Florero Figura 2. Tres tipos de presentaciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Florero Figura 2. Tres tipos de presentaciones"

Transcripción

1 Plan de clase (1/3) Escuela: Fecha: Profesor (a). Curso: Matemáticas 7 Eje temático: MI Contenido: Resolución de problemas de conteo mediante diversos procedimientos. Búsqueda de recursos para verificar los resultados. Intenciones didácticas: Que los alumnos utilicen diversos procedimientos para resolver problemas que impliquen obtener la cantidad de combinaciones que se pueden hacer con los elementos de un conjunto dado. Consigna: Organizados en equipos resuelvan los siguientes problemas. 1. Samuel vende arreglos florales y para esta semana ha conseguido cuatro clases de flores (Figura 1). Por cada clase de flor ofrece tres presentaciones distintas (Figura 2): Figura 1. Cuatro clases de flores Caja Florero Figura 2. Tres tipos de presentaciones Pedestal - Dibuja una tabla o un diagrama para contar todos los arreglos diferentes que ofrece Samuel - Qué operación con los datos se puede realizar para obtener el número de arreglos diferentes? - En este caso, Es lo mismo flor roja y arreglo florero que arreglo florero y flor roja?

2 2. En una nevería se venden los siguientes sabores: fresa, vainilla, limón, nuez y chocolate. Juan quiere comprar un helado de dos bolas de sabores diferentes de las que se sirven en un vaso. - Haz una tabla o un diagrama en el que representes todas las diferentes posibilidades en las que se puede pedir el helado. Cuántas formas diferentes hay? - Qué operación u operaciones con los datos llevan al resultado? - En este caso, es diferente un helado de fresa y limón que un helado de limón y fresa? Por qué? - Si además se considera la posibilidad de que ambas bolas sean de un mismo sabor; aprovecha lo que hiciste en el punto anterior para determinar todas las formas diferentes en que se puede pedir el helado. - Qué operación u operaciones con los datos llevan a este resultado? Consideraciones previas: En el primer problema, los estudiantes pueden hacer un listado sistemático, un arreglo rectangular o un diagrama de árbol; estas dos últimas representaciones son las más apropiados para inferir que la operación que lleva al resultado es el producto de las cardinalidades de los conjuntos (regla del producto combinatorio). Algunos estudiantes pueden tener la tendencia a realizar listados dibujando las flores o los helados, estas son representaciones icónicas que se deben desincentivar poco a poco a favor del uso de símbolos; así mismo el uso de los nombres completos (margarita, Florero) para hacer los listados conviene reducirlos, por ejemplo (m, F) o algo equivalente. En el segundo problema también se esperan listados, arreglos rectangulares o diagramas de árbol, pero hay varias diferencias respecto al anterior: 1) No hay dos conjuntos diferentes, si no las dos elecciones (sabor de la bola) se realizan sobre el mismo conjunto. 2) Si se aplica la regla del producto debe notarse que se cuenta 2 veces un mismo tipo de helado (Fresa-limón es igual a Limón-fresa). La intención es que los estudiantes entiendan el esquema de la regla del producto combinatorio pero que lo apliquen de manera flexible y no mecánicamente: Si en un conjunto se puede elegir un objeto de N maneras y de otro conjunto se puede elegir un objeto de M maneras, entonces una pareja formada por un objeto de cada conjunto se puede elegir de N M maneras. Con el fin de que los estudiantes adquieran esta regla, los recursos de los arreglos rectangulares y el diagrama de árbol sirven como un medio para ese fin, pues permiten inferir la regla, justificarla y controlar su aplicación. La potencia de la regla del producto combinatorio se pone de manifiesto cuando la cardinalidad de alguno o ambos conjuntos en juego es muy grande. Una dificultad que suelen tener los estudiantes es saber cuándo se cuenta o no el orden; por ejemplo, en el primer problema la pareja (clase de la flor, presentación del arreglo) es la misma que (presentación del arreglo, clase de la flor), pero al aplicar la regla del producto (4x3 = 12) no se están contando ambas, sino sólo una Por qué? En cambio, en el problema 2, aunque también la pareja (sabor fresa, sabor vainilla) es la misma que (sabor vainilla, sabor fresa), al aplicar la regla del producto para el caso en que no se permite el mismo sabor (5 x 4 = 20) se están contando las parejas y sus recíprocas y, por lo tanto, es necesario dividir entre 2, obteniéndose 10 diferentes tipos de helado de dos bolas. Los estudiantes deben reflexionar y encontrar las razones por lo que esto es así; no se trata de que obtengan una regla general sobre cuándo se cuentan o no las parejas recíprocas, sino en cada caso particular analizar este punto.

3 Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

4 Plan de clase (2/3) Escuela: Fecha: Profesor (a). Curso: Matemáticas 7 Eje temático: MI Contenido: Resolución de problemas de conteo mediante diversos procedimientos. Búsqueda de recursos para verificar los resultados. Intenciones didácticas: Que los alumnos utilicen diversos procedimientos para resolver problemas que impliquen obtener la cantidad de variaciones que se pueden hacer con los elementos de un conjunto dado. Consigna: Organizados en equipos lean los enunciados y hagan lo que se pide. 1. Se tienen cuatro lienzos de tela, cada uno de uno de los siguientes colores: rojo, azul, verde y blanco, con los que se van a elaborar banderas. Cada bandera debe tener un color en cada franja, el cual puede no repetirse o se puede repetir una o dos veces. - Realiza un diagrama para representar todas las banderas que se pueden hacer Cuántas banderas se puede hacer? - La bandera (rojo, azul, rojo) es diferente de la bandera (azul, rojo, rojo)? - Qué operación u operaciones con los datos llevan al resultado? - Si se requieren banderas en las que no se puede repetir el color de cada franja Cómo se puede determinar el número de estas banderas? Encuentra dicho número: - Qué operación u operaciones con los datos llevan al resultado? 2. En un ayuntamiento las placas que deben portar los vehículos de dos ruedas para poder circular están formadas por números de 3 cifras: Los funcionarios del ayuntamiento, para distinguir entre placas de bicicleta de las de motocicleta, deciden que las primeras sólo utilicen los dígitos 0, 1, 2, 3 y 4. - Realiza un diagrama para representar todos las placas diferentes para bicicleta que se pueden formar con esos dígitos Cuántas placas diferentes se pueden hacer? - Qué operación u operaciones llevan al resultado? - Son diferentes las placas 325 de la placa 352? y la 324 de la 423?

5 - Si se decide además no emitir placas que comiencen con el número cero Cuántas placas se pueden formar? Cuántas se deben restar al conteo anterior? - Si sí se permiten las placas que comiencen con cero, pero no las que tengan dígitos repetidos Cuántas placas se pueden formar? - Qué operación u operaciones llevan a este resultado? Consideraciones previas: A diferencia de los problemas del plan anterior, en éstos sí importa el orden de los elementos de los arreglos; además se implican tres en lugar de sólo dos elecciones. En el problema 1, igual que en los problemas anteriores, algunos estudiantes intentarán hacer una lista sistemática dibujando las banderas completas e iluminándolas; se les debe sugerir que utilicen símbolos y eviten las representaciones icónicas. También conviene propiciar el uso de diagramas de árbol o, en el caso de los más avanzados, la regla del producto; sólo conviene utilizar las listas en las primeras exploraciones; esto ayuda a decidir cómo representar los objetos y a entender el problema. Con estos problemas se espera que los estudiantes noten 1) que los arreglos con los mismos objetos son diferentes si el orden es distinto; 2) que se aplica la regla del producto dos veces sucesivas; 3) en el caso en que no se permiten repeticiones se utiliza la cardinalidad del conjunto original pero cada vez restando una unidad: n(n-1)(n-2). Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

6 Plan de clase (3/3) Escuela: Fecha: Profesor (a). Curso: Matemáticas 7 Eje temático: MI Contenido: Resolución de problemas de conteo mediante diversos procedimientos. Búsqueda de recursos para verificar los resultados. Intenciones didácticas: Que los alumnos utilicen diversos procedimientos para resolver problemas que impliquen obtener la cantidad de permutaciones que se pueden hacer con los elementos de un conjunto dado. Consigna: Organizados en equipos lean los enunciados y respondan lo que se pide. 1. En un edificio nuevo hay 5 departamentos, cada departamento cuenta con un lugar de estacionamiento. Se han habitado sólo dos departamentos, el de Carmen y el de Daniel, quienes pueden colocar cada noche sus coches en el lugar que prefieran, si no está ocupado. - Realiza un diagrama para representar todas las formas en que se pueden estacionar los dos coches Cuántas formas diferentes hay de estacionarlos? - Qué operación u operaciones con los datos llevan al resultado? 2. Suponga que se forman arreglos de tamaño cinco utilizando sólo dos letras A y tres letras B; por ejemplo: AAABB, AABAB, etc. - Realiza una tabla o diagrama para representar todos los arreglos que se pueden formar Cuántos hay? - Qué operación u operaciones con los datos llevan al resultado? - Qué similitud y qué diferencia tiene este problema con el problema 1 de los coches y estacionamientos? Consideraciones previas: El problema los coches es de colocación; el razonamiento sigue este esquema: De cuántas maneras se puede escoger un estacionamiento para el coche de Carmen? Respuesta: de 5 maneras. Una vez elegido el lugar para el coche de Carmen De cuántas maneras se puede elegir un lugar para el coche de Daniel? Respuesta: de 4 maneras. Luego hay 5x4=20 formas en que pueden colocar sus coches. En los problemas de colocación la aplicación de la regla del producto requiere que el estudiante determine primero cuál es el conjunto en el que debe elegir; se elige el estacionamiento para cada coche y no el coche para cada estacionamiento. El problema 2 es muy importante pues permitirá entender la expansión del binomio de Newton. El razonamiento es similar al de los coches y estacionamientos, donde ahora las A s juegan el papel de los coches, aunque en este caso son indistinguibles; de donde a 20 hay que dividirlo entre 2 para obtener 10 Por qué? Conviene que en estos problemas se deje a los estudiantes que utilicen sus recursos de representación (listas, arreglos rectangulares, diagramas de árbol) con libertad y que lleguen a la solución sin apresurarlos a la aplicación de la regla del producto. Una vez que hayan encontrado la solución con sus propios recursos se les preguntará cómo

7 encontrar la solución haciendo operaciones y se les puede sugerir el razonamiento anterior como ejemplo para resolver otros problemas de colocación. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

La ruleta Plan de clase (1/3) Escuela: Fecha: Profr. (a):

La ruleta Plan de clase (1/3) Escuela: Fecha: Profr. (a): La ruleta Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 3 Secundaria Eje temático: MI Contenido: 9.2.6 Cálculo de la probabilidad de ocurrencia de dos eventos mutuamente excluyentes

Más detalles

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano.

Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Consigna: En equipos, resuelvan la siguiente actividad. A partir de la siguiente

Más detalles

Es una persona que ayudará a que los derechos de las personas con discapacidad se hagan realidad

Es una persona que ayudará a que los derechos de las personas con discapacidad se hagan realidad Naciones Unidas Asamblea General - Concejo de Derechos Humanos Acerca de la Relatora Especial sobre los derechos de las personas con discapacidad Es una persona que ayudará a que los derechos de las personas

Más detalles

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R

3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R MATEMÁTICAS PARA EDUCACIÓN INFANTIL N Enseñamos y aprendemos llos números:: Método Siingapur y Fernández Bravo,, Porr Clarra Garrcí ía,, Marrtta Gonzzál lezz y Crri isstti ina Lattorrrre.. Ú M E R O S

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

Resolución de problemas de multiplicación

Resolución de problemas de multiplicación sección secciónc Resolución de problemas de multiplicación En esta sección se introduce la combinación para identificar todos los posibles resultados de un problema multiplicativo y se continúa con las

Más detalles

Experiencias de aprendizaje Núcleo de Aprendizajes Relaciones Lógico-Matemáticas y Cuantificación

Experiencias de aprendizaje Núcleo de Aprendizajes Relaciones Lógico-Matemáticas y Cuantificación Orientaciones para la Implementación de los Programas Pedagógicos de los Niveles de Transición 75 Experiencias de aprendizaje Núcleo de Aprendizajes Relaciones Lógico-Matemáticas y Cuantificación 76 Ministerio

Más detalles

Problemas resueltos de combinatoria

Problemas resueltos de combinatoria Problemas resueltos de combinatoria 1) De cuántas formas distintas pueden sentarse seis personas en una fila de butacas? 2) De cuántas formas pueden mezclarse los siete colores del arco iris tomándolos

Más detalles

Sean capaces de resolver problemas de conteo utilizando más de un procedimiento, reconociendo cuál o cuáles son más eficaces.

Sean capaces de resolver problemas de conteo utilizando más de un procedimiento, reconociendo cuál o cuáles son más eficaces. Conteo 10 1 Diagrama de Árbol Sean capaces de resolver problemas de conteo utilizando más de un procedimiento, reconociendo cuál o cuáles son más eficaces. En este tema lo principal es saber usar el diagrama

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

PASOS PARA DESARROLLAR UN BUEN PROYECTO

PASOS PARA DESARROLLAR UN BUEN PROYECTO PASOS PARA DESARROLLAR UN BUEN PROYECTO El desarrollo de un proyecto requiere de tiempo, creatividad, organización, participación de los integrantes del equipo y mucho entusiasmo! Los pasos que deben desarrollar

Más detalles

Ross desea ordenar una pizza, de cuántas opciones diferentes puede seleccionar Ross la pizza con sus complementos?

Ross desea ordenar una pizza, de cuántas opciones diferentes puede seleccionar Ross la pizza con sus complementos? M510: La pizza A) PRESENTACIÓN DEL PROBLEMA En una pizzeria ofrecen la pizza base con queso y tomate y le puedes agregar dos de cuatro opciones como complemento: aceitunas, jamón, champiñones o salami.

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Plan de clase (1/3) Intenciones didácticas: Que los alumnos estimen y relacionen el volumen de conos y cilindros.

Plan de clase (1/3) Intenciones didácticas: Que los alumnos estimen y relacionen el volumen de conos y cilindros. Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 9 Eje temático: FE y M Contenido: 9.5.4 Estimación y cálculo del volumen de cilindros y conos o de cualquiera de las variables implicadas

Más detalles

El desarrollo del pensamiento multiplicativo.

El desarrollo del pensamiento multiplicativo. El desarrollo del pensamiento multiplicativo. Análisis de las diferentes situaciones multiplicativas, su aplicación en el aula y en el desarrollo del pensamiento matemático. Autor: Mery Aurora Poveda,

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 16 1 Pág. 1 Página 220 Ruperto sale de su casa, R, compra el periódico en el quiosco, K, y va a buscar a su amiga Pilar, P. Cuántos caminos distintos puede tomar para ir de su casa al quiosco? Cuántos

Más detalles

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo.

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo. COMBINATORIA Introducción a la Combinatoria Recuento A menudo se presenta la necesidad de calcular el número de maneras distintas en que un suceso se presenta o puede ser realizado. Otras veces es importante

Más detalles

ANALISIS COMBINATORIO.

ANALISIS COMBINATORIO. ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si un suceso puede tener lugar de m maneras distintas y cuando ocurre una de ellas se puede realizar otro suceso inmediatamente de n formas diferentes, ambos

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Plan de clase (1/3) Profr(a).

Plan de clase (1/3) Profr(a). Plan de clase (1/3) Que los alumnos identifiquen conjuntos de cantidades que son directamente proporcionales y utilicen de manera flexible procedimientos tales como: el cálculo del valor unitario, cálculo

Más detalles

El rincón de los problemas

El rincón de los problemas Marzo de 2010, Número 21, páginas 165-172 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe De lo particular a lo general, usando grafos Problema En

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Intereses y establecimiento de metas Modalidad: grupal Estudiantes con un avance crediticio del:

Intereses y establecimiento de metas Modalidad: grupal Estudiantes con un avance crediticio del: TEMA: PROYECTO DE VIDA M. C. Hilda Leticia Gómez Rivas Objetivo: Durante las 3 sesiones del periodo el estudiante reflexionará sobre quien es y hacia donde dirige el rumbo de su vida, visualizando las

Más detalles

Elementos de Combinatoria

Elementos de Combinatoria Elementos de Combinatoria 1 Introducción Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte

Más detalles

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN

PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN PRÁCTICA N 2 SISTEMAS DE NUMERACIÓN Ejercicio 1. Diseñar una planilla EXCEL que tome como dato de entrada un número entero y devuelva la representación en base 2. Testearla con los números 23, 245, 673,

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 3 Análisis Combinatorio Cursada 2014

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 3 Análisis Combinatorio Cursada 2014 S 1 c 1 S 2 C 1 ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 3 Análisis Combinatorio Cursada 2014 Desarrollo Temático de la Unidad Conceptos preliminares. Principio fundamental del análisis combinatorio.

Más detalles

Propuesta didáctica: Trucos para sumar

Propuesta didáctica: Trucos para sumar Propuesta didáctica: Trucos para sumar Clase: Inicial 5 años 1er. año Contenidos programáticos y contenidos involucrados: Composición y descomposición aditiva de números entre 0 y 100. Valor posicional

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema:

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema: Problemas fáciles y problemas difíciles Alicia Avila Profesora investigadora de la Universidad Pedagógica Nacional Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el

Más detalles

FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 MÓDULO DE DISEÑO Y PRODUCCIÓN DE MATERIALES UNIDAD 6 B

FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 MÓDULO DE DISEÑO Y PRODUCCIÓN DE MATERIALES UNIDAD 6 B 141 1 FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 Unidad 6 B 142 2 Índice SEGUIMIENTO DE PERSONAS 1 INFORMES 2 143 3 SEGUIMIENTO DE PERSONAS E INFORMES EN MOODLE El seguimiento de los participantes en Moodle

Más detalles

Curso Excel Básico - Intermedio

Curso Excel Básico - Intermedio Curso Excel Básico - Intermedio Clase 4 Relator: Miguel Rivera Adonis Introducción Base de Datos: Definición de Base de Datos Ordenar datos Formulario Filtros Trabajar con Sub-Totales Validación de Datos

Más detalles

ARCHIVOS DE SONIDO, COMUNICACIÓN ORAL Y AUTOEVALUACIÓN Elisa Bernáldez 1 Halden vgs

ARCHIVOS DE SONIDO, COMUNICACIÓN ORAL Y AUTOEVALUACIÓN Elisa Bernáldez 1 Halden vgs ARCHIVOS DE SONIDO, COMUNICACIÓN ORAL Y AUTOEVALUACIÓN Elisa Bernáldez 1 Halden vgs En 2006 entró en vigor una nueva ley de enseñanza en Noruega. Entre otras cuestiones la Ley K06 establece, a la hora

Más detalles

Información importante para el proveedor de Servicios de Apoyo en el Hogar (IHSS)

Información importante para el proveedor de Servicios de Apoyo en el Hogar (IHSS) STATE CALIFORNIA OF CALIFORNIA DEPARTMENT OF SOCIAL SERVICES HEALTH AND HUMAN SERVICES AGENCY ADULT PROGRAMS DIVISION Información importante para el proveedor de Servicios de Apoyo en el Hogar (IHSS) Un

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad.

(1) Medir el azar. ESTALMAT-Andalucía Actividades 06/07. a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. (1) Medir el azar Se lanzan dos dados y sumamos los puntos de las caras superiores a) Cuenta los casos en que la suma de salga múltiplo de tres y calcula la probabilidad. Una bolsa contiene 4 bolas rojas,

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS

PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS La finalidad de una prueba de k muestras es evaluar la aseveración que establece que todas las k muestras independientes provienen de poblaciones

Más detalles

FASES DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS

FASES DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS FASES DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS Varios autores han tratado de identificar y describir las distintas fases en el proceso de resolución de problemas. Polya (1945), en su modelo descriptivo,

Más detalles

CUESTIONARIO LIDERAZGO SITUACIONAL

CUESTIONARIO LIDERAZGO SITUACIONAL CUESTIONARIO LIDERAZGO SITUACIONAL Instrucciones Seleccione una y sólo una de las opciones presentadas a cada situación planteada. No busque la solución ideal sino aquello que Ud. haya o hubiera hecho

Más detalles

Recursos para el Estudio en Carreras de Ingeniería 2006 UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES

Recursos para el Estudio en Carreras de Ingeniería 2006 UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES UNIDAD TEMÁTICA Nº 4 LA TOMA DE APUNTES En esta unidad te invitamos a que: Adviertas la importancia de los apuntes como un recurso para iniciar el estudio de un tema. Te apropies de algunas estrategias

Más detalles

Concepto de fracción. Fracciones equivalentes

Concepto de fracción. Fracciones equivalentes FRACCIONES: DOCUMENTO INTRODUCTORIA. Concepto de fracción Raúl ha conseguido el cinturón azul de judo. Para celebrarlo, ha invitado a sus amigos a una pequeña fiesta en casa. Su padre les ha preparado

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Problemas a la carta

Problemas a la carta Problemas a la carta Enseñanza Alfinio Flores Peñafiel y Nora G. Ramírez Arizona State University Maricopa Community Colleges resumen Se presentan cinco problemas que pueden ser resueltos mediante la utilización

Más detalles

FORMATO FICHA PEDAGOGICA SESIONES EDUCATIVAS CÓMO PREGUNTAR DE LA MANERA CORRECTA

FORMATO FICHA PEDAGOGICA SESIONES EDUCATIVAS CÓMO PREGUNTAR DE LA MANERA CORRECTA FORMATO FICHA PEDAGOGICA SESIONES EDUCATIVAS ELABORADO POR: NEIDY VILLAMIZAR ELVIA SOLANO Semana: 3 Del 18 de Noviembre al 21 Noviembre de 2014 CÓMO PREGUNTAR DE LA MANERA CORRECTA El objetivo es orientar

Más detalles

TEST 002 APTITUDES DE LIDERAZGO SITUACIONAL. Profesor: Sergio Rojas Rachel MBA

TEST 002 APTITUDES DE LIDERAZGO SITUACIONAL. Profesor: Sergio Rojas Rachel MBA TEST 002 APTITUDES DE LIDERAZGO SITUACIONAL Profesor: Sergio Rojas Rachel MBA 2007 A continuación tiene usted doce situaciones con cuatro posibilidades de resolución para cada una de ellas, lo que debe

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Ejemplo de tipo variable

Ejemplo de tipo variable CALCULADOR CONTABLE Ejemplo de tipo variable Supongamos un préstamo con las siguientes características: Valor nominal: 100.000 Fecha de contratación: 20/10/2009 Carencia de capital durante tres años Siete

Más detalles

PEOBLEMAS RESUELTO DE CADENAS DE MARKOV

PEOBLEMAS RESUELTO DE CADENAS DE MARKOV PROBLEMAS RESUELTOS DE CADENAS DE MARKOV TEMA: CADENAS DE MARKOV Prof.: MSc. Julio Rito Vargas Avilés I. El departamento de estudios de mercado de una fábrica estima que el 20% de la gente que compra un

Más detalles

COMBINATORIA VARIACIONES. Las variaciones son aquellas formas de agrupar los elementos de un conjunto teniendo en cuenta que:

COMBINATORIA VARIACIONES. Las variaciones son aquellas formas de agrupar los elementos de un conjunto teniendo en cuenta que: COMBINATORIA La Combinatoria es la parte de las Matemáticas que estudia las diversas formas de realizar agrupaciones con los elementos de un conjunto, formándolas y calculando su número. Existen distintas

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Adaptación del producto

Adaptación del producto Adaptación del producto 3 Muchas empresas comienzan su proceso de internacionalización buscando mercados extranjeros para sus productos o servicios existentes. La decisión de entrada se basa en informaciones

Más detalles

Instrucciones para la familiarización de los alumnos con el instrumento de evaluación de EECL (ES)

Instrucciones para la familiarización de los alumnos con el instrumento de evaluación de EECL (ES) Instrucciones para la familiarización de los alumnos con el instrumento de evaluación de EECL (ES) Índice 1 INTRODUCCIÓN 3 2 REALIZACIÓN DE LAS PRUEBAS 3 2.1 Entrada al sistema 3 2.2 Prueba de sonido para

Más detalles

Dirección de Evaluación de la Calidad Educativa

Dirección de Evaluación de la Calidad Educativa Operaciones: Resolver problemas con dos operaciones Dentro del núcleo estructurante Operaciones, uno de los Saberes Básicos Fundamentales, donde se observa tienen más dificultades los alumnos es respecto

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

Recuerda Para realizar bien las multiplicaciones, repasa las tablas de multiplicar.

Recuerda Para realizar bien las multiplicaciones, repasa las tablas de multiplicar. Recuerda Para realizar bien las multiplicaciones, repasa las tablas de multiplicar. La multiplicación es una suma de números iguales. Los términos de la multiplicación son los factores y el producto. -.

Más detalles

Leemos afiches sobre los derechos del niño

Leemos afiches sobre los derechos del niño PRIMER Grado - Unidad 3 - Sesión 25 Leemos afiches sobre los derechos del niño Para qué usamos el lenguaje escrito cuando leemos afiches? Para que el niño y la niña use el lenguaje escrito de acuerdo a

Más detalles

PREGUNTAS Y RESPUESTAS: Derechos de los pacientes en materia de asistencia sanitaria transfronteriza

PREGUNTAS Y RESPUESTAS: Derechos de los pacientes en materia de asistencia sanitaria transfronteriza COMISIÓN EUROPEA NOTA INFORMATIVA Bruselas, 22 de octubre de 2013 PREGUNTAS Y RESPUESTAS: Derechos de los pacientes en materia de asistencia sanitaria transfronteriza Un jubilado alemán diabético se lleva

Más detalles

CHOQUE.(CANTIDAD DE MOVIMIENTO )

CHOQUE.(CANTIDAD DE MOVIMIENTO ) APUNTES Materia: Tema: Curso: Física y Química Momento Lineal 4º ESO CHOQUE.(CANTIDAD DE MOVIMIENTO ) CANTIDAD DE MOVIMIENTO Si un cuerpo de masa m se está moviendo con velocidad v, la cantidad de movimiento

Más detalles

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1] Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno

Más detalles

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u

Más detalles

Problemas de Conteo. 1. Problemas

Problemas de Conteo. 1. Problemas Problemas de Conteo 1. Problemas 1. En un torneo de básquetbol compiten 16 equipos. En cada ronda los equipos se dividen en grupos de 4. En cada grupo cada equipo juega una vez contra cada uno de los equipos

Más detalles

Actividades para empezar bien el día. Preescolar. Matemáticas

Actividades para empezar bien el día. Preescolar. Matemáticas Actividades para empezar bien el día Preescolar Matemáticas Armamos rompecabezas Los alumnos arman rompecabezas clásicos, modelos con el tangram y con cuadros bicolores. Disponer de material suficiente

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

Educar a los hijos. La estrategia principal: economía de fichas

Educar a los hijos. La estrategia principal: economía de fichas Educar a los hijos La estrategia principal: economía de fichas Algunos niños arman un verdadero escándalo a la hora de irse a dormir, cuando tienen que irse del parque en el que están jugando, dejar de

Más detalles

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones CAPÍTULO 4 37 CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN Para diseñar el SGE, lo primero que se necesita es plantear diferentes formas en las que se pueda resolver el problema para finalmente decidir

Más detalles

Representamos la unidad de millar en el Banco del aula

Representamos la unidad de millar en el Banco del aula CUARTO GRADO - UNIDAD 1 - SESIÓN 07 Representamos la unidad de millar en el Banco del aula En esta sesión, se espera que los niños y las niñas construyan la noción de unidad de millar, representándola

Más detalles

Resolvemos desigualdades o inecuaciones

Resolvemos desigualdades o inecuaciones SEXTO GRADO - UNIDAD 6 - SESIÓN 13 Resolvemos desigualdades o inecuaciones En esta sesión se espera que los niños y las niñas resuelvan problemas con desigualdades o inecuaciones utilizando materiales

Más detalles

En el desarrollo de esta práctica vamos a utilizar las diversas herramientas con las que cuenta Word para incluir dibujos en nuestros documentos.

En el desarrollo de esta práctica vamos a utilizar las diversas herramientas con las que cuenta Word para incluir dibujos en nuestros documentos. Practica #3 Herramientas de Dibujo. Word a pesar de ser un procesador de texto cuenta con diversas herramientas para la creación de distintos tipos de gráficos. Desde gráficos sencillos como los son rectángulos,

Más detalles

Aprendiendo el Lenguaje de las Matemáticas en Primaria

Aprendiendo el Lenguaje de las Matemáticas en Primaria Aprendiendo el Lenguaje de las Matemáticas en Primaria Titulo: Restas, el tercer artículo de la serie De Dr. Rob Madell, Ph. D. y Dra. Jane R. Madell, Ph. D., CCC A/SPL, LS Cert. AVT. Ilustraciones por

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

Representamos la división de fracciones

Representamos la división de fracciones SEXTO GRADO - UNIDAD - SESIÓN 07 Representamos la división de fracciones Se espera que, en esta sesión, los niños y niñas aprendan a dividir fracciones por un entero por medio de la representación concreta,

Más detalles

LECCIÓN 1 5 PROBLEMAS RESUELTOS

LECCIÓN 1 5 PROBLEMAS RESUELTOS LECCIÓN 1 5 PROBLEMAS RESUELTOS Problema 1. Cuántos triángulos se pueden contar en la figura? A. 6 B. 8 C. 2 D. 4 E. 12 Solución. La figura está compuesta por dos triángulos superpuestos, uno de ellos

Más detalles

CAPÍTULO I: MÉTODOS DE CONTEO S01 CONCEPTOS BÁSICOS.

CAPÍTULO I: MÉTODOS DE CONTEO S01 CONCEPTOS BÁSICOS. CAPÍTULO I: MÉTODOS DE CONTEO S01 CONCEPTOS BÁSICOS. 1 Principios de Multiplicación Contenido: S01 Conceptos básicos. S02 Variaciones. S03 Permutaciones. S04 Combinaciones. S05 Coeficientes Binomiales.

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

www.estrategiasdeforex.com

www.estrategiasdeforex.com 1 www.estrategiasdeforex.com Índice Introducción...4 Iniciándote en Forex...6 Administrando tu Cuenta de Forex...6 Controlando tus Operaciones...7 Llevar un registro de tus operaciones....8 Haciendo Test

Más detalles

5 o. Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas. MATEMÁTICA Guía didáctica

5 o. Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas. MATEMÁTICA Guía didáctica Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Guía didáctica 5 o Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Guía didáctica NIVEL

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

Contamos objetos y resolvemos problemas

Contamos objetos y resolvemos problemas primer GRADO - Unidad 2 - Sesión 05 Contamos objetos y resolvemos problemas En esta sesión, los niños y las niñas continuarán aprendiendo a contar y a representar colecciones de hasta cinco objetos, y

Más detalles

C3: Una innovación financiera para la Pyme. (Circuito de Crédito Comercial)

C3: Una innovación financiera para la Pyme. (Circuito de Crédito Comercial) C3: Una innovación financiera para la Pyme. (Circuito de Crédito Comercial) Con el fin de crear un medio de pago dinámico, competitivo y eficaz, STRO (Social Trade Organization) ha desarrollado el Circuito

Más detalles

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico I.- En todos los problemas siguientes de esta sección, encuentra qué número (o números) debe seguir según la sucesión, y explica el por qué. 1) 1, 4, 27, 256,? (5 puntos) R = 3125 Observa que 1=1 1, 4=2

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

Narrativa para el estudiante:

Narrativa para el estudiante: 2 2.OA 1 Usan la suma y la resta hasta el número 100 para resolver problemas verbales de uno y dos pasos relacionados a situaciones en las cuales tienen que sumar, restar, unir, separar, y comparar, con

Más detalles

DISEÑO DE SOFTWARE PARA LA ENSEÑANZA DEL CONTEO EN EDUCACIÓN PREESCOLAR

DISEÑO DE SOFTWARE PARA LA ENSEÑANZA DEL CONTEO EN EDUCACIÓN PREESCOLAR DISEÑO DE SOFTWARE PARA LA ENSEÑANZA DEL CONTEO EN EDUCACIÓN PREESCOLAR Patricia Martínez, Marina Kriscautzky Cómputo para Niños. Dirección General de Servicios de Cómputo Académico. Universidad Nacional

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

Actualidad Gerencial. El Pedido Urgente de la Señora Martínez. en Planificación Familiar. Preguntas de Discusión para el Caso

Actualidad Gerencial. El Pedido Urgente de la Señora Martínez. en Planificación Familiar. Preguntas de Discusión para el Caso Actualidad Gerencial en Planificación Familiar CASOS PRESENTADOS PARA FINES DE CAPACITACIÓN Y DISCUSIONES DE GRUPOS El Pedido Urgente de la Señora Martínez En una mañana soleada del mes de septiembre,

Más detalles

Es una aplicación basada en sistemas con pantallas táctiles, lo cual permite un rápido aprendizaje y una gran facilidad de manejo.

Es una aplicación basada en sistemas con pantallas táctiles, lo cual permite un rápido aprendizaje y una gran facilidad de manejo. TPV Fácil 1 1. Descripción. El software Querry TPV, Terminal Punto de Venta, está orientado a sector de restauración y pequeño comercio en general, pues posee una función de caja registradora avanzada

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Tema : ELECTRÓNICA DIGITAL

Tema : ELECTRÓNICA DIGITAL (La Herradura Granada) Departamento de TECNOLOGÍA Tema : ELECTRÓNICA DIGITAL.- Introducción. 2.- Representación de operadores lógicos. 3.- Álgebra de Boole. 3..- Operadores básicos. 3.2.- Función lógica

Más detalles

ALFABETIZACIÓN INICIAL EN MATEMÁTICA. Caracterización de los conocimientos iniciales de niños y niñas en el campo numérico:

ALFABETIZACIÓN INICIAL EN MATEMÁTICA. Caracterización de los conocimientos iniciales de niños y niñas en el campo numérico: ALFABETIZACIÓN INICIAL EN MATEMÁTICA Caracterización de los conocimientos iniciales de niños y niñas en el campo numérico: Al entrar en primer grado son muy diversos. Frecuentemente inestables. A veces

Más detalles

Cualquier número de cualquier base se puede representar mediante la siguiente ecuación polinómica:

Cualquier número de cualquier base se puede representar mediante la siguiente ecuación polinómica: SISTEMAS DE NUMERACIÓN Los números se pueden representar en distintos sistemas de numeración que se diferencian entre si por su base. Así el sistema de numeración decimal es de base 10, el binario de base

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

Escribimos nuestras normas de convivencia

Escribimos nuestras normas de convivencia TERCER GRADO - UNIDAD 1 - SESIÓN 03 Escribimos nuestras normas de convivencia Para qué usamos el lenguaje cuando escribimos nuestros acuerdos? Las personas utilizan la escritura para dejar constancia de

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Resolvemos problemas de combinación trabajando en equipo

Resolvemos problemas de combinación trabajando en equipo TERCer GRADO - Unidad 2 - Sesión 09 Resolvemos problemas de combinación trabajando en equipo En esta sesión, los niños y las niñas aprenderán a resolver problemas de combinación 2 usando la técnica operativa

Más detalles

Visión. Principios Conductores

Visión. Principios Conductores Borrador de la Visión y Principios Conductores Revisados, para la Implementación del Acto de Servicios de Salud Mental del DSM Para su traducción en Múltiples Idiomas En noviembre de 2004, los ciudadanos

Más detalles

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2. FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución

Más detalles

Elegimos un nombre para nuestro grupo

Elegimos un nombre para nuestro grupo PRIMER GRADO - UNIDAD 1 - SESIÓN 06 Elegimos un nombre para nuestro grupo Para qué usamos el lenguaje escrito cuando escribimos nombres? En la vida cotidiana del aula, el trabajo grupo y cooperativo forman

Más detalles