GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)
|
|
- Adrián Parra Aranda
- hace 6 años
- Vistas:
Transcripción
1 Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos) 2. Clcule el vlor ctul y fil de l siguiete ret. (2, putos) ños i=%. U préstmo de 8. euros se v mortizr durte 8 ños trvés de cuots de mortizció ules que vrí e progresió ritmétic creciete rzó de u % ul, siedo l primer cuot ul de cutí A. Teiedo e cuet que el tipo de iterés ul co el que se mortiz el préstmo es el 4% ul, clculr: ) Importe de l cuot de mortizció del tercer y sexto ño. ( puto) Cpitl vivo l filizr el quito ño. (, putos) c) Térmios mortiztivos del segudo y octvo ño. (, putos) 4. Hce cutro ños se emitió u empréstito del cul hy vivs ctulmete. obligcioes. Teiedo e cuet que todos los ños se mortiz el mismo úmero de títulos, que los títulos vivos l fil del sexto ño so., que se pg itereses de form cumuld (cupó cero) l % ul (el vlor omil de u obligció es. euros) y que l durció del empréstito es de ños, clculr: ) Títulos vivos cudo flt dos ños pr el fil de l operció. ( puto) Itereses bodos los títulos mortizdos e el tercer ño. ( puto) c) Térmio mortiztivo correspodiete l quito ño de vid del empréstito. ( puto)
2 Solucioes Juio 2 Primer Sem. Teorí 2. /2 Hciedo i 2 = (+,) -=,489 os qued : = (+,489) + A(;-) (+,489) = (+,489) ,489 9,489, (+,489) (+,489) ,489 + = 6,8 (+,) = 696,98 = 6,8. ) 8. C = Ar 8. = A (+,+,2+...+,7) =,8 A A = =. r=,8 A =,2 A =,2. =2. y A =, A =,. =. 6 c) C 8 = A = A + A + A =, A+,6 A+,7 A = (,+,6+,7) A = 4,8. = 48. r r=6 = C i+ A = (C - A) i+, A = (8.-.),4+,. = = C i+ A =,7 A i+,7 A =,7.,4+,7. = ) N N I =N - 2 A. =.- 2 A.-. A = = 2. 2 = A + A = 2 A = 2 2. = = C (+i) M =. (+,) 2. = , = C (+i) C M =. (+,). 2. = 94.62, c) = C (+i) M =. (+,) 2. =.9.7,9
3 Escuel Técic Superior de Iformátic Covoctori de Juio - Segud Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA de Juio de 2 -, hors Durció: 2 hors. Pr u mismo vlor del prámetro i, y l mism durció de l operció quié ofrece mejor resultdo: el coveio liel o el expoecil? ( puto) 2. Clcule el vlor ctul y fil de u ret ul vrible e progresió geométric que tiee ls siguietes crcterístics: (, putos) Primer térmio:. euros Rzó de l progresió: los térmios dismiuye todos los ños rzó del 2% ul Durció de l operció: ños Crácter: pospgble Tipo de iterés ul: %. U préstmo de. euros se v mortizr e ueve ños de cuerdo co l siguiete estructur: Durte los cutro primeros ños sólo se pgrá los itereses que correspod. Durte los dos ños siguietes o se pgrá d (creci totl). Durte los tres últimos ños se mortizrá l deud pediete trvés del método frcés. Teiedo e cuet que el tipo de iterés plicble es del % pr los cutro primeros ños, el 4% pr los dos siguietes y el % pr los tres últimos, clculr: ) Importe del térmio mortiztivo costte que se pgrá durte los tres últimos ños. (, putos) Cpitl que se deud l fil del quito ño y del octvo ño. ( puto) c) Cuots de mortizció de los ños primero, sexto y oveo ño. ( puto) 4. U empréstito formdo por. títulos de euros de vlor omil cd uo se mortiz e ños medite térmios mortiztivos costtes. Teiedo e cuet que se pg cupoes periódicos l % ul y que el emisor tiee que hcer frete uos gstos iiciles del,% del vlor omil del empréstito, clculr: ) Importe del térmio mortiztivo costte. ( puto) Número de títulos mortizdos e el tercer y décimo ño. ( puto) c) Número de títulos vivos cudo flt tres ños pr el fil de l operció. ( puto) d) Coste rel pr el emisor (bst co plter l ecució correspodiete). ( puto)
4 Solucioes Juio 2 Segud Sem. Teorí 2.,98, = A(.;,98) =. =.26,2 +, -,98, = (+i) =.26,2 (+,) =.2,2 2. ) C =. (+,4) = = 9.77,28 6, C = C (+i) =. (+,4) =4. C = = 9.77,28 = 7.82,98 8 -s i, c) A = ; A6 = ; A9 = C8 = 9.77,28, = 7.82,98 4. ) C N= i. =, = ,7 N M = M (+i) = (+i) = (+,) = 8.6,4 S i S, 7 7 M = M (+i) = 8.6,4 (+,) =.22,97 c) C N s = -s i N 2 = ,7, N 2 =.4,46 d) C N = G + i. =, ,7 e i i e e
5 Escuel Técic Superior de Iformátic Covoctori de Septiembre - Pricipl Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 9 de Septiembre de 2, hors Durció: 2 hors. Rets ficiers: cocepto, elemetos y clsificció (, putos) 2. Clcule el vlor ctul y fil de u ret ul vrible e progresió ritmétic que tiee ls siguietes crcterístics: (2 putos) Primer térmio:. euros Rzó de l progresió: los térmios dismiuye todos los ños rzó del 2% ul Durció de l operció: ños Crácter: pospgble Tipo de iterés ul: %. U empréstito formdo por. obligcioes de 7 euros de vlor omil cd uo se mortiz e cico ños trvés de l reducció del vlor omil co cuots que v creciedo ulmete rzó de u 2% ul, siedo l primer cuot ul de cutí A. Teiedo e cuet que se bo cupoes l,% ul, clculr: ) Cutí e que se reduce el vlor omil e el tercer ño de vid. ( puto) Itereses que se bo durte el quito ño de vid de l operció. (, putos) c) Térmio mortiztivo bodo durte el segudo ño. (, putos) 4. U horrdor quiere dispoer de u cpitl de 2. euros detro de ños. Pr ello se compromete co u etidd ficier ivertir l fil de cd semestre l cutí ecesri pr lczr dicho objetivo. Supoiedo que el tipo de iterés l que se pct l operció es del 4% ul, clculr: ) Importe de ls ctiddes semestrles que h de etregr l etidd ficier. (, putos) Cpitl costituido cudo se cumple 4 ños y medio desde el iicio de l operció. ( puto) c) Itereses geerdos e el segudo semestre del octvo ño. ( puto)
6 Solucioes Septiembre 2 Pricipl. Teorí (+,) = A(.;-6) =. =.2,8,,,, = (+i) =.2,8 (+,) =.9,4. ) C 7 = Ar 7 = A (+,2+,4+,6+,8) = 7A A = = A =,4A =4 7 r= Is = Cs- i N I = C4 i N=,8,. = 6. c) 2 = C i N+ A2 N=(C- A) i N+,2 A = (7-),.+,2. = ) S S /2 X = C X = 2. X =.,97 i 2 i 2 =,4 =,98 C s = X Ss i C 9 =.,97 S 9,98 =.48,8 c) I s = Cs- i I 6 = C i 2 =.,97 S,98,98 = 2,
MATEMÁTICA FINANCIERA. Préstamos Comerciales
Préstmos MATEMÁTICA FINANCIERA PRÉSTAMOS Luis Alclá UNSL Segudo Cutrimeste 2016 Defiició Se llm préstmo l operció ficier cosistete e l etreg de u ctidd dd de diero (C 0 ), el pricipl (o deud), por prte
3 Sucesiones. y progresiones. 1. Sucesiones. Sigue las series siguientes: a) b) Solución: a) b)
Sucesioes y progresioes. Sucesioes Sigue ls series siguietes: ) b) 6 9 P I E N S A Y C A L C U L A ) b) Hll los diez primeros térmios de ls siguietes sucesioes: ), 8,, 8 b) 8,, 0, c),,, d) /, /, /6, /8
Licenciatura en Electrónica y Computación: Métodos Numéricos
CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que
Escribe en forma de intervalo y representa en la recta real los siguientes conjuntos de números: ( ) < ( )
Aritmétic y álgebr. Curso 0/5 Ejercicio. Escribe e form de itervlo y represet e l rect rel los siguietes cojutos de úmeros: Solució: ) x + < b) x 5 + < ( ) < ( ) ( ) < ( ) x x x (,) ) x x l distci etre"
TEMA 10 OPERACIONES DE AMORTIZACION O PRESTAMO (I)
Fcultd de.ee. Dpto. de Ecoomí Ficier I Dipoitiv Mtemátic Ficier TEM OPERIONES DE MORTIZION O PRESTMO (I). Pltemieto geerl 2. Método prticulre de mortizció - Prétmo merico - Prétmo frcé - Prétmo co cuot
Álgebra para ingenieros de la Universidad Alfonso X
Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):
Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos
C n i V0 V10 V'0 V'10 1.000 10 0,05 7721,73493 12577,8925 8107,82168 13206,7872
9. lcúlese los vlores cl y fl de u ret dscret, medt, formd por térmos de cutí. y vlord u tto perodl del %. Dstgur los csos prepgble y pospgble. Solucó: 7.7,7 ;.77,9 ; (pospgble).7, ;.,79 ; (prepgble).....
EJEMPLO CADENA DE CORREOS.
Uidd 4 (2) CADENA DE CORREOS MCCVT EJEMPLO CADENA DE CORREOS. ----------------------------------------------------------------------------- Actulmete hy e el mudo u totl de 7, 323, 557, 942.0 (iicios de
Progresiones aritméticas y geométricas
Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto
Tema 3: Progresiones.
Tem : Progresioes. Ejercicio. Los dos primeros térmios de u progresió geométric so 50 y 00. Clculr r, 6 y. Solució: 00 r 00 50 r r, 50 50, 00, 60, 4 4, 58, 5 4 ; 6, 08 6 TÉRMINO GENERAL: 50, - Ahor lo
3 Sucesiones. y progresiones. 1. Sucesiones. Sigue las series siguientes: a) b) Solución: a) b)
Sucesioes y progresioes. Sucesioes Sigue ls series siguietes: ) b) 6 9 P I E N S A Y C A L C U L A ) b) Hll los diez primeros térmios de ls siguietes sucesioes: ), 8,, 8 b) 8,, 0, c),,, d) /, /, /6, /8
3 Sucesiones. y progresiones. 1. Sucesiones. Sigue las series siguientes: a) b) Solución: a) b)
Sucesioes y progresioes. Sucesioes Sigue ls series siguietes: ) b) 6 9 P I E N S A Y C A L C U L A ) b) Hll los diez primeros térmios de ls siguietes sucesioes: ), 8,, 8 b) 8,, 0, c),,, d) /, /, /6, /8
POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES
Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir
En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.
Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos
Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos
TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES
TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES SUCESIÓN NUMÉRICA: es u fució cuyo domiio es el cojuto de los úmeros turles (o u subcojuto de él) y l imge está icluid e el cojuto de los Reles ( ) SUCESIÓN ARITMÉTICA:
CONCEPTOS BÁSICOS DE PRESTAMOS.
GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,
a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn
TEMA ÁLGEBRA DE MATRICES Mtemátics CCSSII º Bchillerto TEMA ÁLGEBRA DE MATRICES NOMENCLATURA Y DEINICIONES - DEINICIÓN Ls mtrices so tls umérics rectgulres ª colum ª fil m m m m ( ij ) Est es u mtriz de
Progresiones. Antes de empezar. Para empezar, te propongo un juego sencillo, se trata de averiguar la ficha de dominó que falta en cada caso.
Progresioes Ates de empezr? Pr empezr, te propogo u juego secillo, se trt de verigur l fich de domió que flt e cd cso. MATEMÁTICAS 3º ESO 73 Progresioes. Sucesioes Defiició. U sucesió es u cojuto ordedo
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que
Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1
Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...
SÍLABO DEL CURSO DE GEOMETRÍA DESCRIPTIVA
SÍLABO DEL CURSO DE GEOMETRÍA DESCRIPTIVA I. INFORMACIÓN GENERAL: 1.1 Fcultd: Igeierí 1.2 Crrer Profesiol: Igeierí Geológic 1.3 Deprtmeto: ---------------- 1.4 Requisito: Dibujo de Igeierí /1º ciclo 1.5
MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos
Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente
DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID
EXAMEN MATEMATICAS FINANCIERAS CEU 27 JUNIO 2008 PRIMERA PREGUNTA Responder ls siguientes cuestiones: 1.1 Si plicmos un tipo nominl nul del % un préstmo, y se pg por trimestres, Cuál será el tipo trimestrl
Unidad 7: Sucesiones. Solución a los ejercicios
Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio
ADMINISTRACIÓN Y FINANZAS. GRADO SUPERIOR RENTAS CONSTANTES. TEMA 5 TEMA 5: RENTAS
TEMA 5: RENTA. INTRODUCCIÓN Llmmos ret u sucesó de cptles que se hce efectvos e vecmetos peródcos. Ejemplo: lquler, slros, préstmos, etc. A cd uo de estos cptles se le deom térmos o ulddes (A. Llmmos durcó
Matemáticas II Hoja 2: Matrices
Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)
SISTEMAS DE ECUACIONES
SISTEMS DE ECUCIONES U sistem de ecucioes es u cojuto de ecucioes que cotiee ls misms vribles. L solució so los vlores de ls vribles pr los cules el sistem se cumple. Resolver u sistem es ecotrr tods ls
DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID
/ Grl. Ampudi, 6 Teléf.: 9 5-9 55 9 ADRID FBRRO 5 UNIVRSIDAD PONTIFIIA D SALAANA ATÁTIAS DISRTAS FBRRO 5 (TARD) PROBLA : Se cooce el siguiete comportmieto de Luis e u resturte l que v comer: - No es verdd
Guía ejercicios resueltos Sumatoria y Binomio de Newton
Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv
Solución Junio 09 - Primera Semana + A(2.000;1,01) (1+0,06) = 8 0, =(1+0,06) -1=0, , ,029563
Esuel Téni Superior de Informáti Convotori de Junio - Primer Semn Mteril Auxilir: Cluldor finnier GESTIÓN FINANCIERA 9 de Myo de 009-18,30 hors Durión: hors 1. Explique rzondmente ómo se obtiene el venimiento
Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes
z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente
UNIDAD.- LOGARIMOS. APLICACIONES (tem del libro). LOGARIMO DE UN NÚMERO Cosideremos l ecució: 8. Como vemos l icógit está e el epoete, lo que l hce diferete todos los tipos vistos hst hor. es el epoete
Capítulo 7. Series Numéricas y Series de Potencias.
Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El
SISTEMAS DE ECUACIONES
. Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.
Una potencia es una forma abreviada de escribir un producto de factores iguales:
POTENCIAS. POTENCIAS DE NÚMEROS ENTEROS U poteci es u for revid de escriir u producto de fctores igules E ls potecis, el fctor repetido se ll se, y el úero de veces que se repite, expoete. Al utilizr ls
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.
Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..
Ecuaciones de recurrencia
Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,
IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti
IES Mediterráeo de Málg Juio Ju Crlos loso Giotti UNIVERSIDD DEL PIS VSCO PRUES DE CCESO L UNIVERSIDD CONVOCTORI DE JUNIO Este Eme tiee dos opcioes. Dees de cotestr u de ells No olvides icluir el código
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS
TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u
NÚMEROS REALES. nombre expresión desigualdad representación expresión desigualdad representación. [a, b] (, b]
Lo fudmetl de l uidd Nomre y pellidos:... Curso:... Fech:... NÚMEROS REALES NÚMEROS RACIONALES So los que se puede expresr como... ejemplo: 4, = NÚMEROS IRRACIONALES So quellos cuy expresió deciml.. ejemplo:
PROBLEMAS Y EJERCICIOS RESUELTOS
PROGRESIONES 3º ESO PÁGINA EJERCICIOS RESUELTOS DE PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS UN POCO DE HISTORIA: UN NIÑO LLAMADO GAUSS Hce poco más de dos siglos, u mestro lemá que querí pz y trquilidd e
Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.
Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,
EJERCICIOS RENTAS ORDINARIAS
UNIVERIDD DE LO NDE FCULTD DE CIENCI ECONÓMIC Y OCILE DEPRTMENTO DE CIENCI DMINITRTIV CÁTEDR: NÁLII DE L INVERIÓN IGNTUR: MTEMÁTIC FINNCIER PROFEOR: MIGUEL. OLIVERO V. EJERCICIO RENT ORDINRI ) Hlle el
Aproximación al área bajo una curva.
Aproimció l áre jo u curv. Por: Miguel Solís Esquic Profesor de tiempo completo Uiversidd Autóom de Cips Clculr cd u de ls áres de los rectágulos que lle l regió cotd pr lczr el vlor del áre ecesrimete
1. Discutir según los valores del parámetro k el sistema
. Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de
PAIEP. Sumas de Riemann
Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,
1.3.6 Fracciones y porcentaje
Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:
TEMA 1. ÁLGEBRA LINEAL
Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y
EJERCICIOS PENDIENTES 3º E.S.O. NÚMEROS ENTEROS Y RACIONALES
º E.S.. Clculr NÚMERS ENTERS Y RACINALES PERACINES CN NÚMERS ENTERS Y RACINALES RDEN DE LAS PERACINES º Se clcul los prétesis de detro hci fuer. º Cudo N HAYA PARÉNTESIS se efectú ls opercioes siguiedo
4 Sucesiones. Progresiones
Sucesioes. Progresioes ACTIVIDADES INICIALES.I. Aliz l fotogrfí co teció y señl l meos dos formcioes turles que se igules o teg u estructur muy precid. El iterior de los itestios y los lvéolos pulmores..ii.
3.- Solución de sistemas de ecuaciones lineales
.- Solució de sistes de ecucioes lieles U siste de ecucioes lieles e icógits tiee l for geerl: + + + +... + +... + +... + (.) L solució de estos sistes de ecucioes lieles ls podeos ctlogr segú l tl. Siste
CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS
Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,
8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1
E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de
Vc D 40 N = N = RPM N = 130 RPM. = 0,3(130) a m = 39 mm/min. = = = 2 n = 2 pasadas 2p 2(3)
TORNOS TIEMPOS DE MAQUINADO PROBLEMAS SOBRE TIEMPOS DE MECANIZADO EN EL TORNEADO ) Se dese cilidrr u iez de 00 00 de logiud (ver figur), r dejrl 88 ilíeros de diáero. L 00 Uilizdo u oro cuy g de velociddes
Empleo de Matemática Financiera
FACULTAD DE CONTABILIDAD Y AUDITORIA Empleo de temátic Ficier Ig. rco Guchimboz Septiembre 008 Eero 009 ABATO ECUADOR PRESENTACIÓN L mtemátic fi costituye u de ls áre más útiles e iterestes de l mtemátic
Guía de actividades. PROGRESIONES SERIES Profesor Fernando Viso
Guí de ctividdes PROGRESIONES SERIES Profesor Ferdo Viso GUIA DE TRABAJO Mteri: Mtemátics Guí #. Tem: Progresioes ritmétics Fech: Profesor: Ferdo Viso Nombre del lumo: Secció del lumo: CONDICIONES: Trbjo
LOGARITMO 4º AÑO DEF. Y PROPIEDADES
LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,
4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión
) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.
Anillos de Newton Fundamento
Aillos de Newto Fudmeto Los illos de Newto so producidos por itererecis cudo dos hces de luz, procedetes de l mism uete, recorre cmios ópticos dieretes. Eiste distitos modos de logrr este eómeo, el que
Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales
SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u
GESTIÓN FINANCIERA I (Plan Nuevo y Antiguo)
Escuel Técnic uperior de Informátic Convoctori de Junio - Primer emn Mteril Auxilir: Clculdor finncier GETIÓN FINANCIERA I (Pln Nuevo y Antiguo) 7 de Myo de 005-11,30 hors Durción: hors 1. ) Teorí: Ley
SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable
SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Pr Grdos e Igeierí Cpítulo 4: Itegrció e u vrible Domigo Pest Glvá José Muel Rodríguez Grcí Figurs relizds co Arturo de Pblo Mrtíez 4 Itegrció e u vrible 4. Itegrció
A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES.
CAPÍTULO X. INTEGRACIÓN DEFINIDA SECCIONES A. Defiició de fució itegrble. Primers propieddes. B. Teorems fudmetles del cálculo itegrl. C. Ejercicios propuestos. A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS
Operaciones con Fracciones
Frccioes Opercioes co frccioes Opercioes co Frccioes Reducció de frccioes Frccioes co igul deomidor: De dos frccioes que tiee el mismo deomidor es meor l que tiee meor umerdor. < Frccioes co igul umerdor:
El dual tiene tantas restricciones como variables tiene el primal.
.. EL MODELO DUAL A todo progr liel, lldo prole pril, le correspode otro que se deoi prole dul. Ls relcioes eistetes etre os proles so ls siguietes: El dul tiee tts vriles coo restriccioes eiste e el pril.
Supertriangular Subtriangular Diagonal Unidad
MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos
RESUMEN FUNCIÓN DERIVADA Y APLICACIONES
Mtemátics II Proesor: Mrí José Sáchez Quevedo RESUMEN FUNCIÓN DERIVADA Y APLICACIONES DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se u ució cotiu e =, se deie: ( ) ( ) ( ) lim se le deomi derivd de l ució e el
2. LEYES FINANCIERAS.
TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),
Matemáticas 1 EJERCICIOS RESUELTOS:
Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l
FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)
FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes
Matemáticas I - 1 o BACHILLERATO Binomio de Newton
Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete
( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m
Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede
Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino
i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto
Unidad didáctica 3 Las potencias
Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.
Sucesiones de funciones
Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci
los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2
CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie
OPCIÓN A. c) (1 punto)
UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Curso / MTERI MTEMTICS II. se de Modlidd OPCIÓN Ejercicio. Clificció ái putos. Sbiedo que, utilizdo ls
Sucesiones de Números Reales
Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u
TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN
TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis
ACTIVIDAD INTEGRADORA Nº INTERÉS SIMPLE
www.gociwo.wordpress.com ACTDAD NTEGRADORA Nº 28 31 NTERÉS SMPLE Cosideremos lo siguiete: U bco pg u iterés simple rzó de 8% por ño pr ciertos depósitos, plzo ijo. U cliete deposit S/ 10 000.00, cico ños.
Tema 1: Números reales.
Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto
EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda*
EL TEOREA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE Alerto E. J. cord* *Igeiero Geogrfo Profesor Titulr de Alisis temtico II Fcultd de Ciecis Ecoomics Estdistic Uiversidd Nciol de Rosrio 5.- Aliccioes
La Integral Definida
Cpítulo 5 L Itegrl Defiid 5.. Prtició U cojuto fiito de putos P = {x, x, x,, x } es u prtició de [, b] si, y solmete si, = x x x x = b. 5.. Sum Superior y Sum Iferior Se y = f(x), u fució cotiu e [, b].
OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits
PRÉSTAMOS II: Sistema Francés: anualidad constante (teoría)
PRÉSAMOS : Siste Frcés: uli costte (teorí) Profesor: Ju Atoio Gozález Díz Deprteto Métoos utittivos Uiversi Pblo e Olvie www.clsesuiversitris.co SSEMA DE AMORZAÓN MEDANE ANUALDADES ONSANES. SSEMA FRANÉS
Potencias y raíces de números enteros
Potecis y ríces de úeros eteros. Opercioes co potecis Poteci de productos y cocietes Pr hcer el producto de dos úeros elevdo u is poteci tiees dos cios posibles, cuyo resultdo es el iso: Puedes priero
1.1 Secuencia de las operaciones
1 Uiversidd Ctólic Lo Ágeles 1. FUNDAMENTOS MATEMATICOS BASICOS 1.1 Secueci de ls opercioes Ls opercioes mtemátics tiee u orde de ejecució, de mer que es ecesrio teer presete l secueci lógic de ls opercioes,
1. Determinar razonadamente si el número λ 3 2 n
SOLUCIONES DE LA 8ª OME Determir rzodmete si el úmero λ es irrciol r todo etero o egtivo SOLUCIÓN Suogmos que es r Etoces es múltilo de y es múltilo de ero o de co lo que o uede ser u cudrdo erfecto Suogmos
MATRICES Y DETERMINANTES
Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr
x que deben ser calculados
UNIDD 9.- Sistes de ecucioes lieles UNIDD 9: Sistes de ecucioes lieles. SISTEMS DE ECUCIONES LINELES U siste de ecucioes lieles co icógits es tod epresió del tipo:.. Llos: - Coeficietes del siste los úeros
Sucesiones de números reales
Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5
103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?
103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics
NÚMEROS ( 4) ENTEROS RACIONALES 1 + : 2. A) Ordena los siguientes números enteros: 4, B) Calcula: 2) 3) 4) ( ) ( ) 3. A) Calcula:
NÚMEROS ENTEROS A Orde los siguietes úmeros eteros,,,,, 8, 8 B Clcul 7 ( ( 7 ( ( ( 7 0 ( ( 7 7 ( 0 ( ( 8 7 ( 0 ( 9 8 [ ( 0 7] 0 [ 8 ] ( 7 8 [ ( ] ( ( 8 ( ( ( ( [ ] [ 9 ] ( 7 8 [ ( ] [ ( ] {[ ] [ ( ] }
INSTRUCTIVO PARA TUTORÍAS
INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l
TEMA 5: INTERPOLACIÓN
5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x
FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE POTENCIACIÓN Y RADICACIÓN DOCENTE: IDALY MONTOYA A.
. POTENCIACIÓN FACULTAD DE INGENIERIA Y CIENCIAS BASICAS Llos poteci de u úero reltivo, l producto de torlo coo fctor tts veces coo se quier. Si es u úero reltivo culquier es u úero turl, tedreos l otció,
b) Un empréstito del tipo cupón cero presenta las siguientes características:
Fcultd de Ciencis Económics Convoctori de Junio Primer emn Mteril Auxilir: Clculdor finncier MATEMÁTICA DE LA OPERACIONE FINANCIERA II 26 de Myo de 2010 16 hors Durción: 2 hors 1. ) Explicr rzondmente