del 95%, alcanzando a empresas, que corresponde al 3,4% del total de las undades del marco muestral. Para la determnacón del tamaño muestral de cada uno de los estratos, se dstrbuye el total de undades muestrales en forma proporconal al número de empresas de cada uno de ellos. Se aplcaron los sguentes algortmos: Tamaño Muestral. n = Donde: 2 ( Z * N * Q) 2 2 ( Z * Q) + ( P* N * e ) n : Tamaño de la muestra para la categoría. r Z : Estadístco normal estándar correspondente a un nvel de confanza 95%. e r : Error relatvo. P : Valor 0,5, asumendo una varanza máxma. Q : Valor 0,5, asumendo una varanza máxma. N : Tamaño de la poblacón en la categoría

7 El tamaño defntvo de las agrupacones, estuvo sujeto a los costos versus precsón, por lo cual se debó aumentar o dsmnur el número de empresas de algunos estratos para fortalecer su representacón y precsón necesara para el estudo. Para determnar la precsón muestral respectva, se utlzaron los sguentes algortmos: Coefcente de varacón de la categoría. CV Donde: 2 = k CV : Coefcente de varacón de la categoría. V Y : Varanza muestral estmada de las ventas de la categoría. V Y y l y : Sumatora de las ventas de la categoría

8 Cuadro 3. Marco muestral, muestra teórca según estrato Actvdades Muestra Efectva Categoría CIIU Rev 3. Descrpcón Tamaño Marco Muestral Total Inclusón Forzosa Inclusón Aleatora Coefcente de Varacón (%) Total ,5 C Explotacón de mnas y canteras Medanas-Grandes ,88 Medanas ,52 Medanas-Pequeñas ,58 Pequeñas Grandes ,54 Pequeñas-Pequeñas ,3 Total ,69 D Industras manufactureras Medanas-Grandes ,92 Medanas ,27 Medanas-Pequeñas ,77 Pequeñas Grandes ,4 Pequeñas-Pequeñas ,27 Total ,98 E Sumnstro de electrcdad, gas y agua Medanas-Grandes Medanas ,88 Medanas-Pequeñas ,5 Pequeñas Grandes ,88 Pequeñas-Pequeñas ,09 Total ,42 F Construccón Medanas-Grandes ,28 Medanas ,69 Medanas-Pequeñas ,2 Pequeñas Grandes ,46 Pequeñas-Pequeñas ,95 Total ,26 G (50) Ventas, mantenmento y reparacón de Medanas-Grandes ,57 veículos automotores y motoccletas; Medanas ,8 ventas al por menor de combustble para Medanas-Pequeñas ,96 automotores Pequeñas Grandes ,38 Pequeñas-Pequeñas ,88 Total ,89 G (5) Medanas-Grandes ,2 Comerco al por mayor y en comsón, Medanas ,63 excepto el comerco de veículos Medanas-Pequeñas ,06 automotores y motoccletas Pequeñas Grandes ,55 Pequeñas-Pequeñas ,64 Total ,8 G (52) Medanas-Grandes ,09 Comerco al por menor, excepto el comerco Medanas ,5 de veículos automotores y motoccletas; Medanas-Pequeñas reparacón de efectos personales y enseres ,84 doméstcos Pequeñas Grandes ,4 Pequeñas-Pequeñas ,45 Total ,4 H Hoteles y restaurantes Medanas-Grandes ,4 Medanas ,05 Medanas-Pequeñas ,0 Pequeñas Grandes ,64 Pequeñas-Pequeñas ,92 Total ,6 I Transporte, almacenamento y comuncacones Medanas-Grandes ,22 Medanas ,34 Medanas-Pequeñas ,2 Pequeñas Grandes ,98 Pequeñas-Pequeñas ,9 Total ,5-7 -

9 4. Método de Seleccón La seleccón se realza en dos etapas, la prmera corresponde a las empresas que pertenecen al tramo censado, las cuales son ncludas forzosamente en la muestra. La segunda seleccón corresponde al tramo a muestrear, la cual se realza en forma ndependente en cada uno de los estratos, aplcando una seleccón sstemátca, con el objetvo de asegurar un recorrdo completo dentro de cada uno de ellos. Como una forma de cubrr los posbles cambos de actvdad, stuacones de quebras, paralzacones, cerres de empresas y de otro tpo, que puderan presentar algunas undades selecconadas, entre la feca de referenca del marco muestral y la feca del levantamento, se tene presente un 30% de seleccón adconal de empresas para eventuales reemplazos. 5. Factores de Expansón Una vez levantada la encuesta, se procede a realzar el cálculo de los factores de expansón respectvos. El algortmo de cálculo del factor de expansón de las undades de nclusón forzosa es el sguente: FE( IF) = N n e y( IF) y( IFe),, Donde: FE(IF) N n e, : Factor de expansón de las mcroempresas de Inclusón Forzosa en el estrato (CIIU y tamaño). y( IF) : Sumatora de las undades de IF del estrato. y( IFe) : Sumatora de las undades de IF del estrato, efectvamente logradas., La expresón algebraca del factor de expansón de las mcroempresas de nclusón aleatora, tene la sguente forma: FE( IA) = N n y( IA) y( IA),, - 8 -

10 Donde: FE ( IA), : Factor de expansón para la mcroempresas de nclusón aleatora pertenecentes al estrato. N y( IA), : Sumatora de las undades pertenecentes al estrato, de nclusón aleatora. n y( IA) : Sumatora de las undades de nclusón aleatora efectvamente logradas,, pertenecente al estrato. 6. Nveles de Estmacón De acuerdo a los objetvos del estudo, la valdez estadístca de las varables a estmar tendrán representatvdad por categoría de tabulacón CIIU Rev. 3. y tamaño a nvel naconal

La adopción y uso de las TICs en las Microempresas Chilenas

La adopción y uso de las TICs en las Microempresas Chilenas Subdreccón Técnca Depto. Investgacón y Desarrollo Estadístco Subdreccón de Operacones Depto. Comerco y Servcos INFORME METODOLÓGICO DISEÑO MUESTRAL La adopcón y uso de las TICs en las Mcroempresas Clenas

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA LONGITUDINAL DE EMPRESAS AÑO CONTABLE 2009

METODOLOGÍA MUESTRAL ENCUESTA LONGITUDINAL DE EMPRESAS AÑO CONTABLE 2009 METODOLOGÍA MUESTRAL ENCUESTA LONGITUDINAL DE EMPRESAS AÑO CONTABLE 009 INSTITUTO NACIONAL DE ESTADÍSTICAS Novembre / 0 DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO Metodología Muestral Encuesta Longtudnal

Más detalles

METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2014 INSTITUTO NACIONAL DE ESTADÍSTICAS

METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2014 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 014 INSTITUTO NACIONAL DE ESTADÍSTICAS AÑO 016 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS

Más detalles

Instituto Nacional de Estadísticas Chile METODOLOGÍA. Encuesta Estructural de Transporte por Carretera Año contable 2012

Instituto Nacional de Estadísticas Chile METODOLOGÍA. Encuesta Estructural de Transporte por Carretera Año contable 2012 Insttuto Naconal de Estadístcas Cle METODOLOGÍA Encuesta Estructural de Transporte por Carretera Año contable 0 Insttuto Naconal de Estadístcas 04 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2013 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2013 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 013 INSTITUTO NACIONAL DE ESTADÍSTICAS 015 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

METODOLOGÍA MUESTRAL. Encuesta Laboral de la Dirección del Trabajo, ENCLA 2011 (Muestra Efectiva) INSTITUTO NACIONAL DE ESTADÍSTICAS

METODOLOGÍA MUESTRAL. Encuesta Laboral de la Dirección del Trabajo, ENCLA 2011 (Muestra Efectiva) INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA MUESTRAL Encuesta Laboral de la Dreccón del Trabajo, ENCLA 0 (Muestra Efectva) INSTITUTO NACIONAL DE ESTADÍSTICAS Novembre/0 METODOLOGÍA MUESTRAL EFECTIVA Encuesta Laboral de la Dreccón del

Más detalles

METODOLOGÍA MUESTRAL EFECTIVA

METODOLOGÍA MUESTRAL EFECTIVA METODOLOGÍA MUESTRAL EFECTIVA ENCUESTAS ESTRUCTURALES DE COMERCIO Y SERVICIOS AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS Marzo / 03 Departamento de Investgacón y Desarrollo Encuestas Estructurales

Más detalles

Departamento de Investigación y Desarrollo

Departamento de Investigación y Desarrollo Departamento de Investgacón y Desarrollo Encuestas Estructurales de Comerco, Servcos, Alojamento y Servco de Comda. Año Contable 013. Insttuto Naconal de Estadístcas. Febrero/015. Jefe Departamento: Carles

Más detalles

ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS CHILE

ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS CHILE Subdirección Técnica Depto. Investigación y Desarrollo ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS CHILE Charles.duran@ine.cl Antecedentes El INE, en su misión de entregar estadísticas oficiales a los

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Metodología del Índice de Excedente Bruto Unitario de la Industria Exportadora (IEBU) 1

Metodología del Índice de Excedente Bruto Unitario de la Industria Exportadora (IEBU) 1 Metodología del Índce de Excedente Bruto Untaro de la Industra Exportadora (IEBU) 1 En forma general, el rato del Excedente Bruto de Explotacón por undad de costos para la ndustra exportadora para el período

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Índice de Precios de las Materias Primas

Índice de Precios de las Materias Primas May-15 Resumen Ejecutvo El objetvo del (IPMP) es sntetzar la dnámca de los precos de las exportacones de Argentna, consderando la relatva establdad en el corto plazo de los precos de las ventas externas

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

1. Sustituir el punto 1.1. de la Sección 1. de las normas sobre Tasas de interés en las operaciones de crédito por el siguiente:

1. Sustituir el punto 1.1. de la Sección 1. de las normas sobre Tasas de interés en las operaciones de crédito por el siguiente: "2014 - AÑO DE HOMENAJE AL ALMIRANTE GUILLERMO BROWN, EN EL BICENTENARIO DEL COMBATE NAVAL DE MONTEVIDEO" COMUNICACIÓN A 5590 10/06/2014 A LAS ENTIDADES FINANCIERAS, A LAS CAJAS DE CRÉDITO COOPERATIVAS

Más detalles

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002

Más detalles

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte Máster de Comerco, Transporte y Comuncacones Internaconales Análss cuanttatvo aplcado al Comerco Internaconal y el Transporte Ramón úñez Sánchez Soraya Hdalgo Gallego Departamento de Economía Introduccón

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

MUESTREO EN POBLACIONES FINITAS

MUESTREO EN POBLACIONES FINITAS MUESTREO EN POBLACIONES FINITAS Antono Morllas A.Morllas: Muestreo 1 MUESTREO EN POBLACIONES FINITAS 1. Conceptos estadístcos báscos. Etapas en el muestreo 3. Tpos de error 4. Métodos de muestreo 5. Tamaño

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

El Instituto Nacional de Estadística, Geografía

El Instituto Nacional de Estadística, Geografía I n tr o d u c c ó n El Insttuto Naconal de Estadístca, Geografía e Informátca (IN GI) tene la Msón de proporconar el Servco Públco de Informacón Estadístca y Geográfca y promover el uso de la nformátca,

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA.

ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA. ANÁLISIS DE LA MOROSIDAD TRIBUTARIA DE LAS EMPRESAS APLICANDO TÉCNICAS BORROSAS Y ESTADÍSTICAS. EL CASO DE MAR DEL PLATA. SEGUNDA PARTE. (TRABAJO PRESENTADO EN EL CONGRESO DE LA SOCIEDAD ARGENTINA DE ESTADISTICA)

Más detalles

Diseño de la Muestra. Introducción. Tipo de muestreo y estratificación

Diseño de la Muestra. Introducción. Tipo de muestreo y estratificación Dseño de la Muestra A Introduccón Sguendo las orentacones dadas por la Ofcna Estadístca de la Unón Europea (EUROSTAT) se a selecconado una muestra probablístca representatva de la poblacón de los ogares

Más detalles

FORMULARIO PARA LA PRESENTACIÓN DE RESUMEN DE PONENCIA

FORMULARIO PARA LA PRESENTACIÓN DE RESUMEN DE PONENCIA FORMULARIO PARA LA PRESENTACIÓN DE RESUMEN DE PONENCIA TÍTULO DE LA PONENCIA: Heterogenedad en los perfles de ngreso y retornos a la educacón superor en el Perú AUTOR: Gustavo Yamada, Juan F. Castro y

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Cada uno da lo que recibe, Y luego recibe lo que da, Nada es más simple, No hay otra norma: Nada se pierde, Todo se transforma.

Cada uno da lo que recibe, Y luego recibe lo que da, Nada es más simple, No hay otra norma: Nada se pierde, Todo se transforma. Cada uno da lo que recbe, Y luego recbe lo que da, Nada es más smple, No hay otra norma: Nada se perde, Todo se transforma. Todo se transforma (Jorge Drexler, cantautor uruguayo) Estadístca Básca - Manuel

Más detalles

PLANILLA ANEXA AL ARTÍCULO 3º

PLANILLA ANEXA AL ARTÍCULO 3º PLANLLA ANEXA AL ARTÍCULO 3º MNSTERO DE PRODUCCÓN NCORPORACONES Unidad Organizativa Nivel UNDAD DE COORDNACÓN GENERAL DRECCÓN GENERAL DE COMUNCACÓN Y RELACONES NSTTUCONALES - COORDNACÓN DE COMUNCACÓN DRECTA

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

MINISTERIO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN PRODUCTIVA INCORPORACIONES

MINISTERIO DE CIENCIA, TECNOLOGÍA E INNOVACIÓN PRODUCTIVA INCORPORACIONES PLANLLA ANEXA AL ARTÍCULO 3 MNSTERO DE CENCA, TECNOLOGÍA E NNOVACÓN PRODUCTVA NCORPORACONES UNDAD ORGANZATVA NVEL SECRETARÍA DE PLANEAMENTO Y POLÍTCAS EN CENCA, TECNOLOGÍA E NNOVACÓN PRODUCTVA DRECCÓN

Más detalles

Capítulo 2: ANALISIS EXPLORATORIO de DATOS Estadística Computacional 1º Semestre 2003

Capítulo 2: ANALISIS EXPLORATORIO de DATOS Estadística Computacional 1º Semestre 2003 Unversdad Técnca Federco Santa María Departamento de Informátca ILI-80 Capítulo : ANALISIS EXPLORATORIO de DATOS Estadístca Computaconal º Semestre 003 Profesor :Héctor Allende Págna : www.nf.utfsm.cl/~hallende

Más detalles

NOTA METODOLÓGICA 1. CÁLCULO DEL IDH. METODOLOGÍA ONU

NOTA METODOLÓGICA 1. CÁLCULO DEL IDH. METODOLOGÍA ONU Desarrollo humano en España: 1980-2011 44 NOTA METODOLÓGICA 1. CÁLCULO DEL IDH. METODOLOGÍA ONU El IDH defndo por las Nacones Undas desde 2010 en sus nformes anuales mde los adelantos medos de un país

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Complementos al ABC: efectos dinámicos

Complementos al ABC: efectos dinámicos Complementos al ABC: efectos dnámcos CAF - CEPAL P. Rozas & J. Rvera Buenos Ares, juno de 2008 Varables y fuentes de nformacón Encuesta de Hogares de dversos años de los países en estudo.- Bolva: Encuesta

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

CLAVE - Laboratorio 1: Introducción

CLAVE - Laboratorio 1: Introducción CLAVE - Laboratoro 1: Introduccón ( x )( x ) x ( xy) x y a b a b a a a ( x ) / ( x ) x ( x ) x a b a b a b ab n! n( n 1)( n 2) 1 0! 1 x x x 1 0 1 (1) Smplfque y evalúe las sguentes expresones: a. 10 2

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento

Más detalles

Aspectos fundamentales en el análisis de asociación

Aspectos fundamentales en el análisis de asociación Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene

Más detalles

VII Jornadas para el Desarrollo De Grandes Aplicaciones de Red

VII Jornadas para el Desarrollo De Grandes Aplicaciones de Red Modelo de Consultoría TI especalzado VII Jornadas para el Desarrollo De Grandes Aplcacones de Red Incorporar servcos de consultoría TI en el sector de la Manufacturacón Carlos Ramón López Paz clopez@dtc.ua.es

Más detalles

Visión moderna del modelo de transporte clásico

Visión moderna del modelo de transporte clásico Vsón moderna del modelo de transporte clásco Zonfcacón y Red Estratégca Datos del Año Base Datos de Planfcacón Para el Año de Dseño Base de Datos año base futuro Generacón de Vajes Demanda Dstrbucón y

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Mª Dolores del Campo Maldonado. Tel: :

Mª Dolores del Campo Maldonado. Tel: : Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: ddelcampo@cem.mtyc.es Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n

Más detalles

PLANILLA ANEXA AL ARTÍCULO 3

PLANILLA ANEXA AL ARTÍCULO 3 PLANLLA ANEXA AL ARTÍCULO 3 JEFATURA DE GABNETE DE MNSTROS NCORPORACONES Unidad organizativa Nivel UNDAD MNSTRO DRECCÓN DE APOYO AL COMTÉ EJECUTVO PARA LA LUCHA CONTRA LA TRATA Y EXPLOTACÓN DE PERSONAS

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tema 6 El mercado de bienes y la función IS

Tema 6 El mercado de bienes y la función IS Tema 6 El mercado de benes y la funcón IS Macroeconomía I Sánchez Curso 2008-09 Bblografía para preparar este tema Apuntes de clase Capítulo 5, Macroeconomía, O. Blanchard, pp. 81-100 Objetvo del tema

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

1.DISPOSICIONES GENERALES

1.DISPOSICIONES GENERALES 1.DISPOSICIONES GENERALES CONSEJERÍA DE ECONOMÍA, HACIENDA Y EMPLEO Orn HAC/19/2011, 18 julo, por la que se modfca la orn 19 dcembre 2001, por la que se aprueban los molos documentos ngreso 046 y 047.

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Enlaces de las Series de Salarios. Metodología

Enlaces de las Series de Salarios. Metodología Enlaces de las eres de alaros Metodología ntroduccón La Encuesta de alaros en la ndustra y los ervcos (E, cuyo últmo cambo de base se produjo en 996) ha sufrdo certas modfcacones metodológcas y de cobertura,

Más detalles

DISEÑO MUESTRAL TERCERA ENCUESTA DE CULTURA CONSTITUCIONAL 2017

DISEÑO MUESTRAL TERCERA ENCUESTA DE CULTURA CONSTITUCIONAL 2017 DISEÑO MUESTRAL TERCERA ENCUESTA DE CULTURA CONSTITUCIONAL 207 267 INTRODUCCIÓN Con la fnaldad de replcar la Segunda Encuesta Naconal de Cultura Consttuconal, se dseñó una muestra a nvel naconal, que sgue

Más detalles

División Evaluación Social de Inversiones. Ministerio de Desarrollo Social. Diciembre, 2012. 1 Precios Sociales Vigentes MDS

División Evaluación Social de Inversiones. Ministerio de Desarrollo Social. Diciembre, 2012. 1 Precios Sociales Vigentes MDS PRECIOS SOCIALES VIGENTES Dvsón Evaluacón Socal de Inversones Mnstero de Desarrollo Socal Dcembre, 2012 1 Precos Socales Vgentes MDS INTRODUCCIÓN ACTUALIZACIÓN PRECIOS SOCIALES Una de las tareas de la

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

METODOLOGIA DE LA ENCUESTA DE SALIDA Y CONTEO RAPIDO PARA GOBERNADOR, ALCANDES Y DIPUTADO LOCAL. ESTADO ZACATECAS.

METODOLOGIA DE LA ENCUESTA DE SALIDA Y CONTEO RAPIDO PARA GOBERNADOR, ALCANDES Y DIPUTADO LOCAL. ESTADO ZACATECAS. METODOLOGIA DE LA ENCUESTA DE SALIDA Y CONTEO RAPIDO PARA GOBERNADOR, ALCANDES Y DIPUTADO LOCAL. ESTADO ZACATECAS. METODOLOGICO DE INVESTIGACIÓN ANTECEDENTES En Méxco desde 1994 las encuestas de salda

Más detalles

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes

Más detalles

2.AUTORIDADES Y PERSONAL

2.AUTORIDADES Y PERSONAL JUEVES, DE MAYO DE 05 - BOC NÚM. 95.AUTORIDADES Y PERSONAL..CURSOS, OPOSICIONES Y CONCURSOS CONSEJO DE GOBIERNO Decreto 8/05, 0 abrl, por el que se aprueba la Oferta Empleo Públco para el año 05. I El

Más detalles

El Modelo IS-LM. El modelo IS-LM

El Modelo IS-LM. El modelo IS-LM El Modelo IS-LM El modelo IS-LM 4. Introduccón 4.2 La demanda agregada: La funcón de nversón 4.3 Equlbro del mercado de benes: La curva IS 4.4 Equlbro del mercado de dnero: La curva LM 4.5 Equlbro de la

Más detalles

Relación 2: Regresión Lineal.

Relación 2: Regresión Lineal. Relacón 2: Regresón Lneal. 1. Se llevó a cabo un estudo acerca de la cantdad de azúcar refnada (Y ) medante un certo proceso a varas temperaturas dferentes (X). Los datos se codfcan y regstraron en el

Más detalles

INSYS Advanced Dashboard for Enterprise

INSYS Advanced Dashboard for Enterprise Enterprse Enterprse INSYS Advanced Dashboard for Enterprse Enterprse, es un tablero de control para llevar a cabo la Gestón de la Segurdad de la Informacón, Gestón de Gobernabldad, Resgo, Cumplmento (GRC)

Más detalles

2.2.CURSOS, OPOSICIONES Y CONCURSOS

2.2.CURSOS, OPOSICIONES Y CONCURSOS DE 2.2.CURSOS, OPOSICIONES Y CONCURSOS SERVICIO CÁNTABRO DE SALUD Resolucón por la que se convoca el procedmento especal seleccón para la cobertura una plaza FEA Neurofsología Clínca la Gerenca Atencón

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza EL ANÁLSS DE LA VARANZA (ANOVA). Estmacón de componentes de varanza Alca Maroto, Rcard Boqué Grupo de Qumometría y Cualmetría Unverstat Rovra Vrgl C/ Marcel.lí Domngo, s/n (Campus Sescelades) 43007-Tarragona

Más detalles

Curso Práctico de Bioestadística Con Herramientas De Excel

Curso Práctico de Bioestadística Con Herramientas De Excel Curso Práctco de Boestadístca Con Herramentas De Excel Fabrzo Marcllo Morla MBA barcllo@gmal.com (593-9) 419439 Otras Publcacones del msmo autor en Repostoro ESPOL Fabrzo Marcllo Morla Guayaqul, 1966.

Más detalles

1. Introducción 2. El mercado de bienes y la relación IS 3. Los mercados financieros y la relación LM 4. El modelo IS-LM

1. Introducción 2. El mercado de bienes y la relación IS 3. Los mercados financieros y la relación LM 4. El modelo IS-LM Tema 4 Los mercados de benes y fnanceros: el modelo IS-LM Estructura del Tema 1. Introduccón 2. El mercado de benes y la relacón IS 3. Los mercados fnanceros y la relacón LM 4. El modelo IS-LM 4.1 La polítca

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

ADENDA 008 LICITACIÓN L-CEEC-001-12

ADENDA 008 LICITACIÓN L-CEEC-001-12 ADENDA 008 LICITACIÓN L-CEEC-001-12 OBJETO: CONTRATACIÓN DE LA CONSTRUCCIÓN DE LA FASE I DEL RECINTO FERIAL, DEL CENTRO DE EVENTOS Y EXPOSICIONES DEL CARIBE PUERTA DE ORO POR EL SISTEMA DE ECIOS UNITARIOS

Más detalles

PROGRAMA COMISION NACIONAL DE SEGURIDAD DE TRANSITO (CONASET)

PROGRAMA COMISION NACIONAL DE SEGURIDAD DE TRANSITO (CONASET) INFORME FINAL DE EVALUACIÓN PROGRAMA COMISION NACIONAL DE SEGURIDAD DE TRANSITO (CONASET) PANELISTAS: FERNANDO CARTES (COORDINADOR) ALEJANDRO TUDELA LILIANA VERGARA JUNIO 2004 INFORME FINAL NOMBRE PROGRAMA:

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Estadística Descriptiva y Analisis de Datos con la Hoja de Cálculo Excel. Números Índices

Estadística Descriptiva y Analisis de Datos con la Hoja de Cálculo Excel. Números Índices Estadístca Descrptva y Analss de Datos con la Hoja de Cálculo Excel úmeros Índces úmeros Índces El número índce es un recurso estadístco para medr dferencas entre grupos de datos. Un número índce se puede

Más detalles

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A.

CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. CONTROVERSIAS A LAS BASES TÉCNICO ECONOMICAS PRELIMINARES PROCESO TARIFARIO CONCESIONARIA COMPAÑÍA DE TELÉFONOS DE COYHAIQUE S.A. PERÍODO 201-2020 Introduccón Las Bases Técnco Económcas Prelmnares, en

Más detalles

SERVICIO CÁNTABRO DE SALUD

SERVICIO CÁNTABRO DE SALUD SERVICIO CÁNTABRO DE SALUD Resolucón por la que se convoca el procedmento especal de seleccón para la cobertura de una plaza de Facultatvo Especalsta de Área de Análss Clíncos del Hosptal Unverstaro Marqués

Más detalles

Instituto Tecnológico Superior del Sur del Estado de Yucatán EGRESIÓN LINEAL REGRESI. 10 kg. 10 cm

Instituto Tecnológico Superior del Sur del Estado de Yucatán EGRESIÓN LINEAL REGRESI. 10 kg. 10 cm Insttuto Tecnológco Superor del Sur del Estado de Yucatán REGRESI EGRESIÓN LINEAL 100 90 80 70 60 10 kg. 50 40 10 cm. 30 140 150 160 170 180 190 200 Objetvo de la undad Insttuto Tecnológco Superor del

Más detalles

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1

Reconocimiento de Locutor basado en Procesamiento de Voz. ProDiVoz Reconocimiento de Locutor 1 Reconocmento de Locutor basado en Procesamento de Voz ProDVoz Reconocmento de Locutor Introduccón Reconocmento de locutor: Proceso de extraccón automátca de nformacón relatva a la dentdad de la persona

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción

ACUERDO DE ACREDITACIÓN IST 184. Programa de Magister en Ciencias mención Oceanografía Universidad de Concepción A t f l E D T A C l f l N UMITAS ACUERDO DE ACREDITACIÓN IST 184 Programa de Magster en Cencas mencón Oceanografía Unversdad de Concepcón Con fecha 10 de octubre de 2012, se realza una sesón del Consejo

Más detalles

16/02/2015. Ángel Serrano Sánchez de León

16/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,

Más detalles