FÍSICA II. Guía De Problemas Nº4:
|
|
- Álvaro Ayala Cabrera
- hace 6 años
- Vistas:
Transcripción
1 Univrsidad Nacional dl Nordst Facultad d Ingniría Dpartanto d Físico-Quíica/Cátdra Física II FÍSIC II Guía D roblas Nº4: rir rincipio d la Trodináica 1
2 ROBLEMS RESUELTOS 1- S dsa calcular l trabajo ralizado cuando un ol d gas idal s xpand isotéricant y rvrsiblnt a 00 ºK n un dispositivo d cilindro y pistón dsd una prsión inicial d 10 atósras hasta una prsión inal d 1 atósra. Rprsntar la transoración n un diagraa -. El trabajo d xpansión s xprsa d la siguint anra:. d (1) 1 n. T D la Ecuación d Estado. n. T obtnos qu: n. T y rplazando n (1). d n. T. ln () 1 i i Coo l gas s xpand n ora isotérica i. i. y () Rplazando () n (): i kg 10 n. T.ln 1ol º K.ln 58510kg ol. kg 1 i Diagraa - robla 1 Un tanqu rígido contin un luido calint qu s nría intras s agitado por una hélic. l principio la nrgía intrna dl luido s 800 kj. Durant l procso d nriainto l luido pird 500 kj d calor y la hélic raliza 100 kj d trabajo sobr l luido. Dtrin la nrgía intrna inal dl luido, dscartando la nrgía cinética y potncial.
3 Esqua robla Considraos al luido, contnido n l tanqu, coo l sista, d tal anra qu las línas puntadas indican la rontra. dás, coo no xist asa atravsando la rontra, s dcir qu la asa pranc constant, aditios qu s trata d un sista crrado. or l rir rincipio d la Trodináica: Q U (1) y d (1) U Q U U Q 1 y inalnt U Q U 500kJ ( 100kJ ) 800kJ 400kJ 1 Un ol d gas idal stá n quilibrio a la prsión d 6 at y volun 10 l. S lo nría isocóricant hasta alcanzar una prsión igual a la itad d su prsión inicial. continuación s calinta a prsión constant hasta qu alcanza un volun, tal qu n una coprsión isotérica rgrsa a su stado inicial. a) Dibujar l ciclo n un diagraa -. b) Calcular l trabajo nto ralizado n l ciclo. a) El diagraa d los procsos s raliza a continuación:
4 b) Sgún los datos dl probla:. 6at B 10l T 71,7 º K R B. B C at C 0l TB 65,85º K R B C Tnindo n cunta la cuación d stado y R 0,08l. at olº K ara calcular l trabajo ralizado n l ciclo, s calcula l trabajo ralizado n cada procso. 0 por sr un procso isocórico. B.( ) B C B C B por sr un procso isobárico. C d. d T C C ln C C C or lo tanto: B C C B ( C ) ln 11,59l. at 1174, 5J C ara convrtir Litros x tósras (l.at) a Joul (J) rcordaos qu: 1J 1N. y 1l 1000,08c 1,00008x10 N dás 1at 1015 N Entoncs rplazando datos: 1 l. at ,00008x10 101, 8J 4
5 EJERCICIOS ROUESTOS 1. S dja xpandir un gas a una prsión constant d 0 psia, sindo su variación d volun v = v - v i = 0,5 t. Calcular l trabajo dl sista al xpandirs y xprsarlo n julios. Rprsntarlo gráicant.. En cirto procso s suinistran 500 cal a un sista y al iso tipo s raliza, sobr l iso, un trabajo d 100 julios. Cuál srá l incrnto d nrgía intrna?. En la xpansión d un gas s raliza un trabajo d 181 kg. Calcular la variación d nrgía intrna indicar si aunta o disinuy cuando s rcibn dl dio xtrior a) kcal, b) kcal, c) 5 kcal 4. En un sista crrado un luido raliza una xpansión a la prsión constant d 1 kg/c. Durant la xpansión l volun dl sista aunta d 0,1 a 0,, sindo su asa d kg. a) Dibujar la transoración n un diagraa - ; b) Calcular l trabajo ralizado; c) Calcular l trabajo por unidad d asa; d) Calcular los volúns spcíicos inicial y inal. 5. Un gas s nriado a prsión constant d 7 kg/c n un cilindro d 5 c. d diátro. El ébolo rcorr 60 c. y n l procso s transirn 6 kcal. dsd l sista al dio xtrior. Suponindo qu la transoración s llva a cabo rvrsiblnt: a) Calcular la variación d nrgía intrna; b) Considrando l gas coo prcto dtrinar si su tpratura aunta o disinuy; c) Rprsntar gráicant la transoración. 6. Un sista crrado raliza un ciclo d trs transoracions. En la prira ntrga un trabajo d 10 Kcal. y su nrgía intrna s d kcal. En l sgundo su nrgía intrna varía adiabáticant hasta 15 Kcal. y n la trcra voluciona rvrsiblnt a volun constant. Calcular los cabios d nrgía qu corrspondn a cada transoración y al ciclo coplto. 7. S tin un coprsor qu aspira air a una prsión p1 = 1 kg/c y d volun spcíico i = 0,84 /kg. Dicho air s xpulsado a una prsión p = 9 kg/c con un volun spcíico v = 0,14 /kg. La nrgía intrna inicial s u =,6 kcal. /kg y la inal u = 7,5 kcal. /kg. En la rrigración s transirn 16 Kcal. /kg. Calcular l trabajo suinistrado al coprsor considrando qu las variacions d nrgía cinética y potncial son dsprciabls. Exprsar l trabajo n kg/kg, kcal. /kg y julio/kg. (ara rsolvr st probla, tnr n cunta qu l sista s abirto) 5
PROBLEMAS DE CALOR Intercambio de calor
PROBLEMAS DE CALOR Intrcabio d calor En los problas d calor, considraos un sista ADIABÁTICO, no xist intrcabio d calor con l xtrior. Y, por lo tanto, la nrgía quda íntgrant n l sista 1 Probla.- Calcular
1. CICLOS DE LOS SISTEMAS DE POTENCIA 1.1 CICLOS DE POTENCIA A VAPOR
INRODUCCIÓN. CICLO DE LO IEMA DE POENCIA Dsd l punto d vista d la tcnología, un punto iportant d la ingniría s proyctar sistas qu ralicn las convrsions dsadas ntr los difrnts tipos d nrgías. En la prsnt
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm
Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la
FICHA 10 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
FICHA FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 1. E poibl mdir la concntración d alcohol n la angr d una prona. Invtigacion médica rcint ugirn qu l rigo R (dado como porcntaj) d tnr un accidnt automovilítico
Tema Nro. 2 Propiedades de las Sustancias Puras
PET 06 P1 TERMODINAMICA In. Oscar Varas Antezana Tea Nro. Propiedades de las Sustancias Puras 1. SUSTANCIA PURA Es la sustancia cuyas coposiciones quíicas están bien deinidas. Es aquella sustancia de coposición
EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales
MPRÉSTITOS Carn Badía, Hortènsia Fontanals, Mrch Galisto, José Mª Lcina, Mª Angls Pons, Trsa Prixns, Dídac Raírz, F. Javir Sarrasí y Anna Mª Sucarrats DPARTAMNTO D MATMÁTICA CONÓMICA, FINANCIRA Y ACTUARIAL
4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.
Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.
RADIO CRÍTICO DE AISLACIÓN
DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control
TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA
ρ = γ = Z Y Problema PTC
Probla PTC-18 Dibujar l spctro d aplitud d un cabl con pérdidas n circuito abirto, dtrinando los valors y frcuncias d los valors áxios y ínios. Solución PTC-18 Sabos qu la función d transfrncia d un cabl
4. MATERIALES Y MÉTODOS.
4. MATERIALES Y MÉTODOS. 4. Matrials. 4.. Softwar Microsoft Visual Basic 6.0 Matlab Vrsión 6.0.0.88 Rlas. Microsoft Offic Excl 003 4.. Equipo d Cóputo. Coputadora Microsoft Windows X rofsional Vrsión 00
2ª PRUEBA 24 de febrero de 2017
ª PRUEB 4 d fbrro d 017 Pruba xprintal. Mdida d la rlación carga/asa dl lctrón En 1897, J. J. Thopson utilizó un dispositivo xprintal parcido al d la figura 1 para dtrinar por prira vz la rlación ntr la
GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).
UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). Gases - Primera ley de la Termodinámica Ley Cero. 1. Se mantiene
CICLO REAL DE FUNCIONAMIENTO
CICLO REAL DE FUNCIONAMIENO 0 ..- Determinar la presión máxima que alcanza un motor que funciona según un ciclo Otto teórico con las siguientes características: - Cilindrada: 500. - ρ 8. - ηv 0'8. - H
TEMA 14. ESTRUCTURA DEL ESTADO SOLIDO Y MOVIMIENTO ELECTRONICO
TEMA 14. ESTRUCTURA DEL ESTADO SOLIDO Y MOVIMIENTO ELECTRONICO 14.1.- ESTRUCTURA DEL ESTADO SOLIDO Coo s sab la atria s prsnta n trs stado: gass, líquidos y sólidos. Los conductors y siconductors son sólidos
I, al tener una ecuación. diferencial de segundo orden de la forma (1)
.6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn
Ejercicios resueltos Distribuciones discretas y continuas
ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s
Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios
Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS
Tema 3 La economía de la información
jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants
UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO
PROCEDIMIENTO DE CAPTACION Y ASIGNACION NIVEL SECUNDARIA ART, Clav: Página 1 d 7 1. Objtivo Asgurar qu: la captación, otorgaminto y asignación d bcas Académicas a los Estudiants d La Univrsidad dl Fútbol
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN
ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador
EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS
EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la
9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO
9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
a) Falso. De acuerdo con la física clásica así debería ser porque la energía de una onda es proporcional al cuadrado de su intensidad ( E = m
FÍSIC MODRN FCTO FOTOLÉCTRICO.S008 Razn si las siguints afiracins sn cirtas falsas: a) Ls lctrns itids n l fct ftléctric s uvn cn vlcidads ayrs a dida qu aunta la intnsidad d la luz qu incid sbr la surfici
CINEMÁTICA (TRAYECTORIA CONOCIDA)
1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra
Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I
Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no
2ħ [ x2 2axe i ωt + a2
En 96 Schrödingr ncontró la siguint solución xacta d su cuación (dpndint dl tipo) para un oscilador arónico: Ψ( x, t)=( ω π ħ ) 4 xp{ ω ħ [ x ax i ωt + a (+ i ωt )+ i ħ t } dond s la asa d la particula,
Tema 2. Primer Principio
ema. rimer rincipio ROBLEMAS EJEMLO.- Un sistema cerrado, inicialmente en reposo sobre la tierra, es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 00KJ. Durante
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A
IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions
Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE
Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios
CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de:
Vignt a partir d: Clav: 15 d Julio d 2005 Vrsión: Página 1 d 12 1. Objtivo Asgurar qu la Entrga d Documntos al Instituto Hidalguns d Educación Mdia Suprior y Suprior (IHEMSYS) por part d la Coordinación
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función
VI. JUSTICIA. i. - JUSTICIA CRIMINAL.
VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d
6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular
MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos
IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II
IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un
3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?
CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.
1.2 Funciones de potencial vector magnético y eléctrico escalar
. uncions d potncial vctor agnético y léctrico scalar En l análisis d problas d radiación s coún spcificar las funts y dspués ncontrarlas los capos radiados por las funts. En la práctica n l procdiinto
MECÁNICA CUÁNTICA - RESUMEN
I..S BATRIZ D SUABIA Dto. Físia y Quíia MCÁNICA CUÁNTICA - RSUMN. La iótsis d Plank. n l año 9 Plank introdujo una nua iótsis ara tratar d xliar la radiaión itida or los uros alints. Sgún él al igual la
Practica 9: Tipo de cambio y paridad de poder adquisitivo
Practica 9: Tipo d cambio y paridad d podr adquisitivo 1 Practica 9.1: Ejrcicio 1, capitulo 13, pag. 355 En Munich un bocadillo d salchicha custa 2, n l parqu Fnway d Boston un prrito calint val 1$. Con
EJERCICIOS RESUELTOS TEMA 1: PARTE 3
Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:
PARTE I Parte I Parte II Nota clase Nota Final
Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:
+ ( + ) ( ) + ( + ) ( ) ( )
latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f
LÍMITES DE FUNCIONES.
LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté
TEMA 7 APLICACIONES DE LA DERIVADA
Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f
Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar
Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga
10. Andalucía. 11. Andalucía. 12. Andalucía. 13. Andalucía.
PROBLEMAS DE MOTORES TÉRMICOS. (Os seguintes problemas están tomados de P.P.A.A.U.U. de diferentes Comunidades). 1.Castilla-León 2004. Un motor térmico reversible opera entre un foco a temperatura T y
SOLUCIONARIO DE TERMODINAMICA
RESUELO POR: AUX. DOC. UNI. GUIERREZ SOLUCIONARIO DE ERMODINAMICA Ejercicios de Energía, Calor y rabajo y la Primera Ley de la ermodinamica. Calcule el trabajo que puede ser hecho por una masa de 400 g
TEMAS 3-6: EJERCICIOS ADICIONALES
TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s
Calor: energía transferida debida únicamente a diferencias de temperatura
TERMODINÁMICA La termodinámica estudia la energía y sus transformaciones. Energía: capacidad para realizar trabajo. Formas de energía Energía radiante Energía térmica Energía química Energía potencial
CERTIFICADO ENERGÉTICO ANDALUZ DE EDIFICIOS
CERTIFICADO ENERGÉTICO ANDALUZ DE EDIFICIOS Decreto 169/2011, de 31 de mayo, por el que se aprueba el Reglamento de Fomento de las Energías Renovables, el Ahorro y la Eficiencia Energética en Andalucía.
IV. POSICIONES GEODESICAS
IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------
IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d
Energía. Reactivos. Productos. Coordenada de reacción
CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.
INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.
Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE
Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.
La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su
Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES
Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES 2.1. Calcula la presión que ejerce 1 mol de Cl 2 (g), de CO 2 (g) y de CO (g) cuando se encuentra ocupando un volumen
CONTROL PID DEL ÁNGULO DE CABECEO DE UN HELICÓPTERO
CONROL EL ÁNGULO E CABECEO E UN HELCÓERO F. Morilla SEÑO OR EAAS Canclación d la dinámica subamortiguada impo d asntaminto d la rspusta tmporal Rstriccions n la sñal d control Estructura d control y filtro
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
Tema 3 La elasticidad y sus aplicaciones
Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad
Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.
Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.
E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal
EJERCICIOS TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN Ejercicio 1: Calcula la energía, en KWh, que ha consumido una máquina que tiene 40 CV y ha estado funcionando durante 3 horas. Hay que pasar la potencia
8 Límites de sucesiones y de funciones
8 Límits d sucsions y d funcions ACTIVIDADES INICIALES 8.I. Calcula l término gnral, l término qu ocupa l octavo lugar y la suma d los ocho primros términos para las sucsions siguints., 6, 0, 4,..., 6,
1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda
.- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si
UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR
CURSO: FISICA SEMANA 3 TEMA: CINEMATICA I V1 V t v v 1 Cinmática Es una part d la mcánica qu s ncarga d studiar única y xclusivamnt l moviminto d los curpos sin considrar las causas qu lo originan. ELEMENTOS
Tuberías plásticas para SANEAMIENTO
Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452
Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.
Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una
Circuitos RC I R - - e 1. q C e t 2RC 0.5. FLORENCIO PINELA - ESPOL x 13/05/ : t x
Q ircuitos a b a b + + - - 1 2 1 1 2 f( x) q 0.5 q t / 1 q f( x) 0.5 q t / 0 0.0183156 0 0 1 t 2 3 4 0 1 t 2 3 4 FLOENO PNELA - ESPOL x 0 x 4 0 1 Los circuitos s ncuntran ntr los más útils, simpls y robustos
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La
INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO
OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu
VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA
AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5
página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),
SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83
TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página
XVI.- COMBUSTIÓN pfernandezdiez.es
XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación
Resolución de problemas aritméticos
Rsolución d roblmas aritméticos. Problmas d rarto Rart mntalmnt 0 bombons, d forma dirctamnt roorcional a y P I E N S Y C L C U L 0 : = 0 En l rimr bot: 0 = 0 bombons. En l sgundo bot: 0 = 0 bombons. Carné
Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA
Universidad Nacional de La Plata Facultad de Ciencias Astronóicas y Geofísicas INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Práctica 3 : TEMPERATURA y HUMEDAD. Definiciones, ecuaciones y leyes básicas a)
RESUMEN MOTORES CORRIENTE CONTINUA
RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos
REPRESENTACIÓN DE CURVAS
REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort
Aplicaciones de la distribución weibull en ingeniería
COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La
CHOQUE.(CANTIDAD DE MOVIMIENTO )
APUNTES Materia: Tema: Curso: Física y Química Momento Lineal 4º ESO CHOQUE.(CANTIDAD DE MOVIMIENTO ) CANTIDAD DE MOVIMIENTO Si un cuerpo de masa m se está moviendo con velocidad v, la cantidad de movimiento
Mejora continua del sistema de gestión de la calidad
17/7/6 1 D 8 4 SISTMA D GSTIÓN D LA CALIDAD 4.1 Requisitos generales n el Sistema Integral de Calidad (SICAL) de la UASLP se establece, documenta, implementa y mantiene el Sistema de Gestión de Calidad
3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.
MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por
PLAN ANUAL DE AUDITORIAS INTERNAS VIGENCIA 2015 ALCALDIA MUNICIPAL RISARALDA - CALDAS
MUNICIIO D RISARALDA CALDAS ALCALDÍA MUNICIAL ROCSO: MCI 2014 MODULO D VALUACION Y SGUIMINTO COMONNT AUDITORIA INTRNA LMNTO AUDITORIA INTRNA AGINA - 1 OFICINA D LANACIÓN Y OBRAS UBLICAS ROCSO CONTROL INTRNO
Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017
Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular
Representación esquemática de un sistema con tres fases
6 APLICACIONES 6.1 Sistma con varias fass Una vz consguido l modlo para simular una mmbrana, s planta su uso para simular procsos con más d una. Uno d stos procsos podría sr un sistma con varias fass.
9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO
9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y
EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES
IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
Julio A. Santaella Banco de México Mercados Financieros y Curvas de Rendimiento CEMLA y CMCA San José, 25 de Septiembre de 2008
Julio A. Santalla Banco d México Mrcados Financiros y Curvas d Rndiinto CEMLA y CMCA San José, 5 d Sptibr d 008 o Las curvas d rndiinto son uy iportants para divrsos propósitos: a. Para xtracción d tasas
El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )
Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con
núm. 109 miércoles, 11 de junio de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA
III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA C.V.E.: BOPBUR-2014-04183 Mdiant acurdo d Junta d Gobirno númro 6, d fcha 23 d mayo d 2014, s aprobó la «Convocatoria pública
ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas
UNIVESIDD USTL DE CILE INSTITUTO DE CIENCI Y TECNOLOGI DE LOS LIMENTOS (ICYTL) / SIGNTU: INGENIEI DE POCESOS III (ITCL 34) POESO: Elton. Moals Blancas UNIDD : TNSEENCI DE CLO PO CONDUCCION (ESTDO ESTCIONIO)