VECTORES: DERIVADAS E INTEGRALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VECTORES: DERIVADAS E INTEGRALES"

Transcripción

1 VECTOES: DEIVADAS E INTEGALES ( ), calcular: Siendo el vector de componentes 1, sen( t), cos t Solución: I.T.I. 93, I.T.T. 05 Derivando componente a componente: ( 0, cos( t), sen t (1) ) Derivando de nuevo: d 0, sen( t), cos ( t ) Calculando el módulo de : Derivando esta expresión: Calculando el módulo de (1): 0 d 1 Integrando componente a componente: Donde C es un vector constante. ( ) + C t, cos( t), sen t

2 Siendo el vector de componentes ( e t, cos( 3t), sen( 3t) ), calcular: Solución: I.T.I. 95 Derivando componente a componente: (1) ( e t, 6sen( 3t), 6cos( 3t ) Derivando de nuevo: () ( e t, 18cos( 3t), 18sen( 3t) ) Calculando el módulo de (1): e t + 36 (3) Calculando el módulo de (): e t + 34 (4) Calculando el módulo de : e t + 4 e t Derivando esta expresión: e t + 4 (5) Vemos que no es lo mismo derivar y luego calcular el módulo, resultado (3), que calcular primero el módulo y luego derivar, resultado (5). Integrando componente a componente: e t, sen (6) Donde C 3 ( 3t ), cos 3 ( 3t ) + C es un vector constante.

3 Siendo el vector de componentes sent, cos t, t d d d, calcular: d Solución: I.T.I. 9, I.T.T. 95, I.I. 94 Derivando componente a componente: cost, sent,1 (1) Derivando de nuevo: () ( sent, cos t, 0 ) Calculando el módulo de (1): (3) Calculando el módulo de (): 1 (4) Calculando el módulo de : 1+ t Derivando esta expresión: t 1+ t (5) Vemos que no es lo mismo derivar y luego calcular el módulo, resultado (3), que calcular primero el módulo y luego derivar, resultado (5). Integrando componente a componente: cos t, sent, t + C (6) Donde C es un vector constante.

4 Siendo el vector de componentes d d d 1 t, t, e t, calcular: d Solución: I.T.I. 96, 00, 03, 06, I.T.T. 96, 00, 03, 06 Derivando componente a componente: (1) 1, t, e t t Derivando de nuevo: (),, e t t 3 Calculando el módulo de (1): d 1 (3) t + ( t) + ( e t ) Calculando el módulo de (): d (4) t 3 + ( ) + ( e t ) Calculando el módulo de : 1 t + ( t ) + ( e t ) 1 Derivando esta expresión: (5) t + 3 t3 e t 1 t + t4 + e t Vemos que no es lo mismo derivar y luego calcular el módulo, resultado (3), que calcular primero el módulo y luego derivar, resultado (5). Integrando componente a componente: ln t, t3 (6) Donde C 3, e t + C es un vector constante.

5 Siendo el vector de componentes sen( t), cos( t), 1 t, calcular: Solución: I.T.I. 97, I.T.T. 97, 01 Derivando componente a componente: cos( t), sen t (1), 1 t Derivando de nuevo: 4sen( t), 4 cos( t), () t 3 Calculando el módulo de (1): (3) t 4 Calculando el módulo de (): (4) t 6 Calculando el módulo de : 1+ 1 t Derivando esta expresión: (5) 1 t 6 + t 4 Vemos que no es lo mismo derivar y luego calcular el módulo, resultado (3), que calcular primero el módulo y luego derivar, resultado (5). Integrando componente a componente: (6) 1 cos Donde C ( t ), 1 sen( t), ln ( t ) + C es un vector constante.

6 ( ), calcular: Siendo el vector de componentes 3t, sen( t), cos t Solución: I.T.I. 94, 01, I.T.T. 0 Derivando componente a componente: d 3, cos( t), sen ( t ) Derivando de nuevo: d 0, sen( t), cos ( t ) Calculando el módulo de : 1+ 9t Derivando esta expresión: 9t 1+ 9t Derivando de nuevo: t 3 Integrando componente a componente: Donde C es un vector constante. 3 t, cos( t), sen( t) + C

7 Siendo A un vector de módulo constante y dirección variable con t, demostrar que dicho vector y su derivada respecto de t son perpendiculares siempre que el módulo de la derivada sea distinto de cero. Solución: I.T.I. 9, 93, 95, 96, 97, 00, 03, 06, I.T.T. 95, 96, 97, 00, 03, 06, I.I. 94 Si A es constante: da 0 Por otro lado: A A A, luego: d A A Desarrollando el producto escalar: d A A 0 d A A + A d A A d A Por lo tanto si el módulo de la derivada no es nulo d A 0, la única solución posible es que el vector y su derivada sean perpendiculares: A d A Si v es un vector función de un parámetro t demostrar que: si v es constante en módulo, entonces v d v 0, si v es constante en dirección v d v 0. Solución: I.T.I. 04, I.T.T. 04 Si v es constante: dv 0 Por otro lado: v v v, luego: d v v 0 Desarrollando el producto escalar: d v v d v v + v d v v d v Por lo tanto si el módulo de la derivada no es nulo d v que el vector y su derivada sean perpendiculares: 0, la única solución posible es v d v 0

8 El vector v se puede escribir en función de su módulo v y de un vector unitario ˆv en su misma dirección y sentido: v v ˆv. Si la dirección es constante ello implica que el vector unitario ˆv es constante con lo que: v d v v ˆv d ( v ˆv ) dv v ˆv ˆv v dv ( ˆv ˆv ) 0 Obtener la derivada de un vector unitario que gira en el plano XY con una velocidad angular constante ω. Comprobar que ambos son perpendiculares. Solución: I.T.I. 98, 01, I.T.T. 99, 01, 05 Si cogemos el origen de tiempos (t 0) en el momento en que el vector unitario era el vector i (θ 0), el ángulo que forma dicho vector unitario con el eje X vendrá dado por la siguiente ecuación: θ ω t: û cos[ ω t], sen[ ω t], 0 dû ω sen [ ω t ], cos[ ω t], 0 û dû 0 û dû

9 ( [ ] ĵ ) donde A y ω son constantes. Determinar: a) su Sea el vector a A cos[ ω t]î + sen ω t módulo y la derivada de éste respecto de t, b) d a y perpendiculares. Solución: I.T.I. 99, 0, 05, I.T.T. 0 da, c) demostrar que a y d a son a) a a a A ( cos[ ω t] ) + ( sen[ ω t] ) A da 0 b) d a ( [ ] ĵ ) ω A sen[ ω t]î + cos ω t da ω A ( sen[ ω t] ) + ( cos[ ω t] ) ω A c) a d a 0 a d a Dados los vectores A t î + t 3 ĵ 4t 3t + 8 d( A B ) d( A B ), y ˆk, B t + 6 î 3t ĵ + ˆk, calcular: Solución: I.T.I. 98, I.T.T. 0 A B ( t + 6)t 6t 5 4t 3t + 8 6t 5 + t 3 t + 6t 16 Error!Marcador no definido. d A B 30t 4 + 6t 4t t t 48t î + 4t 40t + ĵ + 8t 3 36t ˆk

10 Dados los vectores a t, sent, 0 d a + b, d a b, calcular:, B 0, cost, t y d a b Solución: I.T.I. 04, I.T.T. 04 d ( a + b ) a + b t, sent + cost, t a b sent cost sen t a b ( t sent, t 3, 4t cost) d( a b ) d( a b ) (, cost sent, t) cos( t) t sent + t cost î 6t ĵ + [ 4 cost 4t sent ] ˆk y Dados los vectores a t, t,1 a) ( a + b ), b) ( a b ), c) calcular: b 1, t, t +1 a b Solución: I.T.I. 99, 04, 05, I.T.T. 99, 0, 04 a) a + b ( t +1, t, t + ) ( a + b ) ( t +1, t, t + ) t t, t, t + t b) a b t +t +1 ( a b ) ( t +t +1) t t + t c) a b ( t,1 t 3 t, t 3 t) ( a b ) ( t,1 t 3 t, t 3 t) t 3 3, t t4 4 t3 3, t4 4 t

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Álgebra Vectorial Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Indice. 1. Magnitudes Escalares y Vectoriales. 2. Vectores. 3. Suma de Vectores. Producto de un vector por un escalar.

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

1.1 Definición 1.2 Enfoque geométrico 1.3 Igualdad 1.4 Operaciones 1.5 Aplicaciones

1.1 Definición 1.2 Enfoque geométrico 1.3 Igualdad 1.4 Operaciones 1.5 Aplicaciones . Definición. Enfoque geométrico. Igualdad.4 Operaciones.5 Aplicaciones Objetios. Se persigue que el estudiante: epresente geométricamente un ector de Determine magnitud dirección de un ector. Sume ectores,

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur)

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur) VECTORES: OPERACIONES BÁSICAS Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B (0 m Este 30º Norte) y C (35 m Sur) Solución: I.T.I. 94, I.T.T. 05 A

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

VECTORES. son base y. 11) Comprueba si los vectores u

VECTORES. son base y. 11) Comprueba si los vectores u VECTORES 1. Cálculo de un vector conocidos sus extremos. Módulo de un vector 2. Operaciones con vectores 3. Base: combinación lineal, linealmente independientes.coordenadas de un vector en función de una

Más detalles

Definición operacional, independientemente de cualquier sistema de referencia

Definición operacional, independientemente de cualquier sistema de referencia Carácter de las magnitudes físicas: Magnitudes escalares y vectoriales. Vectores unitarios, Operaciones con vectores. No todas las magnitudes físicas tienen las mismas características matemáticas El carácter

Más detalles

Problema 1 Derivación de vectores I (Pro1)

Problema 1 Derivación de vectores I (Pro1) Pág 1 de 62 Problema 1 Derivación de vectores I (Pro1) 11 Enunciado Sea V una magnitud vectorial genérica [1] dependiente del tiempo, t Sean la referencia la base fija a la referencia Del vector V son

Más detalles

PRODUCTO ESCALAR DE DOS VECTORES

PRODUCTO ESCALAR DE DOS VECTORES PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores es un número real que resulta al multiplicar el producto de sus módulos por el coseno del ángulo que forman si los vectores son no nulos

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE:

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. OBJETIVOS DEL APRENDIZAJE: IDENTIFICAR LAS FUERZAS QUE ACTÚAN SOBRE UN OBJETO. REPRESENTAR

Más detalles

Diferenciabilidad, Regla de la Cadena y Aplicaciones

Diferenciabilidad, Regla de la Cadena y Aplicaciones Universidad Técnica Federico Santa María Departamento de Matemática Matemática III Guía Nº3 Primer Semestre 015 Diferenciabilidad, Regla de la Cadena y Aplicaciones Problemas Propuestos 1. Sea f : R R

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios: 1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte

Más detalles

INTRODUCCIÓN A VECTORES Y MAGNITUDES

INTRODUCCIÓN A VECTORES Y MAGNITUDES C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

CAPITULO 2 MATEMÁTICAS PARA LA FÍSICA. extremo. origen. 2.1.2 Vector. 2.1 Vectores. 2.1.1 Introducción.

CAPITULO 2 MATEMÁTICAS PARA LA FÍSICA. extremo. origen. 2.1.2 Vector. 2.1 Vectores. 2.1.1 Introducción. CPITULO 2 MTEMÁTICS PR L FÍSIC 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

TEMA 1. VECTORES Y MATRICES

TEMA 1. VECTORES Y MATRICES TEMA 1. VECTORES Y MATRICES 1.1. Definición de vector. Operaciones elementales 1.2. Matrices. Operaciones elementales 1.3. Traza y Determinante 1.4. Aplicaciones 1.1. DEFINICIÓN DE VECTOR. OPERACIONES

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES [5.] Hallar representar gráficamente las curvas de nivel de la función f (, ). Solución Por definición Cm, / m. Por tanto: C 0 0, / 0, / 0 m

Más detalles

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO. COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;

Más detalles

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA MEXICALI

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA MEXICALI PROGRAMA EDUCATIVO PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Tronco Común 2009-2 11211 Álgebra Lineal PRÁCTICA No. NOMBRE DE LA PRÁCTICA DURACIÓN (HORAS) 7 Producto

Más detalles

De acuerdo con sus características podemos considerar tres tipos de vectores:

De acuerdo con sus características podemos considerar tres tipos de vectores: CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre los ejes coordenados X,

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

ALGEBRA DE VECTORES Y MATRICES VECTORES

ALGEBRA DE VECTORES Y MATRICES VECTORES ALGEBRA DE VECTORES Y MATRICES VECTORES DEFINICIÓN DE ESCALAR: Cantidad física que queda representada mediante un número real acompañado de una unidad. EJEMPLOS: Volumen Área Densidad Tiempo Temperatura

Más detalles

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por

Más detalles

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014 IES Fco Ayala de Granada Septiembre de 014 (Modelo 4) Soluciones Germán-Jesús Rubio Luna [ 5 puntos] Sabiendo que Sabiendo que 0 0 cos(3) - e + a sen() Opción A Ejercicio 1 opción A, modelo 4 Septiembre

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

MOMENTO ANGULAR Y TORCAS COMO VECTORES

MOMENTO ANGULAR Y TORCAS COMO VECTORES MOMENTO ANGULAR Y TORCAS COMO VECTORES OBJETIVOS: Identificar la torca y el momento angular como magnitudes vectoriales. Examinar las propiedades matemáticas del producto cruz y algunas aplicaciones. Describir

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

5. Introducción a la Formulación Lagrangiana y Hamiltoniana

5. Introducción a la Formulación Lagrangiana y Hamiltoniana 5. Introducción a la Formulación Lagrangiana y Hamiltoniana Introducción Definiciones: coordenadas, momentos y fuerzas generalizados. Función Lagrangiana y ecuaciones de Euler-Lagrange. Coordenadas cíclicas.

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES CPITULO II MGNITUDES ESCLRES Y VECTORILES 1 CONTENIDO 1. VECTORES Y ESCLRES 2. ELEMENTOS DE UN VECTOR, CONCEPTO DE DIRECCION Y SENTIDO 3. LGEBR DE VECTORES 4. METODOS GRFICOS Y NLITICOS 5. COMPOSICION

Más detalles

La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y,

La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y, Materia: Matemática de 5to Tema: Producto Cruz Marco Teórico Mientras que un producto escalar de dos vectores produce un valor escalar; el producto cruz de los mismos dos vectores produce una cantidad

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

A.2. Notación y representación gráfica de vectores. Tipos de vectores.

A.2. Notación y representación gráfica de vectores. Tipos de vectores. Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida

Más detalles

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - TEORÍA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS TEÓRICOS

Más detalles

C E UNIVERSIDAD DE A CORUÑA. con un punto fijo. Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido rígido.

C E UNIVERSIDAD DE A CORUÑA. con un punto fijo. Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido rígido. H A C L U C E UNIVERSIDAD DE A CORUÑA Dinámica del sólido rígido con un punto fijo Ana Jesús López Díaz Objetivo Desarrollar los conceptos y técnicas necesarias para abordar el movimiento general del sólido

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química UAM CSIC Grupo 9 Febrero Ejercicios Resueltos del Tema..5 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: y. Consejo: En todos los ejercicios es esencial dibujar el dominio

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas.

Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas. Área Académica: Matemáticas (Geometría Analítica) Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas. Profesor(a): Juana Inés Pérez Zárate Periodo: Enero Junio 2012 Topic:

Más detalles

Inversión en el plano

Inversión en el plano Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

4 SIMETRÍA CENTRAL. 4.1 PROPIEDADES 1) La Simetría central, es un movimiento directo del plano.

4 SIMETRÍA CENTRAL. 4.1 PROPIEDADES 1) La Simetría central, es un movimiento directo del plano. 4 SIMETRÍA CENTRAL UNIDAD 2 CONCEPTOS REQUERIDOS -2a 4.1 DEFINICIÓN Dado un punto O, sea Ox una semirrecta cualquiera de origen O y uno de los dos semiplanos con borde en Ox; se llama simetría central

Más detalles

Ejercicios resueltos de vectores

Ejercicios resueltos de vectores Ejercicios resueltos de vectores 1) Sean a(2,-1,3), b(3,0,-2) y c(-2,-2,1), realiza las siguientes operaciones con vectores: a) 3a + b - c b) a -2b c) a c 2) Utilizando los vectores del ejercicio 1, comprueba

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

VECTORES MAGNITUDES ESCALARES Y MAGNITUDES VECTORIALES.

VECTORES MAGNITUDES ESCALARES Y MAGNITUDES VECTORIALES. VECTORES ING. MARTA LIDIA MERLOS ARAGÓN Resumen. Los vectores son de vital importancia para el estudio de la Estática, la Dinámica, Mecánica de los Fluidos, Electricidad magnetismo, entre otras aplicaciones

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Problemas de Álgebra Lineal Espacios Vectoriales

Problemas de Álgebra Lineal Espacios Vectoriales Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales.

Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales. Problemas y Ejercicios Resueltos. Tema : Espacios vectoriales. Ejercicios 1.- Determinar el valor de x para que el vector (1, x, 5) R 3 pertenezca al subespacio < (1,, 3), (1, 1, 1) >. Solución. (1, x,

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Capítulo 1. Vectores en el plano. 1.1. Introducción

Capítulo 1. Vectores en el plano. 1.1. Introducción Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema

El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema El espacio tridimensional Tema 01: Álgebra lineal y geometría en R 3 Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Partimos de los conceptos de punto y vector.

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Algebra lineal. Un par de vectores son linealmente dependientes si existe un escalar diferente de cero que asocie ambos vectores, ejemplo: X 2 =k*x 1

Algebra lineal. Un par de vectores son linealmente dependientes si existe un escalar diferente de cero que asocie ambos vectores, ejemplo: X 2 =k*x 1 Minimo necesario para redes neuronales. Espacio vectorial Algebra lineal El espacio vectorial X, se define como un conjunto de elementos (vectores) definidos sobre un campo escalar F, que satisface las

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1.- Se construye un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto. Epresar el volumen V de ese depósito en función del radio r del cilindro y de su altura h..-

Más detalles

Vectores. Observación: 1. Cantidades vectoriales.

Vectores. Observación: 1. Cantidades vectoriales. Vectores. 1. Cantidades vectoriales. Los vectores se definen como expresiones matemáticas que poseen magnitud y dirección, y que se suman de acuerdo con la ley del paralelogramo. Los vectores se representan,

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

INTRODUCCIÓN ESCUELA DE INGENIERÍA CIVIL Parte de la matemática útil para físicos, matemáticos, ingenieros y técnicos. Permite presentar mediante las ecuaciones de modelo matemático diversas situaciones

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal 9 de noviembre de 2009 Deseo agradecer la cuidadosa lectura, las correcciones y las sugerencias para mejorar este documento realizadas por el M.C. César Rincón Orta. Deseo agradecer

Más detalles

ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA

ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA 1. Hipótesis empleadas Las hipótesis que supondremos en este capítulo son: Material elástico lineal. Estructura estable La estructura es cargada lentamente. La

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Representación de un Vector

Representación de un Vector VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z GEOMETRÍA Junio 94. 1. Sin resolver el sistema, determina si la recta x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1. Razónalo. [1,5 puntos]. Dadas las ecuaciones de los

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles

INTEGRAL DE SUPERFICIE

INTEGRAL DE SUPERFICIE INTEGRAL E UPERFICIE 1. Geometría de las superficies. Entendemos por superficie el lugar geométrico de un punto que se mueve en el espacio R 3 con dos grados de libertad. También podemos pensar una superficie

Más detalles

Capitulo 2: Movimientos en 2 y 3 dimensiones

Capitulo 2: Movimientos en 2 y 3 dimensiones Capitulo 2: Movimientos en 2 3 dimensiones Índice 1. Posicionamiento en mas de una dimensión 2 1.1. Propiedades de Vectores................................. 5 1.2. Componentes de un Vector................................

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

Órbitas producidas por fuerzas centrales

Órbitas producidas por fuerzas centrales Capítulo 10 Órbitas producidas por fuerzas centrales 10.1 Introducción En un capítulo anterior hemos visto una variedad de fuerzas, varias de las cuales, como por ejemplo la elástica, la gravitatoria y

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

a. Dibujar los paralelogramos completos, señalar los vértices con letras.

a. Dibujar los paralelogramos completos, señalar los vértices con letras. PRACTICO DE VECTORES 1. Dada la siguiente figura, se pide determinar vectores utilizando los vértices. Por ejemplo, el vector, el vector, etcétera. Se pide indicar a. Tres vectores que tengan la misma

Más detalles

EJERCICIOS TEMA 4 FUNCIONES DE VARIAS VARIABLES

EJERCICIOS TEMA 4 FUNCIONES DE VARIAS VARIABLES EJERCICIOS TEMA 4 FUNCIONES DE VARIAS VARIABLES EJERCICIOS TEMA 4 EJERCICIOS TEMA 4 3 TOPOLOGÍA Ejercicio 1 Sea el conjunto A = 0; 1) [ fg. Hallar A, A, A 0 fra). Solución: A = 0; 1); A = [0; 1] [ fg;

Más detalles

Prof. Claudio del Pino O.

Prof. Claudio del Pino O. Índice 1. Derivadas parciales 2 1.1. Definición de derivadas parciales..... 2 1.2. Actividades iniciales............ 3 1.3. Costo marginal............... 5 1.3.1. Una actividad........... 6 1.4. Productos

Más detalles

1. CONTINUIDAD EN VARIAS VARIABLES

1. CONTINUIDAD EN VARIAS VARIABLES . CONTINUIDAD EN VARIAS VARIABLES. Calcular el dominio de las siguientes funciones reales de varias variables reales:. f(x, y) = 9 x 2 y 2x Debe ocurrir y 2x para evitar que el denominador se anule y 9

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente. CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar

Más detalles

TEST SOLUCIONADOS DE FÍSICA, DESDE LA ENSEÑANZA SECUNDARIA HASTA LA UNIVERSIDAD

TEST SOLUCIONADOS DE FÍSICA, DESDE LA ENSEÑANZA SECUNDARIA HASTA LA UNIVERSIDAD TEST SOLUCIONADOS DE FÍSICA, DESDE LA ENSEÑANZA SECUNDARIA HASTA LA UNIVERSIDAD 1. CÁLCULO VECTORIAL Y CINEMÁTICA 1.1. Nociones de cálculo vectorial 1.2. Vector de posición, velocidad y aceleración 1.3.

Más detalles

Movimiento y Coordenadas

Movimiento y Coordenadas Capítulo 1 Movimiento y Coordenadas 1.1. Posición y movimiento Los primeros movimientos que fueron descritos por medio de ecuaciones, en el marco de lo que entendemos por física, posiblemente fueron los

Más detalles

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por

Más detalles

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad 3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

Más detalles

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de

Más detalles