Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES"

Transcripción

1 Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son valores numéricos. Por ejemplo, si el experimento consiste en lanzar de modo ordenado 2 monedas al aire para observar el número de caras (C) y cruces (X) que se obtienen, el espacio muestral asociado a dicho experimento aleatorio sería: Ω = {CC, CX, XC, XX} En Estadística resulta más fácil utilizar valores numéricos en lugar de trabajar directamente con los elementos de un espacio muestral como el anterior. Así, preferimos identificar los sucesos {CX, XC} con el valor numérico 1, que representa el número de caras obtenidas al realizar el experimento. De este modo aparece el concepto de variable aleatoria. Sea (Ω, (Ω), P) un espacio de probabilidad. Una función X: Ω R ω X(ω)= x ω es una variable aleatoria, es decir, las variables aleatorias unidimensionales son funciones cuyos valores dependen del resultado de un experimento aleatorio. Una variable aleatoria es una función que asocia un número real y sólo uno x ω, a cada suceso elemental ω del espacio muestral (Ω ) de un experimento aleatorio. Las variables aleatorias discretas son aquellas que sólo pueden tomar un número de valores finito o infinito numerable. X: Ω Ν ω X(ω)= x ω Se representan mediante letras mayúsculas y pueden tomar n posibles valores: X = { x 1, x 2,..., x i,..., x n } Experimento aleatorio: Lanzar una moneda al aire dos veces Espacio muestral: Ω = {CC, CX, XC, XX} Sucesos elementales: {CC}, {CX}, {XC}, {XX} Se define la variable X: Nº de caras obtenidas Asignación de números reales: (CC, 2); (CX, 1); (XC, 1); (XX, 0) Por tanto, la variable X viene definida por los valores: 0, 1, 2 En el ejemplo anterior, X = {0, 1, 2} La v.a.d., X, queda caracterizada por la función de probabilidad, f(x) = P(X = x), y por la función de distribución, F(x) = P(X x). 1

2 2.- Función de probabilidad, f(x) (Ω, (Ω), P) un espacio de probabilidad, X v. a. d., y {x i } i=1.. los valores que toma. Se llama función de probabilidad, f(x), a la función que indica la probabilidad de cada posible valor de la v. a. d. X, es decir: f: N [0, 1] x i f(x i ) = P(X = x i ) = p i =P[{ω t.q. X(ω)=x i ] i=1,.., y que verifica: (i) 0 f(x i ) 1 (ii) f(x i ) = 1 Si x i no es uno de los valores que puede tomar X, entonces f(x i )=0. Gráficamente se representa mediante un diagrama de barras análogo al de distribución de frecuencias relativas para variables discretas. Con los datos del ejemplo anterior: X f(x i ) 0,25 0,50 0,25 f (x) 3.- Función de distribución, F(x) Sea (Ω, (Ω), P) un espacio de probabilidad, X v. a. d., {x i } i=1.. los valores que toma y {p i }i=1.. R la función de probabilidad de X. Se llama función de distribución (acumulativa) de la v.a.d. X, F(x), a la probabilidad de que X sea menor o igual que x; es decir: F: N [0, 1] x i F(x i ) = P(X x i ) = P[{ω t.q. X(ω) x i ] F(x i ) = P(X x i ) = x f ( x j ) j x i Que cumple las siguientes propiedades: (i) F(- )=0 (ii) F(x min ) = f(x 1 ) 2

3 (iii) F(x max ) = 1 (iv) F( )=1 (v) F es monótona no decreciente, es decir, si x i x j entonces F(x i ) F(x j ) (vi) F es continua a derecha, tiene límites a izquierda y es constante en [x i-1, x i ), donde toma el valor f ( x k ) k i (vii) P(X > x) = 1 - P(X x) = 1 - F(x) (viii) P(x i X x j ) = F(x j ) - F(x i-1 ) Gráficamente resulta en la función escalera Continuando con el ejemplo anterior: X F(x i ) 0,25 0,75 1,00 F (x) Características de las v. a. discretas Se trata de resumir la información de una variable aleatoria en un conjunto de medidas (números). De forma análoga a lo que se hizo en el tema de Estadística Descriptiva, podemos definir para las variables aleatorias medidas de centralización, dispersión, simetría y forma. Por su interés especial, nos vamos a centrar en dos medidas sobre variables aleatorias que son: la esperanza matemática, que desempeña un papel equivalente al de la media, y la varianza. Esperanza: Sea X v. a. El valor esperado o esperanza matemática de X, denotada por E(X) o por µ, se define como: 3

4 E( X ) = n i= 1 x f ( i x i E(X) no es una función de x, es un valor fijo que depende de la distribución de probabilidad de X. E(X) está medida en las mismas unidades que X. Si X es una v.a. con función de probabilidad simétrica respecto a un punto x=a, entonces E(X)=a. Propiedades de la esperanza: (i) Si C es una constante, entonces E(C)=C. (ii) Linealidad: E(aX+b)=aE(X)+b, a, b R (iii) Si g(x) es una función de X, entonces: E[ g( X )] = n ) i= 1 g( x ) f ( i x i (iv) Si g(x), h(x) son funciones de X, entonces E[g(X)+h(X)]=E[g(X)]+ E[h(X)] (v) E[g(X)] E[ g(x) ] (vi) Si X e Y son v. a. independientes E[X.Y]=E[X].E[Y] Varianza: Sea X v. a. La varianza de X se denota con Var(X) o σ 2 y se define como 2 2 Var[ X ] = E[ ( X E[ X ]) ] = ( xi E[ X ]) f ( xi ) La raíz cuadrada positiva de la varianza se llama desviación típica y se denota con σ. Tanto la varianza como la desviación típica miden la dispersión de la v.a. respecto a su media. Observaciones: - La varianza y la desviación típica son cantidades positivas. - La desviación típica está medida en las mismas unidades que la v.a. i ) Propiedades de la varianza: (i) Si C es una constante, Var(C)=0 (ii) Var(X) = E(X 2 ) - E 2 (X) (iii) Si a y b son constantes: Var(aX + b) = a 2 Var(X) (iv) Si X e Si X e Y son v.a. independientes V(X+Y) = V(X) + V(Y) La desviación media se define como la esperanza de X-µ. 5.- Principales distribuciones de las v. a. discretas: En la práctica, la función de probabilidad de la mayoría de las variables discretas se ajusta a un modelo teórico expresado mediante una fórmula concreta. Veremos los más habituales. Distribución de Bernouilli Be(p) La distribución de Bernouilli se aplica cuando se realiza una sola vez un experimento que tiene únicamente dos posibles resultados (éxito o fracaso), por lo que la variable sólo puede tomar dos valores: el 1 (éxito) y el 0 (fracaso). Definimos la v.a.: 4

5 Al haber únicamente dos soluciones se trata de sucesos complementarios: A la probabilidad de éxito se le denomina "p" A la probabilidad de fracaso se le denomina "q" Verificándose que: p + q = 1 Así P(X=1)=p y P(X=0)=1-p=q. Además E(X)=p, Var(X)=pq. Probabilidad de salir cara al lanzar una moneda al aire (sale cara o no sale); probabilidad de ser admitido en una universidad (o te admiten o no te admiten); probabilidad de acertar una quiniela (o aciertas o no aciertas) Distribución Binomial B(n,p) La distribución binomial parte de la distribución de Bernouilli. Se aplica cuando se realizan un número "n" de veces el experimento de Bernouilli, siendo cada ensayo independiente del anterior. Realizamos el experimento anterior n veces de forma independiente, y definimos la v.a.: X= Número de éxitos obtenidos en las n realizaciones que puede tomar los valores k=0,1,,n 0: si todos los experimentos han sido fracaso n: si todos los experimentos han sido éxitos con probabilidades: La distribución de probabilidad de este tipo de distribución expresada de otra forma: donde " k " es el número de aciertos " n" es el número de ensayos. " p " es la probabilidad de éxito E(X) = n.p Var(X) = n.p.(1-p)=n.p.q Cuál es la probabilidad de obtener 6 caras al lanzar una moneda 10 veces? La fórmula quedaría: Luego, P (x = 6) = 0,205 5

6 Es decir, se tiene una probabilidad del 20,5% de obtener 6 caras al lanzar 10 veces una moneda. No siempre es necesario aplicar la fórmula para obtener la función de probabilidad asociada a un valor de la variable. Existen tablas donde se puede consultar el valor de f (x i ). La tabla de la Binomial tiene la siguiente estructura: Dado X B (x; n; p), para buscar una f (x): 1ª columna: valor de n 2ª columna: posibles valores de X: 0, 1,, n 3ª columna: valor de f(x) bajo diferentes valores de p (aparece en porcentajes, por brevedad. El signo +significa que hay más de tres ceros) Nota: Cuando n > 17, f (x i ) puede aproximarse mediante el modelo normal (lo veremos en el próximo tema) P(X = 1) = 0,02 bajo X B (x; 2; 0,01) Un sujeto responde a un test 4 preguntas de tipo V/F al azar. 1) Elabore el modelo de distribución para la variable X (nº de aciertos al azar) X B (n = 4, p= 0,50) X f(x) 0,0625 0,250 0,375 0,250 0,0625 2) Cuál es la probabilidad de que acierte al menos 3 preguntas? P(X 3) = P(X = 3) + P(X = 4) = 0, ,0625 = 0,3125 (coincide con tablas) O también P(X 3) = 1- P(X 2) = 1 - (0, , ,375) = 1-0,687 = 0,313 3) Valor esperado: E(X) = n p= (4) (0,50) = 2 4) Varianza: s2(x) = n p.(1 - p) = (4) (0,50 0,50) = 1 5) Cuál es la probabilidad de que acierte como máximo 2 preguntas? P(X 2) = F(2) = 0, , ,375 = 0,6875 6) Cuál es la probabilidad de que acierte entre 1 y 3 preguntas (ambas inclusive)? P(1 X 3) = F(3) - F(0) = 0,9375-0,0625 = 0,875 7) Cuál es la probabilidad de que acierte más de 2 preguntas? P(X > 2) = P(X 3) = 1 - P(X 2) = 1 0,6875 = 0,3125 Distribución de Poisson P(λ) 6

7 Esta distribución aparece en algunos procesos que tienen una dimensión temporal o espacial, como el número de llamadas telefónicas que recibe un servicio de atención a urgencias durante un intervalo de tiempo determinado, o el número de cultivos infectados por una plaga en una cierta región geográfica. En este tipo de experimentos los éxitos buscados son expresados por unidad de área, tiempo, pieza, etc,: - nº de defectos de una tela por m 2 - nº de aviones que aterrizan en un aeropuerto por día, hora, minuto, etc, etc. - nº de bacterias por cm 2 de cultivo - nº de llamadas telefónicas a un conmutador por hora, minuto, etc, etc. - nº de llegadas de embarcaciones a un puerto por día, mes, etc, etc. X= Número de éxitos obtenidos por unidad de tiempo o de espacio Para determinar la probabilidad de que ocurran k éxitos por unidad de tiempo, área, o producto, la fórmula a utilizar sería: donde: p(x=k) = probabilidad de que ocurran k éxitos cuando el número promedio de ocurrencia de ellos es λ λ = media o promedio de éxitos por unidad de tiempo, área o producto e = x = variable que nos denota el número de éxitos que se desea que ocurra E(X)=λ Var(X)=λ Hay que hacer notar que en esta distribución el número de éxitos que ocurren por unidad de tiempo, área o producto es totalmente al azar y que cada intervalo de tiempo es independiente de otro intervalo dado, así como cada área es independiente de otra área dada y cada producto es independiente de otro producto dado. En estas condiciones el proceso de Poisson, que mide el número de éxitos en un intervalo de tiempo t, en lugar de por unidad de tiempo, vendría dado por A λ se le llama tasa de emisión (por unidad de tiempo). Si un banco recibe en promedio 6 cheques sin fondo por día, cuáles son las probabilidades de que reciba, a) cuatro cheques sin fondo en un día dado, b) 10 cheques sin fondos en cualquiera de dos días consecutivos? 7

8 a) x = variable que nos define el número de cheques sin fondo que llegan al banco en un día cualquiera = 0, 1, 2, 3,..., etc λ = 6 cheques sin fondo por día 4 6 ( 6 ) ( ) ( 1296 )( ) p ( x = 4, λ = 6 ) = = = ! 24 b) x= variable que nos define el número de cheques sin fondo que llegan al banco en dos días consecutivos = 0, 1, 2, 3,..., etc λ = 6 x 2 = 12 cheques sin fondo en promedio que llegan al banco en dos días consecutivos Nota: λ siempre debe de estar en función de x siempre o dicho de otra forma, debe hablar de lo mismo que x ( 12 ) ( ) ( Ε10 )( ) p ( x = 10, λ = 12 ) = = = ! En la inspección de hojalata producida por un proceso electrolítico continuo, se identifican 0.2 imperfecciones en promedio por minuto. Determine las probabilidades de identificar a) una imperfección en 3 minutos, b) al menos dos imperfecciones en 5 minutos, c) cuando más una imperfección en 15 minutos. a) x = variable que nos define el número de imperfecciones en la hojalata por cada 3 minutos = 0, 1, 2, 3,..., etc. λ = 0.2 x 3 =0.6 imperfecciones en promedio por cada 3 minutos en la hojalata 1 ( 0. 6 ) ( ) p( x = 1, λ = 0. 6 ) = 1! 0. 6 ( 0. 6 )( ) = = b) x = variable que nos define el número de imperfecciones en la hojalata por cada 5 minutos = 0, 1, 2, 3,..., etc λ = 0.2 x 5 =1 imperfección en promedio por cada 5 minutos en la hojalata p( x = 2, 3, 4,etc... λ = 1) = 1 p( x =1-( ) = ( 1) ( ) = 01,, λ = 1) = 1 0! 1 ( 1)( ) + 1! 1 = c) x = variable que nos define el número de imperfecciones en la hojalata por cada 15 minutos = 0, 1, 2, 3,..., etc. λ = 0.2 x 15 = 3 imperfecciones en promedio por cada 15 minutos en la hojalata p( x = 01,, λ = 3) = p( x = 0, λ = 3) + = = p( x 0 ( 3 ) ( ) = 1, λ = 3) = 0! 3 1 ( 3 ) ( ) + 1! 3 = 8

9 También se puede considerar esta distribución como una aproximación de la binomial cuando n y p, pero el producto n.p permanece constante. Cuando en una distribución binomial se realiza el experimento un número "n" muy elevado de veces y la probabilidad de éxito "p" en cada ensayo es reducida, manteniéndose constante n.p, entonces se aplica el modelo de distribución de Poisson. Realizamos indefinidamente el experimento y definimos la v.a.: X= Número de éxitos obtenidos que puede tomar los valores k=0,1,2, Al igual que ocurría con la binomial, los valores acumulados de la distribución de Poisson se encuentran tabulados para que resulte más fácil su manejo. En una concurrida intersección de tráfico, la probabilidad de que un automóvil tenga un accidente de tráfico es muy escasa, digamos de 0,0001. Sin embargo, durante cierta parte del día (entre las 4:00 pm y las 6:00 pm) un gran número de automóviles pasa por esa intersección, digamos unos En dichas condiciones, cual es la probabilidad de que dos o más accidentes ocurran durante ese período? X= nº accidentes en 1000 coches X B(1000, ) P(X 2) Como la probabilidad " p " es menor que 0,1, y n 30, entonces aplicamos el modelo de distribución de Poisson y podríamos aproximar por X P(0.1) P(X 2) = 1 P(X < 2) = 1 P(X 1) = = Distribución Geométrica G(p) Realizamos el experimento de forma independiente hasta que obtenemos el primer éxito, y definimos la v.a.: Y= Número de experimentos hasta obtener el primer éxito que toma los valores k=1,2,3, con probabilidades: donde se tiene que E(Y)=1/p y Var(Y)=(1-p)/p 2. Una vía de una ciudad tiene seis cruces regulados por semáforos. La probabilidad de que al pasar un vehículo un semáforo esté verde es de Cuál es la probabilidad de atravesar dicha vía en verde, encontrándose rojo solamente el último semáforo? Se supone que la regulación de los semáforos es tal que estos son independientes entre sí. X = nº de semáforos que debemos atravesar hasta encontrar el primero rojo X G(0.4) P(X=6) = =

10 Distribución Binomial Negativa BN (n,p) Realizamos el experimento de forma independiente hasta obtener n éxitos y definimos la v.a.: X= Número de fracasos antes del n-ésimo éxito que puede tomar los valores k=0,1,2, Además E(X)=n(1-p)/p y Var(X)=n(1-p)/p 2. En los play-off de la NBA americana, el vencedor de cada eliminatoria final es el equipo que logre primero la 4ª victoria en un total de 7 confrontaciones. Cuál es la probabilidad de que un equipo dispute como mucho 6 partidos, si su porcentaje de partidos ganados es del 60%? P=probabilidad de éxito =0.6 X= nº fracasos hasta obtener la 4ª victoria X BN(4,0.6) P(X 2)=P(X=0) + P(X=1) + P(X=2) = = Distribución Hipergeométrica H(N,D,n) La distribución hipergeométrica es el modelo que se aplica en experimentos donde, al igual que en la distribución binomial, en cada ensayo hay tan sólo dos posibles resultados: éxito o fracaso. Pero se diferencia de la distribución binomial en que los distintos ensayos son dependientes entre sí (no hay reemplazamiento). Supongamos que tenemos un lote de N piezas de las cuales D son defectuosas (D N). Extraigo una muestra de n piezas (sin reemplazamiento) y defino la v. a.: X= Número de defectuosas en la muestra que puede tomar los valores k=max{0,n+d-n},1,,min{d,n} Además E(X) = nd/n y Var(X) = np(1-p)[(n-n)/(n-1)] con p = D/N = proporción de defectuosas. Nota: Cuando se realiza un muestreo, éste puede ser con o sin reemplazamiento. Si es con reemplazamiento utilizaremos la distribución binomial para contar el número de éxitos y si es sin reemplazamiento utilizaremos la distribución hipergeométrica. Además, si N es grande respecto a n, la binomial aproximará a la hipergeométrica (la aproximación es buena cuando n/n < 0.1). 10

11 En una urna hay 7 bolas blancas y 5 negras. Se sacan 4 bolas Cuál es la probabilidad de que 3 sean blancas? Entonces: N = 12; N-D = 5; D = 7; k = 3; n = 4 Si aplicamos el modelo: Por lo tanto, P (x = 3) = 0,3535. Es decir, la probabilidad de sacar 3 bolas blancas es del 35,3%. Pero este modelo no sólo se utiliza con experimentos con bolas, sino que también se aplica con experimentos similares: En una fiesta hay 20 personas: 14 casadas y 6 solteras. Se eligen 3 personas al azar Cuál es la probabilidad de que las 3 sean solteras? Por lo tanto, P (x = 3) = 0,0175. Es decir, la probabilidad de que las 3 personas sean solteras es tan sólo del 1,75%. Distribución Multinomial La distribución multinomial es similar a la distribución binomial, con la diferencia de que en lugar de dos posibles resultados en cada ensayo, puede haber múltiples resultados: La distribución multinomial sigue el siguiente modelo: con n= x 1 +x 2 +x 3 + Donde: X 1 = x 1 : indica que el suceso X 1 aparezca x 1 veces n: indica el número de veces que se ha repetido el experimento n!: es factorial de n p 1 : es la probabilidad del suceso X 1 En una fiesta, el 20% de los asistentes son españoles, el 30% franceses, el 40% italianos y el 10% portugueses. En un pequeño grupo se han reunido 4 invitados: cual es la probabilidad de que 2 sean españoles y 2 italianos? 11

12 Aplicamos el modelo: Luego P = 0,0384 Por lo tanto, la probabilidad de que el grupo esté formado por personas de estos países es tan sólo del 3,84%. Distribucion Multihipergeométrica La distribución multihipergeométrica es similar a la distribución hipergeométrica, con la diferencia de que en lugar de dos posibles resultados en cada ensayo, puede haber múltiples resultados (en la urna, en lugar de haber únicamente bolas de dos colores, hay bolas de diferentes colores). La distribución multihipergeométrica sigue el siguiente modelo: siendo n = x 1 + x 2 + x 3 +. Donde: X 1 = x 1 : indica que el suceso X 1 aparezca x 1 veces N 1 : indica el número de elementos del tipo X 1 que existen N: es el número total de elementos que existen n: es el número total de elementos que se extraen En una caja de lápices hay 10 de color amarillo, 3 de color azul y 4 de color rojo. Se extraen 7 lápices, cual es la probabilidad de que 5 sean amarillos y 2 rojos? Aplicamos el modelo: Luego P = 0,0777 Por lo tanto, la probabilidad de que los 5 lápices sean de los colores indicados es del 7,77%. 12

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS 4.1 Distribución binomial 4.1.1 Definición. Ejemplos 4.1.2 La media y la varianza 4.1.3 Uso de tablas 4.1.4 Aditividad 4.2 Distribución de Poisson 4.2.1 Definición.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

Tema 3. Variables aleatorias. Inferencia estadística

Tema 3. Variables aleatorias. Inferencia estadística Estadística y metodología de la investigación Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 3. Variables aleatorias. Inferencia estadística 1. Introducción 1 2. Variables aleatorias 1 2.1. Variable

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas Hemos definido que una variable aleatoria X es discreta si I X es un conjunto finito o infinito numerable. En la práctica las variables aleatorias discretas sirven como modelos

Más detalles

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1)

CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) CUESTIONES DE AUTOEVALUACIÓN (TEMA 1) Cuestiones de Verdadero/Falso 1. Un estadístico es una característica de una población. 2. Un parámetro es una característica de una población. 3. Las variables discretas

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 280

13Soluciones a los ejercicios y problemas PÁGINA 280 Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una

Más detalles

TEMA 5. MUESTREO PARA LA ACEPTACIÓN.

TEMA 5. MUESTREO PARA LA ACEPTACIÓN. TEMA 5. MUESTREO PARA LA ACEPTACIÓN. Introducción. Planes de muestreo por atributos simple, doble, múltiple y rectificativos Dodge-Romig, Norma militar 1000STD-105D. Pautas a seguir para el cambio de rigor

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción

Más detalles

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. (1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

Relación de problemas: Distribuciones de probabilidad

Relación de problemas: Distribuciones de probabilidad Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Distribuciones de probabilidad 1. Un jugador de dardos da justo en la diana 2 de cada cinco veces que lanza. Si

Más detalles

SENA: CENTRO BIOTECNOLOGIA INDUSTRIAL PROGRAMA DE FORMACIÓN: TECNOLOGO GESTION LOGISTICA

SENA: CENTRO BIOTECNOLOGIA INDUSTRIAL PROGRAMA DE FORMACIÓN: TECNOLOGO GESTION LOGISTICA Por población o universo se entiende como un conjunto de medidas, cuando estas son aplicadas a una característica cuantitativa, o como el recuento de todas las unidades que presentan una característica

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD.

INTRODUCCIÓN A LA PROBABILIDAD. INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de

Más detalles

Universidad del País Vasco

Universidad del País Vasco Universidad del País Vasco eman ta zabal zazu Euskal Herriko Unibertsitatea INSTRUCCIONES. El examen consta de 50 cuestiones. Hay una única respuesta correcta para cada cuestión. Las cuestiones respondidas

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES.

PROBLEMAS SOBRE CÁLCULO DE PROBABILIDADES. ANDALUCIA: º) (Andalucía, junio, 98) Ana, Juan y Raúl, que están esperando para realizar una consulta médica, sortean, al azar, el orden en que van a entrar. a) Calcule la probabilidad de que los dos últimos

Más detalles

MATEMÁTICAS CON LA HOJA DE CÁLCULO

MATEMÁTICAS CON LA HOJA DE CÁLCULO MATEMÁTICAS CON LA HOJA DE CÁLCULO Podemos dar a esta aplicación un uso práctico en el aula de Matemáticas en varios sentidos: Como potente calculadora: sucesiones, límites, tablas estadísticas, parámetros

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera:

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera: INTRODUCCIÓN AL VALOR ESPERADO Y VARIANZA (5 MINUTOS) Cuando nos hablan del promedio de que ocurra un evento, cómo sabemos con certeza qué tan cerca estamos de alcanzar ese promedio? Esta pregunta nos

Más detalles

15 PARÁMETROS ESTADÍSTICOS

15 PARÁMETROS ESTADÍSTICOS EJERCICIOS PROPUESTOS 1.1 El número de libros leídos por los miembros de un círculo de lectores en un mes se resume en esta tabla. N. o de libros leídos x i N. o de personas f i 1 1 3 18 11 7 7 1 Halla

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S.

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S. Técnicas De Conteo Si en el experimento de lanzar la moneda no cargada, se lanzan 5 monedas y definimos el evento A: se obtienen 3 caras, cómo calcular la probabilidad del evento A?, si todos los resultados

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

Ejercicios Resueltos de Teorema Central de Límite (TCL) Ejercicios 1 y 2: Resolución de Ejercicios propuestos del Tema 5.

Ejercicios Resueltos de Teorema Central de Límite (TCL) Ejercicios 1 y 2: Resolución de Ejercicios propuestos del Tema 5. EJERCICIOS DE PROBABILIDAD EJERCICIOS ADECUADOS PARA SECUNDARIA O BACHILLER TITULO: AUTOR: Ejercicios Resueltos de Teorema Central de Límite (TCL) JUAN VICENTE GONZÁLEZ OVANDO Ejercicio 15: Ejercicios

Más detalles

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30

EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30 EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200

Más detalles

Ejercicio Nº 3: Realizar aumentos en una Tabla de Sueldos

Ejercicio Nº 3: Realizar aumentos en una Tabla de Sueldos SESION5: BASE DE DATOS PLANILLAS Ejercicio Nº : Realizar aumentos en una Tabla de Sueldos Veamos pues. En la hoja de calculo se tiene la Tabla de Sueldos de varios empleados (aquí ahora vemos solo empleados,

Más detalles

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS

PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS PROBLEMAS ADICIONALES RESUELTOS SOBRE VARIABLES ALETORIAS Grupos P y P (Prof. Ledesma) Problemas. Variables aleatorias..- Sea la v.a. X que toma los valores - y con probabilidades, y, respectivamente y

Más detalles

1. EL CONCEPTO DE INTERÉS

1. EL CONCEPTO DE INTERÉS 1. EL CONCEPTO DE INTERÉS 1.1 Introducción Tal y como se ha señalado en el prefacio, en estos primeros capítulos se va a suponer ambiente de certidumbre, es decir, que los agentes económicos conocen con

Más detalles

Tema 5: Vectores aleatorios bidimensionales.

Tema 5: Vectores aleatorios bidimensionales. Estadística 52 Tema 5: Vectores aleatorios bidimensionales. Hasta ahora hemos estudiado las variables aleatorias unidimensionales, es decir, los valores de una característica aleatoria. En muchos casos,

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

Tema 2: Estimación puntual

Tema 2: Estimación puntual Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez

Más detalles

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X =

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X = Selectividad Junio 011 Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUMNO/A DEBERÁ ESCOGER UNO DE

Más detalles

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y

APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC Abel Martín ( * ) Rosana Álvarez García ( ) En dos artículos anteriores ya hemos estudiado la distribución Binomial de parámetros

Más detalles

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10 Asignatura: Ingeniería Industrial Índice de Contenidos 1 Introducción... 2 2 Distribución exponencial... 2 3 Distribución Weibull... 6 4 Distribuciones Gamma y k-erlang... 10 5 Distribución log-normal...

Más detalles

PEOBLEMAS RESUELTO DE CADENAS DE MARKOV

PEOBLEMAS RESUELTO DE CADENAS DE MARKOV PROBLEMAS RESUELTOS DE CADENAS DE MARKOV TEMA: CADENAS DE MARKOV Prof.: MSc. Julio Rito Vargas Avilés I. El departamento de estudios de mercado de una fábrica estima que el 20% de la gente que compra un

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( )

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) La distribución Normal tiene numerosas aplicaciones en el campo de la Probabilidad y la Estadística,

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

Mª Cruz González Página 1

Mª Cruz González Página 1 SELECTIVIDAD Probabilidad. Junio 00 (Opc. Se tiene tres cajas iguales. La primera contiene bolas blancas y 4 negras; la segunda contiene 5 bolas negras y, la tercera, 4 blancas y negras. a) Si se elige

Más detalles

Distribuciones Multivariantes. Distribuciones Multivariantes. Distribuciones Multivariantes. Objetivos del tema:

Distribuciones Multivariantes. Distribuciones Multivariantes. Distribuciones Multivariantes. Objetivos del tema: Distribuciones Multivariantes Distribuciones Multivariantes Distribución conjunta de un vector aleatorio Objetivos del tema: Distribuciones marginales y condicionadas Al final del tema el alumno será capaz

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito,

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito, 1 1.4 Cálculo de Probabilidades con Métodos de Conteo Considerere un espacio muestral finito, y defina, Luego, Ω = {ω 1,..., ω n }, P ({ω i }) = p i, i = 1,..., n P (A) = ω i A p i, A Ω Ω se dice equiprobable

Más detalles

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS

TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS TEMA 6: VARIABLES ALEATORIAS. DISTRIBUCIONES DE PROBABILIDAD 1. VARIABLES ALEATORIAS 1.1 Variables aleatorias Considera el experimento aleatorio consistente en lanzar dos monedas. El espacio muestral de

Más detalles

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL. REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Examen de la asignatura "Estadística aplicada a las ciencias sociales" Profesor Josu Mezo. 9 de junio de 2008.

Examen de la asignatura Estadística aplicada a las ciencias sociales Profesor Josu Mezo. 9 de junio de 2008. Examen de la asignatura "Estadística aplicada a las ciencias sociales" Profesor Josu Mezo. 9 de junio de 2008. Pregunta nº 1 (5 puntos). En una base de datos sobre los países del mundo se incluyen una

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Tema 3. Concepto de Probabilidad

Tema 3. Concepto de Probabilidad Tema 3. Concepto de Probabilidad Presentación y Objetivos. El Cálculo de Probabilidades estudia el concepto de probabilidad como medida de incertidumbre. En situaciones donde se pueden obtener varios resultados

Más detalles

Teoría de Colas o Fenómenos de Espera

Teoría de Colas o Fenómenos de Espera Teoría de Colas o Fenómenos de Espera Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Introducción 2 Introducción............................................................

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

Lección 22: Probabilidad (definición clásica)

Lección 22: Probabilidad (definición clásica) LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los

Más detalles

Una breve introducción a Excel c

Una breve introducción a Excel c Una breve introducción a Excel c Martes 22 de febrero de 2005 Curso de Formación continua en Matemáticas UAM Curso 2004/2005 1. Introducción Excel c es una aplicación de hojas de cálculo electrónicas:

Más detalles

Tema 11 Probabilidad Matemáticas B 4º ESO 1

Tema 11 Probabilidad Matemáticas B 4º ESO 1 Tema 11 Probabilidad Matemáticas B 4º ESO 1 TEMA 11 PROBABILIDAD SUCESOS EJERCICIO 1 : En una bolsa hay 8 bolas numeradas del 1 al 8. Extraemos una bola al azar y anotamos su número. a Escribe el espacio

Más detalles

TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN BINOMIAL Y NORMAL

TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN BINOMIAL Y NORMAL TEMA II VARIABLES ALEATORIAS. DISTRIBUCIÓN. BINOMIAL Y NORMAL I.- Variable aleatoria. Concepto. Antes de definir el concepto de varibale aleatoria, veamos algunos ejemplos (ya estás empezando a comprobar

Más detalles

Capítulo 4 Procesos con estructuras de repetición

Capítulo 4 Procesos con estructuras de repetición Estructura de contador Capítulo 4 Procesos con estructuras de repetición Esta es una operación que incrementa en una unidad el valor almacenado en la variable c, cada vez que el flujo del diagrama pasa

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2

Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal. Índice. 1. Variables aleatorias 2 Matemáticas aplicadas a las Ciencias Sociales II Variables Aleatorias. Distribuciones Binomial y Normal Índice 1. Variables aleatorias 2 2. Distribución de probabilidad para variables aleatorias discretas

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Soluciones a las actividades de cada epígrafe

Soluciones a las actividades de cada epígrafe 0 Soluciones a las actividades de cada epígrafe Pág. PÁGIA 08 En este juego hay que conseguir que no queden emparejadas dos bolas del mismo color. Por ejemplo: GAA PIERDE GAA PIERDE PIERDE uál es la probabilidad

Más detalles

Inferencia Estadística

Inferencia Estadística EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A. I. Suponga que en una estación con un solo servidor

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

TEMA 14 CÁLCULO DE PROBABILIDADES

TEMA 14 CÁLCULO DE PROBABILIDADES Tema 14 Cálculo de probabilidades Matemáticas I 1º Bachillerato 1 TEMA 14 CÁLCULO DE PROBABILIDADES ESPACIO MUESTRAL. SUCESOS EJERCICIO 1 : En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una

Más detalles

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales

a) No curse la opción Científico-Tecnológica. b) Si es chico, curse la opción de Humanidades y C. Sociales 1 PROBABILIDAD 1.(97).- Para realizar un control de calidad de un producto se examinan tres unidades del producto, extraídas al azar (y sin reemplazamiento) de un lote de 100 unidades. Las unidades pueden

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

Problemas de Probabilidad Soluciones

Problemas de Probabilidad Soluciones Problemas de Probabilidad Soluciones. En una carrera participan los caballos A, B, C y D. Se estima que la probabilidad de que gane A es el doble de la probabilidad de que gane cada uno de los otros tres.

Más detalles