MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO"

Transcripción

1 MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad tal que su ingreso marginal es igual a su coste marginal. De esta forma: Introduciendo la función inversa de demanda y la función de costes: Ahora, el monopolista elige la cantidad que maximiza su beneficio. Para ello, deriva la expresión anterior con respecto a e iguala a 0: La parte izquierda de la igualdad es el ingreso marginal, mientras que la parte derecha es el coste marginal. Aislando la cantidad, obtenemos que 10. Introducimos la cantidad en la función inversa de demanda para obtener el precio del monopolista, resultando: Introduciendo la cantidad en la función de beneficios (la función que hemos maximizado), obtenemos que: Finalmente, el excedente del consumidor viene determinado por la siguiente expresión: Ahora, vamos a analizar el equilibrio bajo competencia perfecta. En competencia, la función inversa de oferta resulta de igualar el precio al coste marginal. Anteriormente, obtuvimos que el coste marginal es 40. De esta forma: 40 Igualando las funciones inversas de oferta y demanda: Aislamos, y obtenemos la cantidad de competencia perfecta: 15 Introduciendo la cantidad en cualquiera de las funciones inversas de oferta y demanda, obtenemos que el precio de competencia perfecta es: Introduciendo la cantidad de competencia perfecta en la función de beneficios de la empresa, obtenemos que: Finalmente, el excedente del consumidor viene determinado por la siguiente expresión: En resumen, los resultados son los siguientes: MONOPOLIO COMP. PERFECTA Y P

2 EC Como podemos observar, el monopolio ofrece una menor cantidad a menor precio que en competencia perfecta. Esto provoca un aumento de sus beneficios y una caída del excedente del consumidor. Además, vemos que hay una pérdida de eficiencia en la economía, puesto que el aumento de los beneficios del monopolista no compensa la bajada del excedente del consumidor. Gráficamente: EJERCICIO.a) Primero, date cuenta que la función inversa de demanda es (simplemente aísla el precio de la función de demanda): 10 El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad tal que su ingreso marginal es igual a su coste marginal. De esta forma: Introduciendo la función inversa de demanda y la función de costes: Ahora, el monopolista elige la cantidad que maximiza su beneficio. Para ello, deriva la expresión anterior con respecto a e iguala a 0: 40 4 La parte izquierda de la igualdad es el ingreso marginal, mientras que la parte derecha es el coste marginal. Aislando la cantidad, obtenemos que 54. Introducimos la cantidad en la función inversa de demanda para obtener el precio del monopolista, resultando:

3 Introduciendo la cantidad en la función de beneficios (la función que hemos maximizado), obtenemos que: Gráficamente:.b) En competencia perfecta, 4 (el CMg lo obtuvimos en el apartado anterior). Para obtener la cantidad de competencia perfecta, iguala el CMg a la función de demanda inversa: 10 4 Aislamos, y obtenemos la cantidad de competencia perfecta: 108 Introduciendo la cantidad de competencia perfecta en la función de beneficios de la empresa, obtenemos que: Vemos por lo tanto que el beneficio de la empresa es negativo en competencia perfecta. De esta forma, en competencia perfecta el mercado no estaría abastecido, ya que las empresas no permanecerían en el..c) Bajo el monopolio, tenemos que: Bajo competencia perfecta, tenemos que: Vemos que la pérdida irrecuperable de eficiencia derivada del monopolio es: é 48

4 La pérdida viene dada por éste área:.d) Puesto que la tecnología actual permite operar sin costes fijos, si la competencia no se limita, el mercado seguiría abastecido, puesto que los beneficios de competencia perfecta de la empresa serían 0 ( 0). Por lo tanto, sería recomendable que el gobierno promoviese la competencia de forma que se maximice el excedente social. EJERCICIO Llama a la función inversa de demanda y a la función de costes, donde es la cantidad del bien. La función de beneficios del monopolista es: El monopolista escoge la cantidad que maximiza la función de beneficio. Derivando con respecto a e igualando a 0 obtenemos que (recuerda aplicar la regla de la cadena): Y aislamos la función inversa de demanda (el precio en función de la cantidad), obtenemos que: Date cuenta que 0 (recuerda que hay una relación negativa entre precio y cantidad en la demanda), por lo tanto el precio será igual al coste marginal más un valor positivo. EJERCICIO 4 4.a,4.b) Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad tal que su ingreso marginal es igual a su coste marginal. De esta forma: Introduciendo la función inversa de demanda y la función de costes: 100

5 Ahora, el monopolista elige la cantidad que maximiza su beneficio. Para ello, deriva la expresión anterior con respecto a e iguala a 0: 100 La parte izquierda de la igualdad es el ingreso marginal, mientras que la parte derecha es el coste marginal. Aislando la cantidad, obtenemos que 1.5. Introducimos la cantidad en la función inversa de demanda para obtener el precio del monopolista, resultando: Introduciendo la cantidad en la función de beneficios (la función que hemos maximizado), obtenemos que: El excedente del consumidor viene determinado por la siguiente expresión: El excedente social sería pues: Gráficamente: Donde el área A es el excedente del consumidor, el área B el del productor, y el área C la pérdida de eficiencia de la economía. 4.c) Ahora, vamos a analizar el equilibrio bajo competencia perfecta. En competencia, la función inversa de oferta resulta de igualar el precio al coste marginal. Anteriormente, obtuvimos que el coste marginal es. De esta forma: Igualando las funciones inversas de oferta y demanda: 100 Aislamos, y obtenemos la cantidad de competencia perfecta: 0 Introduciendo la cantidad en cualquiera de las funciones inversas de oferta y demanda, obtenemos que el precio de competencia perfecta es: 40

6 Introduciendo la cantidad de competencia perfecta en la función de beneficios de la empresa, obtenemos que: El excedente del consumidor viene determinado por la siguiente expresión: El excedente social sería pues: 1000 Por lo tanto, la pérdida de eficiencia en la economía sería: É 140. EJERCICIO 5 5.a) Calculamos el equilibrio del monopolio con impuesto sobre la cantidad, t. El precio pagado por el consumidor será la suma del precio recibido por el monopolista más el impuesto, es decir, p+t. Empezamos pasando de la función de demanda a la función inversa de demanda (aislamos el precio de la función) para obtener: 50 Introduciendo la función inversa de demanda y la función de costes en la función de beneficios : 50 Desde aquí, calculamos el equilibrio exactamente de la misma forma que hemos hecho en los anteriores ejercicios. La condición de primer orden del problema del monopolista es: 5 dónde los términos de la izquierda de la igualdad corresponden al ingreso marginal y el de la derecha al coste marginal. Resolviendo la ecuación para obtener la cantidad y precio de equilibrio en monopolio, obtenemos Para obtener los excedentes, basta ayudarse de un gráfico, y pensar que el excedente del productor son los beneficios (al ser los costes fijos igual a 0) Si el gobierno no interviene en la economía, caso t=0, el EC M =17.1, mientras que el del productor es EP M = Por lo tanto, el excedente total es ET M = Si el gobierno quiere obtener el bienestar de competencia perfecta, entonces debe conseguir que el precio pagado por los consumidores sea igual al coste marginal. Esto es,

7 50 10 En otras palabras, la solución de competencia perfecta es q*=10, p*=0. De las decisiones óptimas del monopolista que hemos derivado arriba, obtenemos que si la cantidad es q t =10, el impuesto debe ser t=-5 y, en consecuencia, el precio que recibe el monopolista es p t =5. Por tanto, para obtener un mayor bienestar, el gobierno puede subsidiar el consumo, incrementando la cantidad comerciada en la economía y reduciendo el precio pagado por el consumidor. El excedente del consumidor es EC t = 5, mientras que el excedente del monopolista (y los beneficios) son EP t = =150. Y el coste explícito del subsidio es 50. El excedente total (sin tener en cuenta el coste explícito del subsidio) es ET t =175. Gracias al subsidio, el excedente total se ha incrementado. Esto es así incluso si tenemos en cuenta el coste explícito del subsidio. 5.b) Regular el precio igualándolo a los costes marginales, esto es p R =0, haría que los beneficios del monopolio regulado fueran: Si F=104, los beneficios serían negativos. En general, para F>100, esta regulación no sería posible a menos que el gobierno asumiera las pérdidas del monopolio (o, de facto, nacionalizara el monopolio, haciendo la empresa pública). En caso contrario, la empresa privada monopolística cerraría. 5.c) Si los costes fijos son menores o iguales a 100, la situación de competencia perfecta maximiza la suma de los excedentes, y por tanto, el gobierno no puede imponer una tarifa mejor. Sin embargo, la competencia perfecta expulsa a la empresa del mercado cuando F>100, ya que sus beneficios son negativos. Por tanto, debemos imponer una condición que, haga que la empresa obtenga al menos unos beneficios de 0. Esto es, precio igual a coste medio. 0 Esta nueva expresión para el precio es la que utilizará el gobierno para imponer la nueva tarifa y por tanto la que debe igualar a su recíproca en la demanda: Por lo tanto, si F=104 tenemos dos soluciones: 8. y 8 con unos precios asociados de 0. y 1. En ambos casos el beneficio de la empresa es cero y por tanto 104. Si calculamos los excedentes del consumidor para (, ) y (, ) obtenemos que, =18,77 y, =1. Por tanto el excedente del

8 consumidor (así como la suma de excedentes) se maximiza en 0., que sería el precio que el gobierno debería fijar. Si calculamos la suma de los excedentes del consumidor y productor para esta regulación y para el monopolio no regulado, obtenemos que: 1) Monopolio regulado: ) Monopolio no regulado: (apartado a) EJERCICIO Primero vamos a agregar las demandas, pues nos será útil para el siguiente apartado. Sumando cantidades, obtenemos que 40 Y aislando la p, obtenemos la función de demanda inversa: 40 Además, puesto que sabemos que el coste marginal es constante e igual a, integrando la función obtenemos que la función de costes es:.1) En caso de que el monopolista no discrimine, tenemos en cuenta a toda la población. Por lo tanto, su función a maximizar es la siguiente: 40 Resolviendo como hemos hecho en los anteriores ejercicios, obtenemos que en equilibrio: Ahora suponemos que m=10. En este caso, sustituyendo en las funciones anteriores obtenemos que: E introduciendo este precio en las funciones de demanda individuales obtenemos que: Calculamos además el excedente del consumidor agregado: = 80.7.

9 Ahora suponemos que m=. En este caso, sustituyendo en las funciones anteriores obtenemos que: Como el precio es mayor que m, el monopolista no venderá a los agentes del grupo. Por lo tanto, repite su problema solo con el grupo Y resolviendo como siempre obtenemos que en equilibrio 18, 11. Calculamos además el excedente del consumidor de cada grupo: = =0 81.) Como ahora el monopolista puede discriminar entre grupos, su problema es el siguiente:, 40 La condición de primer orden con respecto es: 0 Lo que implica que 18 Usando además la función de demanda inversa del primer grupo: 11 Además, el excedente del consumidor del primer grupo es: Para el segundo grupo, vemos que la condición de primer orden con respecto a : Lo que implica que 1 Ahora separamos dos casos: Caso 1: m=10 Introduciendo el valor en las funciones correspondientes obtenemos que: Caso : m= Introduciendo el valor en las funciones correspondientes obtenemos que: 4

10 4.) Calculamos los excedentes del consumidor agregado (sumamos grupos para los casos analizados arriba de forma separada) de forma que tenemos: Sin discriminación: Con discriminación: En los dos casos los consumidores (tomados como conjunto) están mejor con discriminación. EJERCICIO 7 Primero agregamos las demandas. Para ello sumamos cantidades (las funciones de demanda) y obtenemos que: 10 Y la función de demanda inversa es: 10 7.a) El problema del monopolista cuando no hay disciminación es el siguiente: 10 4 Resolviendo el problema exactamente igual que como lo resolvimos en el ejercicio anterior, obtenemos que: 9, 19.5 Para obtener la cantidad demandada por cada uno de los países, metemos el precio obtenido en sus funciones de demanda: Gráficamente:

11 7.b) Se trata de una discriminación de precios de tercer grado, puesto que el monopolista puede identificar los distintos grupos. Concretamente, aplicar distintos precios a distintos países se denomina dumping. Con esto, el problema del monopolista es:, Resolviendo este problema exactamente igual que hicimos en el ejercicio anterior, obtenemos que 9 54 E introduciendo estos valores en las respectivas funciones inversas de demanda: 17 7.c) Con discriminación de precios, la pérdida de eficiencia es menor, puesto que más consumidores tienen acceso al consumo del bien; y aunque su excedente sea apropiado por la empresa, éste también computa para medir la eficiencia.

Microeconomía II BLOQUE TEMÁTICO 2: MONOPOLIO Y PODER DE MERCADO

Microeconomía II BLOQUE TEMÁTICO 2: MONOPOLIO Y PODER DE MERCADO Microeconomía II BLOQUE TEMÁTICO 2: MONOPOLIO Y PODER DE MERCADO Programa Microeconomía II BLOQUE TEMÁTICO 2: MONOPOLIO Y PODER DE MERCADO El monopolio: análisis a corto plazo y largo plazo. Los costes

Más detalles

MICROECONOMÍA II. PRÁCTICA TEMA II: Equilibrio parcial

MICROECONOMÍA II. PRÁCTICA TEMA II: Equilibrio parcial MICROECONOMÍA II PRÁCTICA TEMA II: Equilibrio parcial EJERCICIO 1 A) En equilibrio, la cantidad demandada coincide con la cantidad ofrecida, así como el precio de oferta y demanda. Por lo tanto, para hallar

Más detalles

Escuela Profesional de Ingeniería Económica Curso. Análisis Económico II (Microeconomía Intermedia II) Código

Escuela Profesional de Ingeniería Económica Curso. Análisis Económico II (Microeconomía Intermedia II) Código Escuela Escuela Profesional de Ingeniería Económica Curso Análisis Económico II (Microeconomía Intermedia II) Código EA 411 K Aula MS001 Actividad Práctica Dirigida No. 6 Competencia, Monopolio precio

Más detalles

Examen Final 28 de Enero de 2009 Permutación 1

Examen Final 28 de Enero de 2009 Permutación 1 Universitat Autònoma de Barcelona Introducció a l Economia, Curs 2008-2009 Codi: 25026 Examen Final 28 de Enero de 2009 Permutación 1 Primera Parte Preguntas de opción múltiple (20 puntos). Marca claramente

Más detalles

PRÁCTICA 8. Microeconomía Intermedia. Curso 2011/2012 Facultad de Derecho y Ciencias Sociales de Ciudad Real (UCLM) Profesor: Julio del Corral Cuervo

PRÁCTICA 8. Microeconomía Intermedia. Curso 2011/2012 Facultad de Derecho y Ciencias Sociales de Ciudad Real (UCLM) Profesor: Julio del Corral Cuervo PRÁCICA 8 1.- Un monopolista con función costes C= 2 abastece a un mercado cua demanda es p=300-4. a) Calcule la cantidad producida, el precio el beneficio si la empresa se comporta como un monopolio maximizador

Más detalles

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO 2.1 ANÁLISIS DE EQUILIBRIO 2.2. DISCRIMINACIÓN DE PRECIOS Y REGULACIÓN SOLUCIÓN A LOS PROBLEMAS PROPUESTOS

Más detalles

EJERCICIO DE OFERTA Y DEMANDA. ENUNCIADO. a) Indique cuáles serán el precio y la cantidad de equilibrio en ese mercado.

EJERCICIO DE OFERTA Y DEMANDA. ENUNCIADO. a) Indique cuáles serán el precio y la cantidad de equilibrio en ese mercado. EJERCICI E FERTA Y EMANA. ENUNCIA. En el mercado de los alojamientos en casas rurales en una determinada zona de alto interés ambiental se ha estimado que las funciones de demanda y oferta responden, respectivamente,

Más detalles

0.01 0.4 4. Operando sobre esta relación, se obtiene

0.01 0.4 4. Operando sobre esta relación, se obtiene ORGANIZACIÓN INDUSTRIAL (16691-ECO) TEMA 1: LA COMPETENCIA PERFECTA EN UN MARCO DE EQUILIBRIO PARCIAL 1.1 ANÁLISIS DE LA ESTÁTICA COMPARATIVA DE UN MERCADO COMPETITIVO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS

Más detalles

POLITICAS DE LA COMPETENCIA Licenciatura en Economía, 4º Curso (Grupos I y II) Profesor: Georges Siotis. Hoja 5: Integración vertical

POLITICAS DE LA COMPETENCIA Licenciatura en Economía, 4º Curso (Grupos I y II) Profesor: Georges Siotis. Hoja 5: Integración vertical POLITICAS DE LA COMPETENCIA Licenciatura en Economía, 4º Curso (Grupos I y II) Profesor: Georges Siotis Hoja 5: Integración vertical Inversiones específicas 1. Imagine una imprenta, que pertenece y es

Más detalles

Escuela Profesional de Ingeniería Económica Curso. Análisis Económico II (Microeconomía Intermedia II) Código. Examen Parcial (solucionario) Profesor

Escuela Profesional de Ingeniería Económica Curso. Análisis Económico II (Microeconomía Intermedia II) Código. Examen Parcial (solucionario) Profesor Escuela Escuela Profesional de Ingeniería Económica Curso Análisis Económico II (Microeconomía Intermedia II) Código EA 411 K Aula MS001 Actividad Examen Parcial (solucionario) Profesor Econ. Guillermo

Más detalles

Capítulo 3. Análisis económico del Cambio Climático

Capítulo 3. Análisis económico del Cambio Climático 37 Capítulo 3. Análisis económico del Cambio Climático En 2006, Stern realizó una investigación sobre los impactos económicos del cambio climático a nivel global, donde estimó los costos de implementar

Más detalles

La maximización de los beneficios y la oferta competitiva. Por: Julián Ochoa y Tomás Mogollón.

La maximización de los beneficios y la oferta competitiva. Por: Julián Ochoa y Tomás Mogollón. La maximización de los beneficios y la oferta competitiva. Por: Julián Ochoa y Tomás Mogollón. Los Mercados perfectamente competitivos El modelo de la competencia perfecta se basa en tres supuestos básicos:

Más detalles

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES

CASO PRÁCTICO DISTRIBUCIÓN DE COSTES CASO PRÁCTICO DISTRIBUCIÓN DE COSTES Nuestra empresa tiene centros de distribución en tres ciudades europeas: Zaragoza, Milán y Burdeos. Hemos solicitado a los responsables de cada uno de los centros que

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

En este PDF encontrará los siguientes temas que debe estudiar para la clase:

En este PDF encontrará los siguientes temas que debe estudiar para la clase: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Función de oferta, superávit de consumidores y productores, análisis marginal: Costo marginal, Ingreso marginal, Utilidad marginal

Más detalles

Universitat Autònoma de Barcelona Introducció a l Economia, Curs 2008-2009 Codi: 25026. Examen Parcial, 13 de Noviembre de 2008 EXAMEN TIPO 1

Universitat Autònoma de Barcelona Introducció a l Economia, Curs 2008-2009 Codi: 25026. Examen Parcial, 13 de Noviembre de 2008 EXAMEN TIPO 1 Universitat Autònoma de Barcelona Introducció a l Economia, Curs 2008-2009 Codi: 25026 Examen Parcial, 13 de Noviembre de 2008 EXAMEN TIPO 1 Primera Parte Preguntas de opción múltiple (20 puntos). Marca

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Microeconomía II. Listas de problemas. Curso 2004-2005 J.Andreu,J.deFreitasyJ.Massó Y =3L 1/3 K 1/3.

Microeconomía II. Listas de problemas. Curso 2004-2005 J.Andreu,J.deFreitasyJ.Massó Y =3L 1/3 K 1/3. 1 Repaso Microeconomía II Listas de problemas. Curso 2004-2005 J.Andreu,J.deFreitasyJ.Massó 1.1.- Considerar una empresa con una tecnología representada por la función de producción Y =3L 1/3 K 1/3. (a)

Más detalles

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS Estímulo del talento matemático

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS Estímulo del talento matemático PROYECTO DE L REL CDEMI DE CIENCIS Estímulo del talento matemático Prueba de selección 11 de junio de 2013 Nombre:... pellidos:... Fecha de nacimiento:... Teléfonos:... Centro de Estudios: e-mail: Información

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Discriminación de precios y tarifa en dos etapas

Discriminación de precios y tarifa en dos etapas Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology CLASE DE REPASO Nº 6 Discriminación de precios y tarifa en dos etapas Viernes - 29 de octubre de 2004 RESUMEN DE LA CLASE

Más detalles

MICROECONOMÍA MICROECONOMÍA

MICROECONOMÍA MICROECONOMÍA MICROECONOMÍA MICROECONOMÍA INTRODUCCIÓN A LA MICROECONOMÍA. OBJETIVOS El alumno deberá ser capaz de comprender cómo se realiza el proceso de satisfacción de necesidades utilizando eficientemente sus recursos

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Ejemplo del modelo de generaciones solapadas

Ejemplo del modelo de generaciones solapadas Ejemplo del modelo de generaciones solapadas Descripción de la economía 1. Cada unidad del bien sólo puede existir en un período de tiempo. 2. Todas las generaciones 1 son idénticas. Cada generación está

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Medición de la estructura industrial

Medición de la estructura industrial UNIDAD 10 Medición de la estructura industrial Objetivo Al finalizar la unidad, el alumno: Analizará el poder de mercado que poseen las empresas. Identificará los principales métodos para medir el poder

Más detalles

Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes.

Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes. FRACCIONES 1. LAS FRACCIONES. 1.1. CONCEPTO. Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes. Una fracción también es una

Más detalles

3. MODELO MACROECONOMICO. 3.1 Oferta y demanda agregada nacional y su efecto en la economía internacional

3. MODELO MACROECONOMICO. 3.1 Oferta y demanda agregada nacional y su efecto en la economía internacional 3. MODELO MACROECONOMICO 3.1 Oferta y demanda agregada nacional y su efecto en la economía internacional Definimos primero a la oferta y demanda agregada para después desglosar sus elementos. Veremos la

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

Producto 1 P1 Producto 2 P2 Producto 3 P3 0 34000 2.5 200 1500 6 25000 1 35200 2.6 221 1650 5 26500 2 36200 2.4 225 1700 7 26500

Producto 1 P1 Producto 2 P2 Producto 3 P3 0 34000 2.5 200 1500 6 25000 1 35200 2.6 221 1650 5 26500 2 36200 2.4 225 1700 7 26500 Práctica 1 Fecha de entrega: Martes, 28 de febrero, antes de las 8:00 pm (habrá una caja en la puerta de mi despacho donde podréis entregar la práctica en cualquier momento del día) 1) Hemos obtenidos

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

CURSO INSTALACION E IMPLEMENTACION ALOJA SOFTWARE HOTEL MODULO 05: Reservas [1]

CURSO INSTALACION E IMPLEMENTACION ALOJA SOFTWARE HOTEL MODULO 05: Reservas [1] MODULO 05: Reservas [1] Reservas de particulares, de empresas, de agencias. Una vez que se pulsa Continúa Tarea se ingresa a una pantalla donde se definen los datos definitivos de la reserva. Aquí se define

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas

CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas CAPÍTULO 10 Aplicaciones de la Derivada a Funciones Económicas Introducción En la economía, la variación de alguna cantidad con respecto a otra puede ser descrita por un concepto promedio o por un concepto

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 03 La elección óptima del consumidor

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Teoría de las decisiones y de los juegos 2007-2008 Grupo 51 Ejercicios - Tema 3 Juegos dinámicos con información completa (0, 2) 2 D (3, 0) 1 B I

Teoría de las decisiones y de los juegos 2007-2008 Grupo 51 Ejercicios - Tema 3 Juegos dinámicos con información completa (0, 2) 2 D (3, 0) 1 B I Teoría de las decisiones y de los juegos 007-008 rupo 5 Ejercicios - Tema 3 Juegos dinámicos con información completa. Considere el siguiente juego en su forma extensiva. I (0, ) D (3, 0) I (, ) D (, 3)

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

ANÁLISIS ECONÓMICO DE INVERSIONES.

ANÁLISIS ECONÓMICO DE INVERSIONES. ANÁLISIS ECONÓMICO DE INVERSIONES. José Ignacio González Soriano Agosto 2013 INDICE 1. FORMULAS FINANCIERAS.... 2 1.1.- VALOR ACTUAL NETO.... 3 1.1.1.- DEFINICIÓN... 3 1.1.2.- CASO GENERAL... 3 1.1.3.-

Más detalles

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal. ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 06 Elasticidad de la demanda, el excedente

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

CAPITULO 1 INTRODUCCIÓN. Puesta en Evidencia de un circulo virtuoso creado por los SRI entre los Mercados Financieros y las Empresas

CAPITULO 1 INTRODUCCIÓN. Puesta en Evidencia de un circulo virtuoso creado por los SRI entre los Mercados Financieros y las Empresas CAPITULO 1 INTRODUCCIÓN 16 Capítulo I: Introducción 1.1 Breve descripción del proyecto: Nuestro proyecto de tesis trata de mostrar el círculo virtuoso que se produce entre los instrumentos de inversión

Más detalles

UNIDAD Nº IV ANALISIS FINANCIERO. Administración de Empresas. Prof. Robert Leal

UNIDAD Nº IV ANALISIS FINANCIERO. Administración de Empresas. Prof. Robert Leal UNIDAD Nº IV ANALISIS FINANCIERO Administración de Empresas. Prof. Robert Leal LAS FINANZAS Las finanzas son las actividades relacionadas con los flujos de capital y dinero entre individuos, empresas,

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Tema 7: Externalidades

Tema 7: Externalidades Tema 7: Externalidades Eficiencia y fallos del mercado Recuerde que: la mano invisible del mercado de Adam Smith permite que la búsqueda de su propio interés por compradores y vendedores maximice el beneficio

Más detalles

GUÍA PARA LA FORMULACIÓN PROYECTOS

GUÍA PARA LA FORMULACIÓN PROYECTOS GUÍA PARA LA FORMULACIÓN PROYECTOS Un PROYECTO es un PLAN DE TRABAJO; un conjunto ordenado de actividades con el fin de satisfacer necesidades o resolver problemas. Por lo general, cualquier tipo de proyecto,

Más detalles

Nota II: El mercado (-) (?) (+) (-) (+) (+) (+)

Nota II: El mercado (-) (?) (+) (-) (+) (+) (+) Nota II: El mercado Desde el punto de vista económico, el mercado es el sistema que resuelve los cinco problemas en una forma más eficiente. Mercado Arreglo institucional en el que se juntan demandantes

Más detalles

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6.1.- Definición. Una asíntota es una recta que se encuentra asociada a la gráfica de algunas curvas y que se comporta como un límite gráfico hacia la cual la

Más detalles

EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA

EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA 1. Introduccio n El propósito de este reporte es describir de manera detallada un diagnóstico de su habilidad para generar ingresos pasivos, es decir, ingresos

Más detalles

Teoría del Comercio Exterior y la Integración Danilo Trupkin Trabajo Práctico 3 - Soluciones

Teoría del Comercio Exterior y la Integración Danilo Trupkin Trabajo Práctico 3 - Soluciones eoría del Comercio Exterior y la Integración anilo rupkin rabajo ráctico 3 - oluciones I. reguntas de ultiple Choice. La curva de oferta de exportaciones de un producto que nosotros (N) importamos desde

Más detalles

Capítulo 3. Estimación de elasticidades

Capítulo 3. Estimación de elasticidades 1 Capítulo 3. Estimación de elasticidades Lo que se busca comprobar en esta investigación a través la estimación econométrica es que, conforme a lo que predice la teoría y lo que ha sido observado en gran

Más detalles

COMERCIO INTERNACIONAL Y COMPETENCIA IMPERFECTA. Klaus Desmet y José Riera

COMERCIO INTERNACIONAL Y COMPETENCIA IMPERFECTA. Klaus Desmet y José Riera COMERCIO INTERNACIONAL Y COMPETENCIA IMPERFECTA 1 1. PLAN DE TRABAJO 2 Plan de trabajo Clases teóricas Competencia monopolística y comercio intraindustrial. Dumping Dumping recíproco. Clases prácticas

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

TECNOLOGÍAS DE PRODUCCIÓN. (Función de Producción Cobb-Douglas) (http://www.geocities.com/ajlasa)

TECNOLOGÍAS DE PRODUCCIÓN. (Función de Producción Cobb-Douglas) (http://www.geocities.com/ajlasa) TECNOOGÍAS DE PRODUCCIÓN (Función de Producción Cobb-Douglas) (http://www.geocities.com/ajlasa) En general, toda actividad de producción de bienes y servicios requiere de dos insumos básicos: el capital

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

FORMATO BINARIO DE NÚMEROS NEGATIVOS

FORMATO BINARIO DE NÚMEROS NEGATIVOS FORMATO BINARIO DE NÚMEROS NEGATIVOS Introducción: Como sabemos, con un número n determinado de bits se pueden manejar 2 n números binarios distintos. Hasta ahora hemos trabajado con números binarios puros,

Más detalles

La ventana de Microsoft Excel

La ventana de Microsoft Excel Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft

Más detalles

Interpolación polinómica

Interpolación polinómica 9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,

Más detalles

Microeconomía II BLOQUE TEMÁTICO 4: LOS MERCADOS DE FACTORES PRODUCTIVOS

Microeconomía II BLOQUE TEMÁTICO 4: LOS MERCADOS DE FACTORES PRODUCTIVOS Microeconomía II BLOQUE TEMÁTICO 4: LOS MERCADOS DE FACTORES PRODUCTIVOS 1 Programa Microeconomía II BLOQUE TEMÁTICO 4: LOS MERCADOS DE FACTORES PRODUCTIVOS La demanda de factores productivos en mercados

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Por ejemplo convertir el número 131 en binario se realiza lo siguiente: Ahora para convertir de un binario a decimal se hace lo siguiente:

Por ejemplo convertir el número 131 en binario se realiza lo siguiente: Ahora para convertir de un binario a decimal se hace lo siguiente: Como convertir números binarios a decimales y viceversa El sistema binario es un sistema de numeración en el que los números se representan utilizando 0 y 1. Es el que se utiliza en los ordenadores, pues

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Universidad Carlos III de Madrid Junio 2013. Microeconomía. 1 2 3 4 5 Calificación

Universidad Carlos III de Madrid Junio 2013. Microeconomía. 1 2 3 4 5 Calificación Universidad Carlos III de Madrid Junio 013 Microeconomía Nombre: Grupo: 1 3 4 5 Calificación Dispone de horas y 30 minutos. La puntuación de cada apartado, sobre un total de 100 puntos, se indica entre

Más detalles

Informática Bioingeniería

Informática Bioingeniería Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,

Más detalles

Tema 1:La empresa y el sistema económico

Tema 1:La empresa y el sistema económico Tema 1:La empresa y el sistema económico 1.Concepto de economía 2. Algunos conceptos básicos de economía 3.La curva de transformación 4.Problemas económicos fundamentales 5.Los sistemas económicos 6.Los

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

1. Breve resumen de optimización sin restricciones en varias variables.

1. Breve resumen de optimización sin restricciones en varias variables. MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones

Más detalles

Equivalencia financiera

Equivalencia financiera Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

Ecuación ordinaria de la circunferencia

Ecuación ordinaria de la circunferencia Ecuación ordinaria de la circunferencia En esta sección estudiatemos la ecuación de la circunferencia en la forma ordinaria. Cuando hablemos de la forma ordinaria de una cónica, generalmente nos referiremos

Más detalles

HOJA Nº 2 DE EJERCICIOS PARA ENTREGAR MICROECONOMÍA: CONSUMO Y PRODUCCIÓN 1º CURSO, GRADO EN ECONOMÍA (CURSO ACADÉMICO 2011-2012) GRUPO 1

HOJA Nº 2 DE EJERCICIOS PARA ENTREGAR MICROECONOMÍA: CONSUMO Y PRODUCCIÓN 1º CURSO, GRADO EN ECONOMÍA (CURSO ACADÉMICO 2011-2012) GRUPO 1 HOJA Nº DE EJERCICIOS PARA ENTREGAR MICROECONOMÍA: CONSUMO Y PRODUCCIÓN º CURSO, GRADO EN ECONOMÍA (CURSO ACADÉMICO 0-0) GRUPO.- Marcos tiene un ingreso de 0 a la semana. Los discos compactos (CD) cuestan

Más detalles

U.D. 24 Análisis económico (II)

U.D. 24 Análisis económico (II) U.D. 24 Análisis económico (II) 24.01 El margen de contribución unitario y el margen de contribución total. 24.02 el Punto de equilibrio (o Punto muerto). 24.02.01 Incremento de ventas y aumento de beneficio.

Más detalles

5. PROCEDIMIENTOS DE CONTROL POR ÓRDENES DE PRODUCCIÓN Y POR CLASE

5. PROCEDIMIENTOS DE CONTROL POR ÓRDENES DE PRODUCCIÓN Y POR CLASE 5. PROCEDIMIENTOS DE CONTROL POR ÓRDENES DE PRODUCCIÓN Y POR CLASE El control de costos es algo natural. Se han modelado y convertido en estándares muchas de las cadenas lógicas tipo de la ejecución de

Más detalles

1. Introducción al evaluación de proyectos

1. Introducción al evaluación de proyectos Objetivo general de la asignatura: El alumno analizará las técnicas de evaluación de proyectos de inversión para la utilización óptima de los recursos financieros; así como aplicar las técnicas que le

Más detalles

CAPÍTULO 2 IMPORTANCIA DE LA ASIGNATURA OUTSOURCING EN TECNOLOGÍAS DE INFORMACIÓN

CAPÍTULO 2 IMPORTANCIA DE LA ASIGNATURA OUTSOURCING EN TECNOLOGÍAS DE INFORMACIÓN CAPÍTULO 2 IMPORTANCIA DE LA ASIGNATURA OUTSOURCING EN TECNOLOGÍAS DE INFORMACIÓN CAPÍTULO 2 IMPORTANCIA DE LA ASIGNATURA OUTSOURCING EN TECNOLOGÍAS DE INFORMACIÓN 2.1 INTRODUCCIÓN. En este capítulo se

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Escuela Académico Profesional de Economía Curso. Examen Parcial No. 1 (solucionario) Tema. Varian 2, 3, 4, 5, 6, 8 y 14 Profesor

Escuela Académico Profesional de Economía Curso. Examen Parcial No. 1 (solucionario) Tema. Varian 2, 3, 4, 5, 6, 8 y 14 Profesor Facultad Ciencias Económicas Escuela Escuela Académico Profesional de Economía Curso Microeconomía I Código CO1214 Aula 218 Actividad Examen Parcial No. 1 (solucionario) Tema Varian 2, 3, 4, 5, 6, 8 y

Más detalles

Restricciones Verticales y Exclusión: El caso de Telecomunicaciones

Restricciones Verticales y Exclusión: El caso de Telecomunicaciones Restricciones Verticales y Exclusión: El caso de Telecomunicaciones Seminario Internacional y XI de Tecnología y Regulación: Mercado de Telecomunicaciones III Cuenca, Enero 2014 Temas 1. Pensamiento Económico

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Macroeconomía Intermedia

Macroeconomía Intermedia Macroeconomía Intermedia Colección de 240 preguntas tipo test, resueltas por Eduardo Morera Cid, Economista Colegiado. Cada sesión constará de una batería de 20 preguntas tipo test y las respuestas a las

Más detalles

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

ECONOMOMIA DE LA COMPETENCIA II Cátedra Jean Monnet de Economía Industrial Europea PRESENTACION 1 MONOPOLIO NATURAL Y TEORIA DE LA REGULACION

ECONOMOMIA DE LA COMPETENCIA II Cátedra Jean Monnet de Economía Industrial Europea PRESENTACION 1 MONOPOLIO NATURAL Y TEORIA DE LA REGULACION ECONOMOMIA DE LA COMPETENCIA II Cátedra Jean Monnet de Economía Industrial Europea PRESENTACION 1 MONOPOLIO NATURAL Y TEORIA DE LA REGULACION Regulación Control de una actividad económica por parte del

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2014

PRUEBA ESPECÍFICA PRUEBA 2014 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 5 AÑOS PRUEBA ESPECÍFICA PRUEBA 014 PRUEBA SOLUCIONARIO HAUTAPROBAK 5 URTETIK 014ko MAIATZA DE 5 AÑOS MAYO 014 Aclaraciones previas Tiempo de duración de la

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Estrategias de producto y precio

Estrategias de producto y precio Cómo vender tu producto o servicio Índice 1. Qué es una estrategia?... 3 2. Qué es una estrategia de producto?... 3 3. Cómo fijar una estrategia de producto?... 3 4. Pero, qué es un producto (o servicio)?...

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles