SUMAR Y RESTAR CANTIDADES EXPRESADAS CON FRACCIONES Y DECIMALES CON DISTINTO SIGNIFICADOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SUMAR Y RESTAR CANTIDADES EXPRESADAS CON FRACCIONES Y DECIMALES CON DISTINTO SIGNIFICADOS"

Transcripción

1 SUMAR Y RESTAR CANTIDADES EXPRESADAS CON FRACCIONES Y DECIMALES CON DISTINTO SIGNIFICADOS 4to. Grado Grupo RED Universidad de La Punta

2 CONSIDERACIONES GENERALES Desde la perspectiva que asocia el aprendizaje con la construcción del sentido de los conocimientos, para las operaciones con los números racionales, interesa ocuparse de: - los problemas que se resuelven o que se relacionan con ellas, - las situaciones en las que no pueden ser utilizadas, - la evolución de las distintas concepciones de la operación que permita utilizarla en los distintos campos numéricos, - sus relaciones con otros conceptos (multiplicación y división con proporcionalidad, por ejemplo), - sus relaciones con otras operaciones, - los recursos de cálculo que pueden ser utilizados, en donde el algoritmo es uno entre otros posibles, - por qué funcionan tales recursos de cálculo, - cuáles son los mecanismos de control que se poseen y que permiten validar el procedimiento realizado o la adecuación de la respuesta, etc. La propuesta es algo mucho más compleja que agregar un contexto a una suma de fracciones o incorporar un listado de problemas al final del desarrollo de un tema que muestre dónde se usa un algoritmo, estrategias de enseñanza que se apoyan en la idea ya superada de que mirando y practicando se aprende. Se presentan situaciones que requieran un uso posible de los números racionales para que los alumnos puedan resolverlos con herramientas propias; el planteo de nuevas situaciones que requieran utilizar las operaciones permitirá a ellos resignificarlas en el nuevo campo numérico. También se propone un trabajo de análisis y reflexión a partir de la comparación de situaciones problemáticas que involucran distintas operaciones y sus diferentes significados con el objeto de permitir el estudio de los límites de utilización de cada una de las operaciones. En síntesis, lo que planteamos aquí es la necesidad de proponer problemas que permitan a los alumnos ir comprendiendo el tipo de situaciones para las que son útiles las operaciones. Algunas situaciones son posibles de resolver apoyándose en la suma y retomar un significado de la multiplicación con el que los alumnos ya están familiarizados para ir construyendo los primeros procedimientos de cálculo de dobles o mitades, triples, etc. Analizar las producciones y vincular el sentido del problema con los resultados obtenidos permitiría obtener algunas primeras reglas ligadas a la descomposición de 2

3 fracciones a/b como a x 1/b o a la consideración de las denominaciones de las cifras decimales. - 7 x 3/4 = 7 x 3 x 1/4 = 21 x ¼ - 5 x 0,35 = 5 x 35 centésimos = 175 centésimos Es necesario también considerar las situaciones que se refieren al cálculo de una parte de una cantidad. Esta tarea es posible vincularla con situaciones de reparto en partes iguales que ya se hayan realizado, como calcular la cuarta parte o la mitad. Lo nuevo será vincular la multiplicación y la división con las escrituras fraccionarias, ya que, por ejemplo, buscar las tres cuartas partes de 12 puede pensarse como dividir el 12 por 4 y tomar 3 partes, lo que supone pensar a 3/4 como el triple de la cuarta parte o también puede pensarse como hacer el triple de 12 y después averiguar la cuarta parte, es decir, calcular la cuarta parte del triple. Es interesante observar que si se calcula la cuarta parte del triple, o el triple de la cuarta parte, se obtiene el mismo resultado, aunque el significado de lo que se hace sea distinto. Para los alumnos, la idea de parte de es más fácil de relacionar con una división que con la multiplicación, pero habrá que explicitar que hacer la mitad de 24 puede escribirse tanto 24 : 2 como 1/2 x 24, y agregar más adelante 0,5 x 24. Significados de las operaciones con números fraccionarios Los variados significados de las operaciones con números racionales son: En la suma y la resta Los significados de las fracciones pensadas como estados son idénticos a los de la suma y la resta con naturales (unir, separar, agregar, quitar, igualar). Se deben trabajar situaciones problemáticas que tengan fracciones con igual y distinto denominador, y que combinen fracciones, números naturales y números mixtos. Las fracciones pensadas como operadores implican la búsqueda de una cantidad intermedia (unidad o común denominador) al que se aplican. Por ej. 2/3 + 3/4 se puede pensar como 2/3 de una cantidad más 3/4 de la misma. Por ejemplo, sea la cantidad 12, con lo cual 2/3 de 12 es 8 y 3/4 de 12 es 9 y el resultado de sumarlas es 17/12. Por ejemplo, si Carla se comió 2/4 de las galletitas y Fernando 2/5 de las mismas Qué parte de galletitas quedaron en el tarro? puede ser pensado como dos estados que se unen o bien como dos operadores que actúan sobre la cantidad de galletitas. En ambos casos se ha de buscar una unidad conveniente, por ejemplo 20 y el resultado será 18/20. En la multiplicación Se deben trabajar situaciones problemáticas de multiplicación de números naturales por fracciones y fracciones entre sí atendiendo a los distintos significados: - n x a/b resulta identificable como n veces a/b Por ejemplo 5 x 3/4 = 5 veces 3/4 3

4 - a/b x n resulta identificable con la expresión a/b de n lo que implica dividir n por b y multiplicar el resultado por a ó viceversa. Por ejemplo: 3/5 x 10 será pensado como 3/5 de 10 lo que resulta igual a 6. - a/b x c/d = se extiende el significado anterior a/b de c/d. En general el resultado es menor que los factores salvo que se trabaje con fracciones mayores que la unidad. Por ejemplo: 2/3 de 3/4 resultará 6/12. En la división Se deben trabajar situaciones problemáticas que atiendan a dividir fracciones por naturales, naturales por fracciones y fracciones entre sí 1) n : a/b posee el significado de partir ( Cuántas veces cabe a/b en n?). Por ejemplo: 6 : 2/3 equivale a cuántas veces cabe 2/3 en 6, lo que da 9 veces. 2) a/b : n = puede pensarse como repartir una fracción en n partes. Por lo que 2/3 dividido 3 resulta 2/9. 3) a/b : c/d corresponde también a partir ( Cuántas veces cabe c/d en a/b?) Por ejemplo: 3/4 : 1/4 equivale a cuántas veces cabe 1/4 en 3/4 lo que es igual a 3. INDICE: ACTIVIDAD 1: A pensar 4

5 Comenzar con el tratamiento de sumas y restas de fracciones. ACTIVIDAD 2: A resolver Resolver problemas de suma y resta con fracciones. ACTIVIDAD 3: Trabajamos con decimales Resolver problemas de suma y resta con números decimales. ACTIVIDAD 4: A pensar un poco más Resolver problemas 5

6 ACTIVIDAD 1: A pensar La seño escribió el siguiente problema en el pizarrón: Mi mamá me mandó a comprar a la panadería 3/4 kg de pan y 1/2kg de tortitas. Cuántos kg compré en total? A. Resolvelo como te parezca. B. Tres compañeros los resolvieron de la siguiente manera. Mirá cómo lo explicó cada uno y decí con quien o quienes estás de acuerdo. MARIA: Como es, a le agregó más, tengo 1 kg y falta agregar más, o sea 1 y MARIANA: 4 3 es lo mismo que 3 de 4 1 y 2 1 son 2 de 4 1. Son 5 de 4 1. Con 4 de 4 1 tengo 1 kg y queda 4 1 más, o sea 5 y 4 1 JUAN: es lo mismo que y si junto ese medio con el otro forma 1 y después agregó C. Obtuvieron los mismos resultados? ACTIVIDAD 2: A resolver En grupos de a dos, resolvé los siguientes problemas: A. En una panadería se venden unas galletitas en bolsitas de 4 1 kg, y hay un cartel con el precio que indica $6 el kg. Si se quiere comprar 2 kg 2 1 para una fiesta cuántas bolsitas se tienen que comprar? 6

7 B. Unos amigos van al supermercado a comprar bebidas para una fiesta. Uno de los amigos compra 3 botellas de 1 litro y 2 1, otro amigo 2 de litro y el otro amigo de 2. Si ellos calculan que cada invitado toma litro y son 20 chicos. 4 2 alcanza lo que compraron los tres amigos? Cuánto falta o sobra? C. En una campaña de recolección de alimentos, Virginia y Lucas trajeron azúcar. 1 Virginia trajo un paquete de 1 kg y otro de kg, Lucas consiguió 3 paquetes de 2 1 kg. La maestra les dice que ambos trajeron la misma cantidad. Por qué lo 2 dice? D. La mamá de Guille le pidió que compre 2 kg y medio de pan. Si en el negocio sólo venden paquetes de 2 1 kg, Cuánto tuvo que comprar? E. En un curso hay 36 alumnos, 4 3 de ellos hicieron la tarea. Cuántos chicos hicieron la tarea? ACTIVIDAD 3: Trabajamos con decimales En grupos de a dos, resolvé los siguientes problemas como puedas. A. En el almacén Martin compró verdura, fruta y carne que costaron $5,70, $5,05 y $12, 45. Si pagó con $50. Cuánto dinero le dieron de vuelto? B. Agustina fue a la librería y compro algunos artículos para la escuela. Si pagó con $100 y le dieron $6,55 de vuelto, Cuánto habrá gastado? C. Para decorar un mantel la mamá de Eugenia necesita 8,6 m de cinta azul; 2,4 m de cinta lila y 6,8 m de cinta celeste. Qué cantidad de cinta necesita en total? D. Vanina lleva a la juguetería $80 para comprar juguetes. Elige un autito de $65,70 y un rompecabezas de $19,80. Le alcanza? Cuánto le falta o le sobra para comprar los dos artículos? E. Carla gastó $8,50 y $10,75. Cuánto dinero tendría que haber llevado para que le sobrarán $5? F. Un plomero está usando un caño de 1,66m. Corta 0,25m para el agua caliente y 0,38m para el agua fría. Cuánto le queda de caño? 7

8 G. Una modista tiene que hacer 4 vestidos con un rollo de tela de 20m. El largo de cada vestido es de 2,65m. Cuánta tela le sobra? Le alcanza para hacer más vestidos? ACTIVIDAD 4: A pensar un poco más Resolvé. 1. Un albañil que cobra por semana, anota las horas que va trabajando en una libreta. El lunes anotó 1 hora y 4 1 y 2 horas. El martes anotó que llegó a las 10 y cuarto y salió a las 12 del mediodía. Cuánto tiempo lleva trabajado el albañil esta semana? 2. En la panadería del barrio se vende el pan en bolsitas de 4 1 kg, y sale $3 el kg. a) Si va un cliente y compra 2 kg 2 1, Cuántas bolsitas tendrá que comprar? 3. En una jarra cuya capacidad es de 2 litros, había 1 litro y 4 1 de jugo. Si se consumió 2 1 litro, Cuánto jugo hay que verter en la jarra para completar los 2 litros? cómo lo averiguaste? 4. Para hacer una ensalada de fruta una cocinera pone: 1kg. De manzanas, 4 3 kg. De frutillas, 2 1 kg. De duraznos y 2 1 kg de bananas. Cuántos kg. De fruta va a necesitar en total? 1 5. Julieta tiene un bidón de 5 litros. Primero vuelca 2 litros de agua, más tarde 2 3 agrega 1 más. Se logra completar la capacidad del bidón? Por qué? 4 8

ELABORAR Y COMPARAR DISTINTOS PROCEDIMIENTOS PARA CALCULAR CANTIDADES QUE SE CORRESPONDEN O NO PROPORCIONALMENTE

ELABORAR Y COMPARAR DISTINTOS PROCEDIMIENTOS PARA CALCULAR CANTIDADES QUE SE CORRESPONDEN O NO PROPORCIONALMENTE ELABORAR Y COMPARAR DISTINTOS PROCEDIMIENTOS PARA CALCULAR CANTIDADES QUE SE CORRESPONDEN O NO PROPORCIONALMENTE 6to. Grado Universidad de La Punta CONSIDERACIONES GENERALES En este año nuestro desafío

Más detalles

Análisis de propuestas de evaluación en las aulas de América Latina

Análisis de propuestas de evaluación en las aulas de América Latina Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios

Más detalles

Guía 1: Concepto de fracción

Guía 1: Concepto de fracción . Pinta según la fracción correspondiente: Guía : Concepto de fracción Una fracción es una representación de una o varias partes de la unidad. Sus términos son numerador denominador. Numerador Denominador.

Más detalles

MATERIAL COMPLEMENTARIO PARA ACTIVIDAD OBLIGATORIA DEL MÓDULO 2

MATERIAL COMPLEMENTARIO PARA ACTIVIDAD OBLIGATORIA DEL MÓDULO 2 MATERIAL COMPLEMENTARIO PARA ACTIVIDAD OBLIGATORIA DEL MÓDULO 2 Secuencia 6to. Grado Fracciones y escrituras decimales 4.1. Propósitos La secuencia apunta a que los alumnos puedan producir y analizar argumentos

Más detalles

Unidad 1 números enteros 2º ESO

Unidad 1 números enteros 2º ESO Unidad 1 números enteros 2º ESO 1 2 Conceptos 1. Concepto de número entero: diferenciación entre número entero, natural y fraccionario. 2. Representación gráfica y ordenación. 3. Valor absoluto de un número

Más detalles

G.C.B.A. Matemática. Fracciones y números decimales. 4º grado. Páginas para el alumno

G.C.B.A. Matemática. Fracciones y números decimales. 4º grado. Páginas para el alumno Matemática Fracciones y números decimales. º grado Páginas para el alumno Gobierno de la Ciudad de Buenos Aires. Ministerio de Educación. Dirección General de Planeamiento. Dirección de Currícula Diversas

Más detalles

USAR ADICIÓN Y SUSTRACCIÓN CON DISTINTOS SIGNIFICADOS

USAR ADICIÓN Y SUSTRACCIÓN CON DISTINTOS SIGNIFICADOS USAR ADICIÓN Y SUSTRACCIÓN CON DISTINTOS SIGNIFICADOS 1er. Grado Universidad de La Punta Consideraciones Generales Desde las primeras actividades y mucho antes de presentar los símbolos y cálculos se propone

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción.

Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Fracciones o Quebrados En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Las fracciones pueden ser representadas de

Más detalles

2. El largo de un buque, que es de 99 metros, excede en 3 metros a 8 veces el ancho. Hallar el ancho.

2. El largo de un buque, que es de 99 metros, excede en 3 metros a 8 veces el ancho. Hallar el ancho. Problemas. Un comerciante compra 5 trajes y 5 pares de zapatos por 6, pesos. Cada traje costó el doble de lo que costó cada par de zapatos más 5 pesos. Hallar el precio de los trajes y de los pares de

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS

COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS Jesús Gago Sánchez, Maestro de Primaria. 1-. INTRODUCCIÓN AL CONCEPTO DE COMPETENCIA MATEMÁTICA. La Ley Orgánica de Educación, LOE, establece en su Artículo

Más detalles

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema:

Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema: Problemas fáciles y problemas difíciles Alicia Avila Profesora investigadora de la Universidad Pedagógica Nacional Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

Divido la barra de helado en ocho partes iguales. De esas ocho partes tomo seis. Parte de la barra que reparto a mis amigos :

Divido la barra de helado en ocho partes iguales. De esas ocho partes tomo seis. Parte de la barra que reparto a mis amigos : 1.- NECESIDAD DE QUE EXISTAN LAS FRACCIONES. Imagina que tienes una barra de helado que quieres repartir entre tus ocho amigos que por la tarde van a ir a tu casa a merendar. Para ir adelantando trabajo

Más detalles

Plan de Clase Diario. Maestro Asignatura Duración No. Asesoría Fecha Pedro Vázquez Matemáticas 2 horas 16 y 17 17 Abril 2011

Plan de Clase Diario. Maestro Asignatura Duración No. Asesoría Fecha Pedro Vázquez Matemáticas 2 horas 16 y 17 17 Abril 2011 Pedro Vázquez Matemáticas 2 horas 16 y 17 17 Abril 2011 Multiplicación y División de Números decimales Que el alumno desarrolle la habilidad de manejar y resolver operaciones con números decimales, por

Más detalles

Concepto de fracción. Fracciones equivalentes

Concepto de fracción. Fracciones equivalentes FRACCIONES: DOCUMENTO INTRODUCTORIA. Concepto de fracción Raúl ha conseguido el cinturón azul de judo. Para celebrarlo, ha invitado a sus amigos a una pequeña fiesta en casa. Su padre les ha preparado

Más detalles

LAS FRACCIONES. Si queremos calcular la fracción de un número dividimos el número por el denominador y el resultado lo multiplicamos por el numerador.

LAS FRACCIONES. Si queremos calcular la fracción de un número dividimos el número por el denominador y el resultado lo multiplicamos por el numerador. LAS FRACCIONES LAS FRACCIONES Y SUS TÉRMINOS Los términos de una fracción se llaman numerador y denominador. El denominador indica el número de partes iguales en que se divide la unidad. El numerador indica

Más detalles

Tema 2: Fracciones y proporciones

Tema 2: Fracciones y proporciones Tema 2: Fracciones y proporciones Fracciones Números racionales Números decimales Razones y proporciones Porcentajes 1 2 Las fracciones: un objeto, varias interpretaciones (1) Parte de un todo (2) Un reparto

Más detalles

Matemáticas Propedéutico para Bachillerato. Introducción

Matemáticas Propedéutico para Bachillerato. Introducción Actividad. Fracciones simples. Introducción En las actividades anteriores vimos las operaciones básicas de suma, resta, multiplicación y división, así como la jerarquía de ellas entre números enteros,

Más detalles

EJERCICIOS SOBRE : PORCENTAJES

EJERCICIOS SOBRE : PORCENTAJES 1.- Tanto por ciento o porcentaje: Un tanto por ciento o porcentaje es la cantidad que hay en cada 100 unidades. Se expresa añadiendo a la cantidad el símbolo % Ejemplo: Se han preparado bolsas de caramelos,

Más detalles

Tema 4: Problemas aritméticos.

Tema 4: Problemas aritméticos. Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha

Más detalles

Parque colegio Santa. Ana 4º de Primaria. Silvia Pintado

Parque colegio Santa. Ana 4º de Primaria. Silvia Pintado Parque colegio Santa. Ana 4º de Primaria Resuelve las siguientes operaciones: Ordena de mayor a menos los siguientes números: 23.456 42.075 362.908 12.003 40.100 Resuelve las siguientes operaciones: Resuelve

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Dirección de Evaluación de la Calidad Educativa

Dirección de Evaluación de la Calidad Educativa Operaciones: Resolver problemas con dos operaciones Dentro del núcleo estructurante Operaciones, uno de los Saberes Básicos Fundamentales, donde se observa tienen más dificultades los alumnos es respecto

Más detalles

Aplicaciones de las Ecuaciones de Primer Grado con Una Incógnita

Aplicaciones de las Ecuaciones de Primer Grado con Una Incógnita www.matebrunca.com Prof. Waldo Márquez González Problemas de Ecuaciones de 1 er Grado 1 Aplicaciones de las Ecuaciones de Primer Grado con Una Incógnita La suma de las edades de A y B es 84 años, y B es

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

día de los derechos de la noviembre infancia

día de los derechos de la noviembre infancia día de los derechos de la 20 noviembre infancia 45 objetivos 4-8 años (Infantil, 1 0 y2 0 de primaria) 1- Disfrutar de juegos donde se expresen y se valoren las opiniones de cada persona. 2- Aproximarse

Más detalles

Trabajo Práctico Nº9:Números fraccionarios

Trabajo Práctico Nº9:Números fraccionarios Universidad Nacional de La Plata Colegio Nacional Depto. de Cs. Exactas Sección Matemática Primer año Trabajo Práctico Nº9:Números fraccionarios El tangram de piezas es un antiguo cuento chino, perdón!

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10. _ 9-.qxd //7 9:7 Página 9 Divisibilidad INTRODUCCIÓN El concepto de divisibilidad requiere dominar la multiplicación, división y potenciación de números naturales. Es fundamental dedicar el tiempo necesario

Más detalles

El Supermercado. Hoy tengo que ir yo solo al supermercado a comprar un kilo de. . Voy a pasármelo bien en el supermercado.

El Supermercado. Hoy tengo que ir yo solo al supermercado a comprar un kilo de. . Voy a pasármelo bien en el supermercado. El Supermercado Hoy tengo que ir yo solo al supermercado a comprar un kilo de manzanas.. Voy a pasármelo bien en el supermercado. Eso está bien. Existen muchas clases de manzanas. Las hay rojas, amarillas,

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

SECUENCIA: JUEGO DE LOTERIA

SECUENCIA: JUEGO DE LOTERIA SECUENCIA: JUEGO DE LOTERIA SE PLANTEARÁ ESTA PROPUESTA EN VARIAS ETAPAS DE TRABAJO, UTILIZANDO UN JUEGO DE LOTERÍA CONVENCIONAL CONTENIDOS: NUMERACIÓN. LECTURA DE NÚMEROS HASTA EL 100. RELACIONES ENTRE

Más detalles

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos.

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos. Volumen Unidad IV En esta unidad usted aprenderá a: Calcular el volumen o capacidad de recipientes. Convertir unidades de volumen. Usar la medida del volumen o capacidad, para describir un objeto. Le servirá

Más detalles

NÚMEROS REALES MÓDULO I

NÚMEROS REALES MÓDULO I MÓDULO I NÚMEROS REALES NUEVE planetas principales constituyen el sistema solar. Si los ordenamos de acuerdo a su distancia al Sol Mercurio es el que está más cerca (58 millones de Km ) Plutón el más lejano

Más detalles

GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES.

GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. D E C I M A L E S MARÍA LUCÍA BRIONES PODADERA PROFESORA DE MATEMÁTICAS UNIVERSIDAD DE CHILE. 38 Si tenemos el número 4,762135 la ubicación de cada

Más detalles

Una fracción puede interpretarse como parte de un total, como medida y como operador de OBJETIVOS CONTENIDOS PROCEDIMIENTOS

Una fracción puede interpretarse como parte de un total, como medida y como operador de OBJETIVOS CONTENIDOS PROCEDIMIENTOS _ 0-0.qxd //0 0: Página racciones INTRODUCCIÓN Con el empleo de las fracciones se observa la utilidad de los conceptos estudiados como, por ejemplo, las operaciones básicas con números naturales o el cálculo

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

RESOLUCIÓN DE ALGUNOS PROBLEMAS ALGEBRAICOS SIN ECUACIONES

RESOLUCIÓN DE ALGUNOS PROBLEMAS ALGEBRAICOS SIN ECUACIONES RESOLUCIÓN DE ALGUNOS PROBLEMAS ALGEBRAICOS SIN ECUACIONES AUTORÍA PATRICIA PÉREZ ORTIZ TEMÁTICA INVESTIGACIÓN SOBRE LA EDUCACIÓN EN MATEMÁTICAS ETAPA ESO Resumen Se propone una colección de problemas

Más detalles

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales GUÍA DE MATEMÁTICAS III Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales A continuación veremos algunos problemas que se resuelven con sistemas de ecuaciones algunos ejemplos

Más detalles

Matemática. [ en Puerto ] info@puertodepalos.com.ar. www.puertodepalos.com.ar. /EditorialPuertodePalos ISBN 978-987-547-588-5

Matemática. [ en Puerto ] info@puertodepalos.com.ar. www.puertodepalos.com.ar. /EditorialPuertodePalos ISBN 978-987-547-588-5 Matemática [ en Puerto ] www.puertodepalos.com.ar info@puertodepalos.com.ar /EditorialPuertodePalos ISBN 978-987-547-588-5 9 789875 475885 6 [ Números naturales ] 1 CAPÍTULO En la provincia de Buenos Aires

Más detalles

Representaciones Geométricas

Representaciones Geométricas UNIVERSIDAD METROPOLITANA Escuela de Educación Continua Mathematics and Science Partnership: content, integration, and research to improve academic achievement 2011-2012 Representaciones Geométricas Proyecto

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 1 DIVISIBILIDAD Y NUMEROS ENTEROS

SOLUCIONES MINIMOS 2º ESO TEMA 1 DIVISIBILIDAD Y NUMEROS ENTEROS SOLUCIONES MINIMOS º ESO TEMA 1 DIVISIBILIDAD Y NUMEROS ENTEROS Ejercicio nº 1.- Comprueba si son equivalentes los siguientes pares de fracciones: a) y 10 1 7 8 b) y 1 60 a) y 10 1 1 10 Sí 7 8 b) y 1 60

Más detalles

PROBLEMAS ECUACIONES 1er GRADO

PROBLEMAS ECUACIONES 1er GRADO PROBLEMAS ECUACIONES 1er GRADO 1.- Dos amigos juntan el dinero que tienen, uno tiene el doble que el otro. Se gastan 20, y les quedan 13 Cuánto dinero tiene cada uno? 2.- He comprado 8 cuadernos y he pagado

Más detalles

Alianza para el Aprendizaje de las Ciencias y las Matemáticas. Las Fracciones Heterogéneas I

Alianza para el Aprendizaje de las Ciencias y las Matemáticas. Las Fracciones Heterogéneas I Alianza para el Aprendizaje de las Ciencias y las Matemáticas (AlACiMa) Actividad de Matemáticas Nivel 4-6 Guía del Maestro Las Fracciones Heterogéneas I Metas El estudiante: explorará mediante manipulativos

Más detalles

RELACIÓN DE PROBLEMAS TIPIFICADOS SOBRE LAS OPERACIONES ADICIÓN Y SUSTRACCIÓN.

RELACIÓN DE PROBLEMAS TIPIFICADOS SOBRE LAS OPERACIONES ADICIÓN Y SUSTRACCIÓN. RELACIÓN DE PROBLEMAS TIPIFICADOS SOBRE LAS OPERACIONES ADICIÓN Y SUSTRACCIÓN. DOCUMENTO PARA EL PROFESORADO Se pretende dar una visión de la distinta tipología de problemas que se pueden dar con las operaciones

Más detalles

Los números racionales son todos aquellos números de la forma a con a y b números enteros y b

Los números racionales son todos aquellos números de la forma a con a y b números enteros y b Números racionales NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma a con a y b números enteros y b b distinto de cero. El conjunto de los números racionales se representa

Más detalles

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO % MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO & 2 Aplicando las operaciones y conociendo sus significados CLASE 7 CUADERNO DE TRABAJO

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números

Más detalles

Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes.

Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes. FRACCIONES 1. LAS FRACCIONES. 1.1. CONCEPTO. Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes. Una fracción también es una

Más detalles

Resolución de problemas. Cómo resolver problemas?: una técnica simple de Hazlo tú. Versión Web GUÍAS DE AUTOAYUDA

Resolución de problemas. Cómo resolver problemas?: una técnica simple de Hazlo tú. Versión Web GUÍAS DE AUTOAYUDA www.catalogopublicidad.com GUÍAS DE AUTOAYUDA Afrontando las preocupaciones Aprende a programar actividades Aprende a relajarte La autoestima Resolución de problemas Concédete una oportunidad y cuídate

Más detalles

PRUEBA DE COMPETENCIA MATEMÁTICA

PRUEBA DE COMPETENCIA MATEMÁTICA EVALUACIÓN DIAGNÓSTICA 2013 EDUCACIÓN PRIMARIA PRUEBA DE COMPETENCIA MATEMÁTICA Centro Localidad Código Programa de educación bilingüe PEV/PIL Grupo 4º Núm. de lista A B PIP C D E Básico F G H V OTROS

Más detalles

El desarrollo del pensamiento multiplicativo.

El desarrollo del pensamiento multiplicativo. El desarrollo del pensamiento multiplicativo. Análisis de las diferentes situaciones multiplicativas, su aplicación en el aula y en el desarrollo del pensamiento matemático. Autor: Mery Aurora Poveda,

Más detalles

CUADERNOS DE ESTUDIO II

CUADERNOS DE ESTUDIO II Administración Nacional de Educación Pública Consejo Directivo Central CUADERNOS DE ESTUDIO II Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP CUADERNOS DE ESTUDIO II Propuesta para

Más detalles

NÚMEROS RACIONALES Y DECIMALES

NÚMEROS RACIONALES Y DECIMALES NÚMEROS RACIONALES Y DECIMALES Unidad didáctica. Números racionales y decimales CONTENIDOS Fracciones Fracciones equivalentes Amplificar fracciones Simplificar fracciones Representación en la recta numérica.

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Sistema de ecuaciones lineales Los métodos de solución de sistemas de ecuaciones son un recurso muy útil para resolver diversas situaciones de la vida que pueden ser traducidas a un modelo matemático y

Más detalles

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20

1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 ACTIVIDADES DE REPASO MATEMÁTICAS 1º ESO NOMBRE: GRUPO:. Actividades a realizar: 1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 2) Calcula: a) 4 6 + 3 + 9-2 3 = b) 6 (3 + 7) -

Más detalles

PLANIFICACIÓN DE LA ENSEÑANZA MATEMÁTICA 2º AÑO

PLANIFICACIÓN DE LA ENSEÑANZA MATEMÁTICA 2º AÑO Propósitos generales del área: Brindar oportunidades a los niños y niños para que usen en el aula los conocimientos que poseen y los compartan con sus compañeros, buscando que establezcan vínculos entre

Más detalles

PRIMER Grado - Unidad 3 - Sesión 28. Todos somos iguales

PRIMER Grado - Unidad 3 - Sesión 28. Todos somos iguales PRIMER Grado - Unidad 3 - Sesión 28 Todos somos iguales Por qué es importante el derecho a la igualdad en los niños y niñas? Los niños y las niñas deben recibir un trato equitativo por parte de sus maestros

Más detalles

Orientación para el profesor

Orientación para el profesor Nombre de la actividad: JUEGOS Y JUGUETES Los juguetes más sofisticados no necesariamente son los más divertidos. Hay muchos objetos que se pueden convertir en maravillosos juguetes si promovemos en los

Más detalles

C.A.R.E.I. Centro Aragonés de Recursos para la Educación Intercultural Documento facilitado por Grupo de Trabajo de CPR Huesca 1.

C.A.R.E.I. Centro Aragonés de Recursos para la Educación Intercultural Documento facilitado por Grupo de Trabajo de CPR Huesca 1. 1.º PRIMARIA AREA DE MATEMÁTICAS Concepto de número. Cálculo mental El evaluador, lee el problema y anota la respuesta. El niño lo debe resolver mentalmente, contando o no con los dedos se anotará si lo

Más detalles

EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25

EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25 2 NÚMEROS ENTEROS EJERCICIOS PROPUESTOS 2.1 Expresa con un número entero las siguientes informaciones. a) El avión está volando a 9 500 metros de altura. b) La temperatura mínima de ayer fue de 3 C bajo

Más detalles

Contenido. Conoce los contenidos 1 Fracciones equivalentes 2. Suma de fracciones 5

Contenido. Conoce los contenidos 1 Fracciones equivalentes 2. Suma de fracciones 5 Contenido Unidad Conoce los contenidos Fracciones equivalentes Simplificación de fracciones Suma de fracciones 5 Resta de fracciones 6 Números mixtos y fracciones 7 Comparar y ordenar fracciones y números

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES. 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora?

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES. 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora? PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora? Solución : 12 años 2.- Si al doble de un número le restas 13, obtienes

Más detalles

1.- a) Cómo se llama el término de una fracción que indica el número de partes en que se ha dividido la unidad?

1.- a) Cómo se llama el término de una fracción que indica el número de partes en que se ha dividido la unidad? 2.- OPERACIONES CON FRACCIONES Y DECIMALES Al finalizar el sexto curso de Educación Primaria, los estudiantes deben comprender los significados de las fracciones como partes de la unidad, como cocientes

Más detalles

Plan de clase (1/3) Profr(a).

Plan de clase (1/3) Profr(a). Plan de clase (1/3) Que los alumnos identifiquen conjuntos de cantidades que son directamente proporcionales y utilicen de manera flexible procedimientos tales como: el cálculo del valor unitario, cálculo

Más detalles

La perspectiva de género en la sistematización de experiencias

La perspectiva de género en la sistematización de experiencias 75 La perspectiva de género en la sistematización de experiencias En las páginas que siguen transcribimos un diálogo sostenido con Lilian Alemany, quien amablemente aceptó compartir con quienes nos leen

Más detalles

Reglas del juego. 2 o más jugadores

Reglas del juego. 2 o más jugadores Reglas del juego 2 o más jugadores & OTROS JUEGOS DE DADOS La generala Real es una versión nueva de la Generala tradicional, enriquecida en algunas variantes que la convierten en un excelentejuego familiar.

Más detalles

Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 01/01/2010 . INDICE: 01. APARICIÓN DE LAS FRACCIONES. 02. CONCEPTO DE FRACCIÓN. 03.

Más detalles

Secuencia de multiplicación por dos cifras para 4 grado TRABAJANDO CON LA TABLA PITAGÓRICA

Secuencia de multiplicación por dos cifras para 4 grado TRABAJANDO CON LA TABLA PITAGÓRICA Secuencia de multiplicación por dos cifras para 4 grado Actividad 1 TRABAJANDO CON LA TABLA PITAGÓRICA a- Comenzá completando esta tabla con los productos que ya sabés. Si el grupo de alumnos ya ha construido

Más detalles

SUMA Y RESTA DE FRACCIONES

SUMA Y RESTA DE FRACCIONES SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:

Más detalles

ACTIVIDADES PARA EL AULA

ACTIVIDADES PARA EL AULA A trabajar!! ESCUELA DE CICLO BÁSICO COMÚN CURSO DE ÁREA DE MATEMÁTICA CLASE Nro. 3 Material elaborado por las profesoras Cristina Cibanal, Marcela Baleani, Karina Álvarez ACTIVIDADES PARA EL AULA 1. En

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Guias Multiplicaciones y divisiones. Estudiante: Curso: 4 Fecha:

Guias Multiplicaciones y divisiones. Estudiante: Curso: 4 Fecha: Guias Multiplicaciones y divisiones Estudiante: Curso: 4 _ Fecha: Instrucciones: Lee atentamente cada enunciado. Realiza tu trabajo con lápiz grafito o portaminas, esto te ayudará a corregir en caso de

Más detalles

Economía en la escuela

Economía en la escuela Título de la actividad: Cálculo del precio de diferentes productos con y sin IVA. Introducción La siguiente actividad se compone de dos partes, la primera es una aplicación del cálculo de porcentajes de

Más detalles

EXPLORAR RELACIONES NUMÉRICAS EN LAS TABLAS DE MULTIPLICAR

EXPLORAR RELACIONES NUMÉRICAS EN LAS TABLAS DE MULTIPLICAR EXPLORAR RELACIONES NUMÉRICAS EN LAS TABLAS DE MULTIPLICAR er. Grado Universidad de La Punta Consideraciones Generales: En este año es necesario realizar un trabajo específico que favorezca la construcción

Más detalles

APRENDIZAJES ESPERADOS LIBRETA RESUELTA CON NIVEL DE DESEMPEÑO

APRENDIZAJES ESPERADOS LIBRETA RESUELTA CON NIVEL DE DESEMPEÑO ESCUELA TELESECUNDARIA PASCUAL CORAL HEREDIA PROFESORA MARIA GUADALUPE VARGAS BLANCO SEGUNDO GRADO GRUPO B PARA EMPEZAR EL DIA. RUTA DE MEJORA TEMA Proporcionalidad APRENDIZAJES ESPERADOS Resuelve problemas

Más detalles

Unidad 8. Estado de Perdidas y Ganancias o Estados de Resultados

Unidad 8. Estado de Perdidas y Ganancias o Estados de Resultados Unidad 8 Estado de Perdidas y Ganancias o Estados de Resultados Al termino de cada ejercicio fiscal, a todo comerciante no solo le interesa conocer la situación financiera de su negocio, sino también el

Más detalles

LOS RECURSOS PARA EL TRABAJO Y LOS APRENDIZAJES INVOLUCRADOS PRINCIPALES APRENDIZAJES EN JUEGO

LOS RECURSOS PARA EL TRABAJO Y LOS APRENDIZAJES INVOLUCRADOS PRINCIPALES APRENDIZAJES EN JUEGO LOS RECURSOS PARA EL TRABAJO Y LOS APRENDIZAJES INVOLUCRADOS 34 RECURSO 1. Noticiero 2. Círculo 3. Mural 4. Papelógrafo 5. Dramatización 6. Texto Colectivo 7. Fotolenguaje 8. Cuento 9. Maqueta 10. Historieta

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

Narrativa para el estudiante:

Narrativa para el estudiante: 2 2.OA 1 Usan la suma y la resta hasta el número 100 para resolver problemas verbales de uno y dos pasos relacionados a situaciones en las cuales tienen que sumar, restar, unir, separar, y comparar, con

Más detalles

El usuario Investigación de campo

El usuario Investigación de campo Capítulo 2 El usuario Investigación de campo Para llegar a conocer bien al usuario, se realizó una serie de pruebas y entrevistas con el objetivo de relacionarse con él de la manera más cercana posible

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octavo. PERIODO: Segundo UNIDAD: Polinomios TEMA: Expresiones

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

Como lo expresamos cuando describimos el problema objeto de

Como lo expresamos cuando describimos el problema objeto de Como lo expresamos cuando describimos el problema objeto de esta investigación, durante su desarrollo buscamos aproximarnos a las características y las condiciones de posibilidad de las prácticas académicas

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Utilidades retenidas

Utilidades retenidas 6 Utilidades retenidas Al finalizar la unidad, el alumno: Identificará la finalidad de la retención de utilidades en las empresas. Identificará la finalidad, ventajas y desventajas de la distribución de

Más detalles

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO 1) Calcular tres números consecutivos cuya suma sea 1. ) Las edades de dos hermanos suman 49 años. Calcularlas sabiendo que la edad de uno es superior en años a la del otro. ) Descomponer el número 171

Más detalles

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles