Matemáticas aplicadas a las ciencias sociales II PL
|
|
- Ramón Valenzuela Méndez
- hace 6 años
- Vistas:
Transcripción
1 Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo dispone de 800 cartuchos de tinta negra y 1100 de color, y si no puede imprimir más de 400 revistas, cuánto dinero podrá ingresar como máximo, si vende cada periódico a 0.9 euros y cada revista a 1.2 euros? 2) a)represente gráficamente el recinto definido por el siguiente sistema de inecuaciones: x 3( y 3) ; 2x + 3y 36; x 15; x 0; y 0. b) Calcule los vértices del recinto. c) Obtenga el valor máximo de la función F( x, = 8x + 12 y en este recinto e indique dónde se alcanza. 3) a)represente la región definida por las siguientes inecuaciones y calcule sus vértices: x 0; y 0; x + 2y 6; x + y 6; x 4. b) Calcule el máximo de la función F ( x, = 2x + 2y + 1 en la región anterior e indique dónde se alcanza. 4) Un laboratorio farmacéutico vende dos preparados, A y B, a razón de 40 y 20 euros el kg, respectivamente. Su producción máxima es de 1000 kg de cada preparado. Si su producción total no puede superar los 1700 kg, cuál es la producción que maximiza sus ingresos? Calcule dichos ingresos máximos. 5) Sea la región definida por las siguientes inecuaciones: x y + 1; x + 2y 0; y a) Represente gráficamente dicha región y calcule sus vértices. b) Determine en qué puntos la función F ( x, = 3x 6y + 4 alcanza sus valores extremos y cuáles son éstos. 6) Se considera el recinto definido por las inecuaciones y x 4; x y 4; x + y 12; x 0; y 0. a) Represente el recinto y calcule sus vértices. 2 4 =, determine los valores máximo y 3 5 mínimo de F y los puntos del recinto donde se alcanzan. b) Dada la función objetivo F( x, x y 7) 1
2 8) 9) 10) 11) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 120 euros cada uno. La capacidad máxima diaria de fabricación es de 1000 relojes, pero no puede fabricar más de 800 de pulsera ni más de 600 de bolsillo. Cuántos relojes de cada tipo debe producir para obtener el máximo ingreso? Cuál sería dicho ingreso? 12) Una pastelería elabora dos tipos de trufas, dulces y amargas. Cada trufa dulce lleva 20 g de cacao, 20 g de nata y 30 g de azúcar y se vende a 1 euro la unidad. Cada trufa amarga lleva 100 g de cacao, 20 g de nata y 15 g de azúcar y se vende a 1.3 euros la unidad. En un día, la pastelería sólo dispone de 30 kg de cacao, 8 kg de nata y 10.5 kg de azúcar. Sabiendo que vende todo lo que elabora, calcule cuántas trufas de cada tipo deben elaborarse ese día, para maximizar los ingresos, y determine dichos ingresos. 13) a) Los vértices de un polígono convexo son (1, 1), (3, 1/2), (8/3, 5/2), (7/3, 3) y (0, 5/3). Calcule el máximo de la función objetivo F( x, = 3x 2y + 4 en la región delimitada por dicho polígono. 2
3 b) Dibuje el recinto del plano definido por las inecuaciones: y determine sus vértices. x + 2y 6 ; x y 1 ; y 5 ; x 0 ; y 0 x + y 6 3x 2y 13 14) Sea el sistema de inecuaciones. x + 3y 3 x 0 a) Dibuje el recinto cuyos puntos son las soluciones del sistema y obtenga sus vértices. b) Halle los puntos del recinto en los que la función F( x, = x 2y toma los valores máximo y mínimo, y determine éstos. 15) 16) 17) 18) 3
4 19) 20) 21) Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto es de 800 pts, mientras que la de un niño es de un 40 % menos. El número de adultos no puede superar al doble del número de niños. Cumpliendo las condiciones anteriores, cuál es la cantidad máxima que se puede recaudar por la venta de entradas? Cuántas de las entradas serán de niños? 22) Se quiere organizar un puente aéreo entre dos ciudades, con plazas suficientes de pasaje y carga, para transportar 1600 personas y 96 toneladas de equipaje. Los aviones disponibles son de dos tipos: 11 del tipo A y 8 del tipo B. La contratación de un avión del tipo A cuesta 4 millones de pts y puede transportar 200 personas y 6 toneladas de equipaje; la contratación de uno del tipo B cuesta 1 millón de pts y puede transportar 100 personas y 15 toneladas de equipaje. Cuántos aviones de cada tipo deben utilizarse para que el coste sea mínimo? 23) Represente gráficamente el recinto definido por el siguiente sistema de inecuaciones: 4
5 2x + y 18 2x + 3y x y x 0 ; y 0 b) Calcule los vértices de ese recinto. c) Obtenga en dicho recinto el valor máximo y el mínimo de la función F x, y = 5x + 3 Diga en qué puntos se alcanzan. ( ) y 24) Sea el conjunto de restricciones siguiente: x + y 9 x y 0. x + 2y 16 x 0 a) Dibuje la región factible determinada por dichas restricciones. b) Calcule los vértices de dicha región. Obtenga los puntos en los que la función objetivo F( x, = x + 2y presenta el máximo y el mínimo. 25) Para fabricar 2 tipos de cable, A y B, que se venderán a 150 y 100 pts el metro, respectivamente, se emplean 16 Kg de plástico y 4 Kg de cobre para cada Hm (hectómetro) del tipo A y 6 Kg de plástico y 12 Kg de cobre para cada Hm del tipo B. Sabiendo que la longitud de cable fabricado del tipo B no puede ser mayor que el doble de la del tipo A y que, además, no pueden emplearse más de 252 Kg de plástico ni más de 168 Kg de cobre, determine la longitud, en Hm, de cada tipo de cable que debe fabricarse para que la cantidad de dinero obtenida en su venta sea máxima. 26) Sea el recinto definido por las siguientes inecuaciones: 5x + 2y 10 0 x y 2 0 3x + 4y 20 0 x 0 y 0. a) Dibuje dicho recinto y determine sus vértices. b) Determine en qué punto de ese recinto alcanza la función F( x, = 4x + 3y el máximo valor. 27) Una fábrica de muebles dispone de 600 kg de madera para fabricar librerías de 1 y de 3 estantes. Se sabe que son necesarios 4 kg de madera para fabricar una librería de 1 estante, siendo su precio de venta 20 euros; para fabricar una librería de 3 estantes se necesitan 8 kg de madera y el precio de venta de ésta es 35 euros. Calcule el número de librerías de cada tipo que se deben fabricar para obtener el máximo ingreso, sabiendo que, por falta de otros materiales, no se pueden fabricar más de 120 librerías de 1 estante, ni tampoco más de 70 de 3 estantes. 5
6 28) Una persona desea adelgazar. En la farmacia le ofrecen dos compuestos A y B para que tome una mezcla de ambos en la comida, con las siguientes condiciones: No debe tomar más de 150 g de la mezcla, ni menos de 50 g. La cantidad de A debe ser mayor o igual que la de B. No debe incluir más de 100 g del compuesto A. Se sabe que cada 100 g de A contienen 30 mg de vitaminas y cada 100 g de B contienen 20 mg de vitaminas. a) Formule matemáticamente el conjunto de restricciones, dibuje la región factible y determine sus vértices. b) Cuántos gramos debe tomar de cada compuesto para obtener el preparado más rico en vitaminas? 29) Sea el sistema de inecuaciones siguiente: x + y 120; 3y x; x 100; y 10. a) Represente gráficamente la región factible y calcule sus vértices. b) En qué punto de esa región, F(x, = 25x + 20y alcanza el máximo? 30) Un ahorrador dispone de euros para invertir en fondos de dos tipos: A ó B. La inversión en fondos A debe superar los 5000 euros y, además, ésta debe doblar, al menos, la inversión en fondos B. La rentabilidad del pasado año de los fondos A ha sido del 2.7 % y la de los B ha sido del 6.3 %. Suponiendo que la rentabilidad continúe siendo la misma, determine la inversión que obtenga el máximo beneficio. Calcule este beneficio. 31) Una empresa pastelera dispone semanalmente de 160 kg de azúcar y de 240 kg de almendra para hacer tortas de almendra y tabletas de turrón. Se necesitan 150 g de almendra y 50 g de azúcar para hacer una torta de almendra y 100 g de almendra y 100 g de azúcar para cada tableta de turrón. El beneficio neto por la venta de cada torta es 1.75 euros, y por cada tableta de turrón es de 1 euro. Determine cuántas tortas de almendra y cuántas tabletas de turrón han de elaborarse para obtener la máxima ganancia. Cuál es el beneficio máximo semanal? 32) Una fábrica produce dos tipos de juguetes, muñecas y coches teledirigidos. La fábrica puede producir, como máximo, 200 muñecas y 300 coches. La empresa dispone de 1800 horas de trabajo para fabricar los juguetes y sabe que la producción de cada muñeca necesita 3 horas de trabajo y reporta un beneficio de 10 euros, mientras que la de cada coche necesita 6 horas de trabajo y reporta un beneficio de 15 euros. Calcule el número de muñecas y de coches que han de fabricarse para que el beneficio global de la producción sea máximo y obtenga dicho beneficio. 33) Una empresa gana 150 euros por cada Tm de escayola producida y 100 euros por cada Tm de yeso. La producción diaria debe ser como mínimo de 30 Tm de escayola y 30 Tm de yeso. La cantidad de yeso no puede superar en más de 60 Tm a la de escayola. El triple de la cantidad de escayola, más la cantidad de yeso, no puede superar 420 Tm. Calcule la cantidad diaria que debe producirse de cada material, para obtener la máxima ganancia y determine dicha ganancia. 6
7 34) Una empresa fabrica sofás de dos tipos, A y B, por los que obtiene un beneficio, por unidad, de 1500 y 2000 euros, respectivamente. Al menos se deben fabricar 6 sofás del tipo A y 10 del tipo B, por semana, y además, el número de los del tipo A no debe superar en más de 6 unidades al número de los del B. Cuántas unidades de cada tipo se deben fabricar semanalmente para obtener beneficio máximo, si no se pueden fabricar más de 30 sofás semanalmente? 35) Una piscifactoría vende gambas y langostinos a 10 y 15 euros el kg, respectivamente. La producción máxima mensual es de una tonelada de cada producto y la producción mínima mensual es de 100 kg de cada uno. Si la producción total es, a lo sumo, de 1700 kg al mes, cuál es la producción que maximiza los ingresos mensuales? Calcule estos ingresos máximos. 36) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 120 euros cada uno. La capacidad máxima diaria de fabricación es de 1000 relojes, pero no puede fabricar más de 800 de pulsera ni más de 600 de bolsillo. Cuántos relojes de cada tipo debe producir para obtener el máximo ingreso? Cuál sería dicho ingreso? 37) El estadio del Mediterráneo, construido para la celebración de los Juegos Mediterráneos Almería 2005, tiene una capacidad de espectadores. Para la asistencia a estos juegos se han establecido las siguientes normas: El número de adultos no debe superar al doble del número de niños; el número de adultos menos el número de niños no será superior a Si el precio de la entrada de niño es de 10 euros y la de adulto 15 euros cuál es la composición de espectadores que proporciona mayores ingresos? A cuánto ascenderán esos ingresos? 38) 39) 40) 7
8 41) 42) 43) 44) 45) 46) 47) 8
9 48) 49) EJERCICIO 1 Sea el recinto determinado por las siguientes inecuaciones: 3x + 4y 28; 5x + 2y 42; x y 0. a) (0.5 puntos) Razone si el punto de coordenadas (7, 3) pertenece al recinto. b) (1.5 puntos) Represente dicho recinto y halle sus vértices. c) (0.5 puntos) Calcule el valor máximo de la función F ( x, = 3x 2y + 6 en el recinto, indicando el punto o puntos donde se alcanza ese máximo. 50) EJERCICIO 1 (2.5 puntos) Un comerciante dispone de 1200 euros para comprar dos tipos de manzanas A y B. Las del tipo A las compra a 0.60 euros/kg y las vende a 0.90 euros/kg, mientras que las del tipo B las compra a 1 euro/kg y las vende a 1.35 euros/kg. Sabiendo que su vehículo a lo sumo puede transportar 1500 kg de manzanas, cuántos kilogramos de cada tipo deberá adquirir para que el beneficio que obtenga sea máximo? Cuál sería ese beneficio? 51) EJERCICIO 1 a) (1.9 puntos) Represente la región definida por las siguientes inecuaciones 7x y 10; x + y 2; 3x 5y 14 y determine sus vértices. b) (0.6 puntos) Calcule los valores máximo y mínimo que alcanza la función F( x, = 2x + 3y en dicha región. 52) EJERCICIO 1 Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x a) (1 punto) Represente gráficamente dicho recinto. b) (1 punto) Calcule sus vértices. 6. 9
10 c) (0.5 puntos) Obtenga el valor mínimo de la función F( x, = 2x y en el recinto anterior, así como dónde lo alcanza. 53) EJERCICIO 1 (2.5 puntos) Un empresario fabrica camisas y pantalones para jóvenes. Para hacer una camisa se necesitan 2 metros de tela y 5 botones, y para hacer un pantalón hacen falta 3 metros de tela, 2 botones y 1 cremallera. La empresa dispone de 1050 metros de tela, 1250 botones y 300 cremalleras. El beneficio que se obtiene por la venta de una camisa es de 30 euros y el de un pantalón es de 50 euros. Suponiendo que se vende todo lo que se fabrica, calcule el número de camisas y de pantalones que debe confeccionar para obtener el máximo beneficio, y determine este beneficio máximo. 54) EJERCICIO 1 (2.5 puntos) En una carpintería se construyen dos tipos de estanterías: grandes y pequeñas, y se 2 tienen para ello 60 m de tableros de madera. Las grandes necesitan 4 m 2 de tablero y las 2 pequeñas 3 m. El carpintero debe hacer como mínimo 3 estanterías grandes, y el número de pequeñas que haga debe ser, al menos, el doble del número de las grandes. Si la ganancia por cada estantería grande es de 60 euros y por cada una de las pequeñas es de 40 euros, cuántas debe fabricar de cada tipo para obtener el máximo beneficio? 55) 56) a) (1 punto) Plantee, sin resolver, el siguiente problema: Un barco puede transportar vehículos de dos tipos: coches y motos. Las condiciones de la nave obligan a que el número de motos no pueda ser inferior a la cuarta parte del de coches ni superior a su doble; además, la suma del número de motos más el doble del número de coches no puede ser mayor que 100. Cuántos vehículos, como máximo, puede transportar este barco? b) (1.5 puntos) Dado el recinto limitado por las inecuaciones y 30, 3x y 150, 6x + 7 y 840, halle en qué puntos de ese recinto la función F(x, = 6x 2y alcanza su valor mínimo. 57) 58) 10
11 59) 60) 61) 62) 63) 11
12 64) 65) 12
Tema 1. - SISTEMAS DE ECUACIONES.
Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
02 Ejercicios de Selectividad Programación Lineal
Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones
ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL Orientaciones para la PRUEBA DE ACCESO A LA UNIVERSIDAD en relación con este tema: Inecuaciones lineales con una o dos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
PROGRAMACIÓN LINEAL. 3) a) (1 punto) Represente gráficamente el recinto definido por el siguiente sistema de inecuaciones:
PROGRAMACIÓN LINEAL 1) (3 puntos) Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la
EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio
EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran
PROBLEMAS DE PROGRAMACIÓN LINEAL (SELECTIVIDAD)
(3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 120 euros cada uno. La capacidad máxima diaria de fabricación es de 1000 relojes,
Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios
1. Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto
UNIDAD 5: PROGRAMACIÓN LINEAL
UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN
PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.
PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1
INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:
RELACIÓN DE EJERCICIOS TEMA 4.- Inecuaciones 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (001-M1;Sept-B-1) (3 puntos) Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no
11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:
11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima
Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios
1. En un taller de carpintería se fabrican mesas de cocina de formica y de madera. Las de formica se venden a 210 euros y las de madera a 280 euros. La maquinaria del taller condiciona la producción, por
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo
Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad
1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las
Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:
Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones
CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A
CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo
Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones
Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (011-M-B-1) Se considera el recinto R del plano determinado por las siguientes inecuaciones: 1x + 8y 600; ( x ) ( y ); x 4y 0. a) (1.75 punto) Represente gráficamente
Programación lineal. 1º) En la región del plano determinada por, hallar las
Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)
Ejercicios y problemas
Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de
PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.
PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde
{x 3 y 3. Ejercicios. y la función objetivo que hay que maximizar es
Ejercicios 1. [S/97]Cada mes una empresa puede gastar, como máximo, un millón de pesetas en salarios y un millón ochocientas mil pesetas en energía (electricidad y gasóleo). La empresa sólo elabora dos
Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:
Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z
PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:
PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución
Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.
Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.
Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución
Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,
Experimentación con Descartes na Aula. Galicia 2008
Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que
PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100
PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio
Programación lineal -1-
Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados
Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1
EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (001-M1;Sept-B-1) (3 puntos) Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no
x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0
PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y
Unidad 4 Programación lineal
Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (011-M-B-1) Se considera el recinto R del plano determinado por las siguientes inecuaciones: 1x + 8y 600; ( x ) ( y ); x 4y 0. a) (1.75 punto) Represente gráficamente
TEMA 3. PROGRAMACIÓN LINEAL
Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos
Razones y Proporciones. Guía de Ejercicios
. Módulo 2 Razones y Proporciones Guía de Ejercicios Índice Unidad I. Razones y Proporciones Ejercicios Resueltos... pág. 2 Ejercicios Propuestos... pág. 5 Unidad II. Cálculo de Porcentajes Ejercicios
CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA...
CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... 2 2.1. NATURALEZA DE LAS RESTRICCIONES... 2 2.2. DÓNDE ESTÁ Y CÓMO SE ENCUENTRA LA SOLUCIÓN...
PROBLEMAS RESUELTOS DE OPTIMIZACIÓN
Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,
Matemáticas aplicadas a las Ciencias Sociales II. Examen final. 18 de mayo de 2012. Nombre y apellidos:... Propuesta A
Matemáticas aplicadas a las Ciencias Sociales II. Examen final. 18 de mayo de 2012 Nombre y apellidos:... Propuesta A 1. Dada la ecuación matricial. a) Resuelve la ecuación. (0,75 puntos) 1 b) Si 0 1 y
1º Dibuja las regiones factibles definidas por los siguientes sistemas:
Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3
SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts
SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de
PROBLEMAS DE SISTEMAS DE ECUACIONES
PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor
José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org
1. (PAU junio 2003 A1). Dada la siguiente ecuación matricial: 3 2 x 10 x 2 1 y 6 y 0 1 z 3 obtener de forma razonada los valores de x, y, z. 2. (PAU junio 2003 A2). Una compañía fabrica y vende dos modelos
UD10: LAS INVERSIONES DE LA EMPRESA
UD10: LAS INVERSIONES DE LA EMPRESA 1. El Sr. García ha comprado un apartamento por 100.000 y espera venderlo dentro de un año en 132.000. a) Cuál sería el TIR de esta inversión? (1 punto) b) Si esta rentabilidad
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL
EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (001-M1;Sept-B-1) (3 puntos) Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no
ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE
. (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)
PPL PARA RESOLVER CON SOLVE
PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día
PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)
PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta
Tema 4: Problemas Aritméticos
Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente
6 PROGRAMACIÓN LINEAL
6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).
EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL
EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,
Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales
GUÍA DE MATEMÁTICAS III Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales A continuación veremos algunos problemas que se resuelven con sistemas de ecuaciones algunos ejemplos
Colección de Problemas IV
1.- Una compañía se dedica a la elaboración de 2 productos, la demanda de estos productos es de 200 unidades para cada uno de ellos. La compañía podrá elaborar los productos o comprarlos a un proveedor.
2.- Explique el concepto de periodo medio de maduración. (1 punto)
MADRID / JUNIO 2002 - LOGSE / ECONOMÍA Y ORGANIZACIÓN DE EMPRESAS / OPCIÓN A 1.- Defina en qué consiste la estructura de mercado duopolística. Cite algunas empresas que se encuentren en esa situación.
PRACTICO 2: Funciones Noviembre 2011
EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO : Funciones Noviembre 011 Ejercicio 1.- Reescriba las oraciones que siguen usando la palabra función. (a) El impuesto
PROGRAMACIÓN LINEAL. Página 102. Página 103
4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior
5Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones:
Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones: Pág. y 6 Puntos de corte con los ejes: 9 (, 9) Eje : 6 0 8 ± + 8 ± 7 8 8 + 7 ( ), 0 (,8; 0) 7 ( ),
a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7
1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)
4. Cuáles son los dos números?
Problemas algebraicos 1 PROBLEMAS (SISTEMAS LINEALES) 1.1 PROBLEMAS (SISTEMAS NO LINEALES) 1.- La razón de dos números es tres quintos y si aumentamos el denominador una unidad y disminuimos el numerador
Tema 4: Problemas aritméticos.
Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROGRAMACIÓN LINEAL ACTIVIDADES PROPUESTAS PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- INECUACIONES LINEALES Y SISTEMAS CON DOS INCÓGNITAS. PROGRAMACIÓN LINEAL 1 Sea la región factible definida por las siguientes inecuaciones: x + y 20 ; x y 0 ; 5x 13y + 8 0 a) Represéntela gráficamente
SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = =
Matemáticas EDUCACIÓN SECUNDARIA Opción A SOLUCIONES Evaluación: Fecha: Ejercicio nº 1.- a) Opera y simplifica: 1 1 1, 4, + : 5 b) Reduce a una sola potencia: 4 1 5 5 0 a) Expresamos N =, en forma de fracción:
Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones
El ABC de los estados financieros Importancia de los estados financieros: Aunque no lo creas, existen muchas personas relacionadas con tu empresa que necesitan de esta información para tomar decisiones
9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA
9 FUNCINES DE PRPRCINALIDAD DIRECTA E INVERSA EJERCICIS PRPUESTS 9. Dibuja la gráfica de la función que eprese que el precio del litro de gasolina en los últimos 6 meses ha sido siempre de 0,967 euros.
www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!
PROGRAMACIÓNLINEAL 1.0septiembre1995 UnaempresadeautomóvilestienedosplantasPyQdemontajedevehículosenlasqueproducetresmodelosA,ByC.Dela plantapsalensemanalmente10unidadesdelmodeloa,30delby15delc,ydelaq,20unidadesdelmodeloa,20delby70del
3.Proporcionalidad directa e inversa
EJERCICIOS PARA ENTRENARSE Proporcionalidad directa. Repartos 3.8 Los números 3,, 18 y forman una proporción. Calcula el valor de. 3 1 8 18 30 3 3.9 La tabla corresponde a dos magnitudes directamente proporcionales
EJERCICIOS DE PROGRAMACIÓN LINEAL
EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos
Problemas de Investigación Operativa y Programación Matemática
Problemas de Investigación Operativa y Programación Matemática Omar J. Casas López Septiembre 2002 Tema I : Introducción 1. Una factoría fabrica dos tipos de productos, A y B. Para su elaboración se requieren
1º BACHILLERATO MATEMÁTICAS CCSS
PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente
ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.
Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B
FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios
FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------
SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS
1 SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 102. PAU Universidad de Oviedo Fase General OPCIÓN A junio 2010 Dos amigos, Ana y Nicolás, tienen en total 60 euros. Además se
I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1
ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números
MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013
MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +
EJERCICIOS DE SISTEMAS DE ECUACIONES
EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve
Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO
página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple
PROBLEMAS QUE SE RESUELVEN CON ECUACIONES
PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1º) El perímetro de un triángulo isósceles mide 15 cm. El lado desigual del triángulo es la mitad de cada uno de los lados iguales. Halla la longitud de cada uno
CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO
CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO Potencias y raíces. Expresa en forma de potencia: a) 7 7 7 7 = b) 8 8 8 8 8 8 8 = c) 6 6 6 6 6 = d) 5 5 5 5 = e) 9 9 9 = f) 3 3 = Calcula las siguientes potencias:
UD10: LAS INVERSIONES DE LA EMPRESA
UD10: LAS INVERSIONES DE LA EMPRESA 1. El Sr. García ha comprado un apartamento por 100.000 y espera venderlo dentro de un año en 132.000. a) Cuál sería el TIR de esta inversión? (1 b) Si esta rentabilidad
R E S O L U C I Ó N. a) Lo primero que hacemos es dibujar el recinto y calcular los vértices del mismo
Sea el sistema de inecuaciones siguiente: x + y 12;3 y x; x 1; y 1 a) Represente gráficamente la región factible y calcule sus vértices b) En qué punto de esa región, F( x, y) = 25x + 2 y alcanza el máximo?
RESPUESTAS DE LOS EJERCICIOS MODELO PARA PRACTICAR ANTES DEL EXAMEN DE MATEMÁTICA. La opción correcta de cada ejercicio está señalada con el círculo:
RESPUESTAS DE LOS EJERCICIOS MODELO PARA PRACTICAR ANTES DEL EXAMEN DE MATEMÁTICA La opción correcta de cada ejercicio está señalada con el círculo: Antes de comenzar con la resolución de los ejercicios,
Sistemas de ecuaciones lineales
9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13
Soluciones a las actividades
Soluciones a las actividades BLOQUE I Álgebra 1. Sistemas lineales 2. Matrices 3. Determinantes 4. Sistemas lineales con parámetros 1 Sistemas lineales 1. Sistemas de ecuaciones lineales Piensa y calcula
PROBLEMAS DE PROGRAMACIÓN LINEAL.
Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno
L A P R O G R A M A C I O N
L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer
Resuelve problemas PÁGINA 75
PÁGINA 7 Pág. 1 Resuelve problemas 9 Una empresa de alquiler de coches cobra por día y por kilómetros recorridos. Un cliente pagó 10 por días y 400 km, y otro pagó 17 por días y 00 km. Averigua cuánto
Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:
UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,
1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel.
1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 2. Alba y Ana han comprado un regalo a su madre. Indica cuánto ha
PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN
PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN 1º.- Un capital colocado al 10% simple durante un tiempo se transformó en 8.257 88, pero si hubiera estado colocado al 15% durante el mismo período
Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3
Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa
3. Reserva Opción B a) (2 puntos) Represente gráficamente la región factible definida por las siguientes restricciones:
Enunciados Ejercicio 1 Programación Lineal Selectividad 1. Junio 2015 Opción A (2.5 puntos) Con motivo de su inauguración, una heladería quiere repartir dos tipos de tarrinas de helados. El primer tipo
Sistemas de ecuaciones de primer grado con dos incógnitas
Unidad Didáctica 4 Sistemas de ecuaciones de primer grado con dos incógnitas Objetivos 1. Encontrar y reconocer las relaciones entre los datos de un problema y expresarlas mediante el lenguaje algebraico.
1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?
HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe