Dirección de Evaluación de la Calidad Educativa
|
|
- Juan Manuel Montero Torres
- hace 6 años
- Vistas:
Transcripción
1 Operaciones: Resolver problemas con dos operaciones Dentro del núcleo estructurante Operaciones, uno de los Saberes Básicos Fundamentales, donde se observa tienen más dificultades los alumnos es respecto a resolver problemas en donde aparezcan dos operaciones. Este saber básico está incluido en los saberes que se proponen promover desde los Núcleos de Aprendizajes Prioritarios de tercer grado, en Relación con el Número y las Operaciones, en donde se puntualiza: El reconocimiento y uso de las operaciones de adición y sustracción, multiplicación y división en situaciones problemáticas que requieran: *usar las operaciones de adición, sustracción, multiplicación y división con distintos significados. *realizar cálculos de sumas, restas, multiplicaciones y divisiones adecuando el tipo de cálculo a la situación y a los números involucrados, y articulando los procedimientos personales con los algoritmos usuales para el caso de la multiplicación por una cifra. *elaborar preguntas o enunciados de problemas y registrar y organizar datos en tablas y gráficos sencillos a partir de distintas informaciones. A continuación se muestran algunos ítems de evaluación que obtuvieron, en general, menos del 50% de respuestas correctas. Los ejercicios dados (como dijimos desde el comienzo) corresponden a varios operativos de evaluación (provinciales, nacionales e internacionales) porque en ellos, a pesar de ser poblaciones distintas y de distintos años, los alumnos repiten los mismos errores. Es importante recordar que cada uno de los distractores que aparecen NO han sido puestos al azar, son posibles formas de razonar que tienen los alumnos, o un aprendizaje incompleto que en algunos casos les resulta válido. Por ello en evaluación sistemática se los llama distractores válidos, al elegirlos queda claro el error que tienen los alumnos (un aprendizaje incompleto, un problema de enseñanza, entre otros). [1] Entre dos osos comen 1 kg de miel. Cuánta miel comerán 6 osos si todos comen igual cantidad? 1) 3 kg 2) 6 kg 3) 9 kg [2] El osito Pandi pesa 72 kg y la osita Panda pesa 65 kg. Si el oso padre de los dos pesa 36 kg más que los dos ositos hijos juntos, cuánto pesa el oso padre? 1) 36 kg 2) 137 kg 3) 173 kg
2 [3] En un tren de pasajeros hay 300 asientos. Si en este tren viajan sentados 100 mujeres y 57 varones, cuántos asientos quedan libres? [5] 1) 143 2) 253 3) 457 En un kiosco había dos ofertas: OFERTA A: OFERTA B: - un chupetín - dos chupetines - tres caramelos - un caramelo 25 centavos 30 centavos [4] Pedro es mecánico, necesita 445 tornillos para hacer un trabajo. Tenía 120 tornillos y un vecino le prestó 132 más. Cuántos tornillos le faltan ahora para terminar su trabajo? [6] 1) 697 2) 252 3) 193 Cuánto es la mitad de cuatro pares de zapatos? 1) 2 zapatos 2) 4 zapatos 3) 8 zapatos Julián compró 6 ofertas con 160 centavos, es decir que compró: 1) 2 OFERTAS A y 4 OFERTAS B 2) 4 OFERTAS A y 2 OFERTAS B 3) 3 OFERTAS A y 3 OFERTAS B [7] [8] Julio, Gonzalo y sus 3 amigos toman la leche y preparan 4 tostadas para cada uno. Cuántas tostadas preparan en total? 1) 20 tostadas 2) 12 tostadas 3) 9 tostadas 4) 7 tostadas En una fábrica de juguetes necesitan comprar ojos para armar muñecas y osos. Cuántos ojos se necesitan comprar para 138 muñecas y 200 osos? 1) 62 ojos 2) 338 ojos 3) 676 ojos La diferencia de porcentaje de respuestas correctas cuando los problemas requieren, para ser resueltos, una operación a cuando requieren dos, llega a ser de hasta 10 puntos. Otra dificultad detectada en todas las evaluaciones planteadas tanto en 3º, como en 4º, grado es la tendencia a elegir la operación para resolver un problema que responde a una palabra del enunciado del mismo. Por ejemplo si el problema tiene la palabra regalar, perder los alumnos tienden a restar; si aparece la palabra repartir, dividen, aunque el problema no se resuelva con esas operaciones. Los alumnos actúan como programados, guiados por palabras que conducen a una operación, obviando razonar. Es necesario construir el sentido de las operaciones de tal manera que los alumnos frente a una diversidad de problemas que se les propongan, puedan identificar de manera autónoma la, o las operaciones, a las que deben apelar para resolverlo, además, es deseable que puedan encontrar la manera de representar
3 matemáticamente los problemas y desplegar diversidad de procedimientos o recursos que les permitan arribar a la respuesta y validar los resultados obtenidos a partir de las relaciones matemáticas establecidas. Esto implica concebir el trabajo en torno a las operaciones como una labor que demandará varios años de escolaridad. Los estudios por ejemplo de Vergnaud muestran que existen diferencias de varios años, por ejemplo, en el reconocimiento de diferentes tipos de problemas de sumas y restas. Como puntualiza el documento Aportes para la enseñanza de la matemática, el saber matemático, visto desde el punto de vista histórico, se ha construido a partir de la resolución de problemas. Así como los problemas son el motor de la producción del conocimiento matemático, se propone que la resolución de problemas, incluidas todas sus instancias (probar caminos de resolución, analizar estrategias y formas de representación, sistematizar y dar cuenta de los nuevos conocimientos) sea para los alumnos el modo de hacer matemática en la escuela. El conocimiento matemático funciona tanto para resolver problemas como para formular esos conocimientos para otros, decidir acerca de la validez de una conjetura, sistematizar y nombrar los conocimientos nuevos y relacionarlos con los ya construidos hasta el momento. Se propone que estos modos de producción de conocimiento matemático propios de la disciplina formen parte del trabajo del alumno. Para que los alumnos entren en esta cultura matemática es preciso enfrentarlos a situaciones desafiantes para las cuales no tienen todavía disponibles en forma inmediata herramientas óptimas de resolución, aunque cuentan con conocimientos anteriores que les permiten encontrar algunos caminos posibles para abordarlos. Es necesario entonces generar en la clase un clima propicio que dé permiso para explorar y elaborar estrategias propias no importa que, al comienzo sean erróneas, sirven para discutir sobre la validez de los procedimientos propios y ajenos, de manera que los alumnos puedan confiar en sus posibilidades de producir conocimientos matemáticos. En el libro Aportes para la enseñanza de la matemática (SERCE), se hace referencia al siguiente problema (abierto): En una caja hay 50 dulces: 25 de naranja, 5 de limón y el resto de uva. Cuántos dulces de uva hay? El porcentaje de respuestas correctas fue del 26%, parcialmente correctas 4%, y el resto de los alumnos respondió incorrectamente o no respondió. Llama la atención el alto porcentaje de respuestas incorrectas, dado que la situación está en un contexto muy familiar para los niños y tiene números que no debieran presentar obstáculos en tercer grado. Cabe preguntarse, entonces, cuál es la dificultad? En algunos casos, los alumnos comprenden el enunciado pero cometen errores de cálculo como este:
4 Otras producciones incluyen respuestas parciales, lo que podría atribuirse a la falta de familiaridad con problemas cuya resolución involucre más de un paso, o más de una operación. En otras, los niños suman todos los números que aparecen en el enunciado, buscando el total, sin distinguir si se trata de caramelos/dulces de un gusto o de otro, o de la clase genérica caramelos /dulces. Frente a la siguiente suma algunos niños, que debieran poder resolver mentalmente asociando, por ejemplo, 25 más 5, se equivocan cuando encolumnan: La presentación temprana de la sumas en columna ofrece dificultades a muchos niños que aún no dominan la estructura del sistema de numeración. Si primero suman sin llevar / sin dificultad / sin agrupamientos, y organizan la cuenta encolumnando, no hay diferencia entre sumar números de una o de más cifras. Si bien esta organización en columnas puede ser necesaria para números de más cifras, es importante que los niños dispongan de distintas estrategias de cálculo.
5 Así, es frecuente que los niños no tomen conciencia de las cantidades involucradas, y no tengan control sobre los resultados. Al poder manejar, en función de los números involucrados, distintas estrategias apoyadas en distintas descomposiciones y en el uso de las propiedades de las operaciones, son fortalecidas las habilidades de cálculo mental. Por ejemplo: Además de los problemas ligados a la suma en columnas, hay aquí un tema interesante para indagar en relación con el enunciado y los significados que pueden atribuir los niños al uso de la suma y de la resta, ya que cada noción matemática resuelve un cierto conjunto de problemas; pero no tiene el mismo significado en todos los casos. El sentido de cada operación es construido por medio de la variedad de problemas que los niños van resolviendo, y si sólo han realizado problemas en los que se agrega, se gana, se aumenta, ese será de momento el sentido que puedan atribuirle a la suma. Un aporte importante para la comprensión de esta variedad de significados, tanto para el campo aditivo como para el multiplicativo, es el que hace Vergnaud (1990) a partir del desarrollo de la teoría de los campos conceptuales. Esta teoría plantea una explicación sobre el modo en que los alumnos establecen relaciones matemáticas al interactuar con la realidad, en diferentes contextos. Denomina campo conceptual al conjunto de situaciones que requieren para su resolución una misma noción, o una combinación de nociones asociadas a ella, y como tareas matemáticas al conjunto de conceptos y teoremas que permiten analizarlas. En el apartado de propuestas de enseñanza, hay sugerencias y actividades para poder ir sorteando este obstáculo. Volver
Dirección de Evaluación de la Calidad Educativa
Geometría: Interpretar la representación plana de un objeto tridimensional Dentro del núcleo estructurante Geometría uno de los Saberes Básicos Fundamentales, donde se observa tienen dificultades los alumnos
Análisis de propuestas de evaluación en las aulas de América Latina
Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios
Jugamos al Bingo matemático
TERCER GRADO UNIDAD 2 SESIÓN 24 Jugamos al Bingo matemático En esta sesión, a través del Bingo matemático, los niños y las niñas pondrán en práctica lo aprendido usando operaciones de adición y sustracción,
Problemas fáciles y problemas difíciles. Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el siguiente problema:
Problemas fáciles y problemas difíciles Alicia Avila Profesora investigadora de la Universidad Pedagógica Nacional Cuando a los niños les planteamos problemas de suma y resta, Laura dejó sin resolver el
COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS
COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS Jesús Gago Sánchez, Maestro de Primaria. 1-. INTRODUCCIÓN AL CONCEPTO DE COMPETENCIA MATEMÁTICA. La Ley Orgánica de Educación, LOE, establece en su Artículo
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
El desarrollo del pensamiento multiplicativo.
El desarrollo del pensamiento multiplicativo. Análisis de las diferentes situaciones multiplicativas, su aplicación en el aula y en el desarrollo del pensamiento matemático. Autor: Mery Aurora Poveda,
Wise Up Kids! En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción.
Fracciones o Quebrados En matemáticas, a la división de un objeto o unidad en varias partes iguales o a un grupo de esas divisiones se les denomina fracción. Las fracciones pueden ser representadas de
ESTUDIAR MATEMATICA EN CASA
ESTUDIAR MATEMATICA EN CASA Sugerencias para docentes Sea cual fuere el enfoque de enseñanza de la matemática adoptado, todos los docentes acuerdan en la importancia del tiempo extraescolar dedicado al
Lección 24: Lenguaje algebraico y sustituciones
LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce
Como lo expresamos cuando describimos el problema objeto de
Como lo expresamos cuando describimos el problema objeto de esta investigación, durante su desarrollo buscamos aproximarnos a las características y las condiciones de posibilidad de las prácticas académicas
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
E.- CONTENIDO Y ESTRUCTURA DEL PLAN DE INTERVENCIÓN PARA LA MEJORA
E.- CONTENIDO Y ESTRUCTURA DEL PLAN DE INTERVENCIÓN PARA LA MEJORA El Plan de intervención para la mejora tiene como punto de partida las propuestas de mejora inicialmente detectadas en el Informe de Centro.
Población con discapacidad en Jalisco en 2010
Nota Técnica: 11/11 Guadalajara, Jalisco, 03 de junio de 2011 Población con discapacidad en Jalisco en 2010 Resumen El Censo de Población y Vivienda 2010 captó las personas que de manera permanente tienen
MATEMÁTICAS Y EL ABN
MATEMÁTICAS Y EL ABN CHIPIONA, 7 DE SEPTIEMBRE DE 2011 GUIÓN: - Presentación - Cómo surgió el grupo de trabajo - Aspectos trabajados - Logros conseguidos - Dificultades encontradas - Planteamiento a los
Descripción y tablas de especificaciones de las pruebas formativas
Descripción y tablas de especificaciones de las pruebas formativas Área Ciencias 2015 De 3 de Primaria a 3 de Media Contenidos Marco teórico... 3 Habilidades cognitivas... 4 Macroconceptos... 5 Descripción
Dirección de Evaluación de la Calidad Educativa
Geometría: segundo grado Los errores recurrentes evidenciados en nuestros alumnos por el bajo porcentaje de respuestas correctas en el bloque de Geometría tienen sus causas principalmente asociadas a la
Tema 6: Ecuaciones e inecuaciones.
Tema 6: Ecuaciones e inecuaciones. Ejercicio 1. Encontrar, tanteando, alguna solución de cada una de las siguientes ecuaciones: 3 a) + 5 = 69 Probamos para =,3,4,... = = 3 3 = 4 4 3 3 3 + 5 = 13. + 5 =
USAR ADICIÓN Y SUSTRACCIÓN CON DISTINTOS SIGNIFICADOS
USAR ADICIÓN Y SUSTRACCIÓN CON DISTINTOS SIGNIFICADOS 1er. Grado Universidad de La Punta Consideraciones Generales Desde las primeras actividades y mucho antes de presentar los símbolos y cálculos se propone
Curso de formación y actualización profesional para el personal docente
SUBSECRETARÍA DE EDUCACIÓN BÁSICA Y NORMAL DIRECCIÓN GENERAL DE NORMATIVIDAD DIRECCIÓN DE DESARROLLO CURRICULAR PARA LA EDUCACIÓN BÁSICA Agosto 2004 Curso de formación y actualización profesional para
A practicar: Interactivos de matemáticas para niños
A practicar: Interactivos de matemáticas para niños Gabriela González Alarcón Coordinación de Servicios Educativos en Red Dirección General de Servicios de Cómputo Académico - UNAM Resumen En este trabajo
PLANIFICACIÓN DE LA ENSEÑANZA MATEMÁTICA 2º AÑO
Propósitos generales del área: Brindar oportunidades a los niños y niños para que usen en el aula los conocimientos que poseen y los compartan con sus compañeros, buscando que establezcan vínculos entre
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
CASO PRÁCTICO DISTRIBUCIÓN DE COSTES
CASO PRÁCTICO DISTRIBUCIÓN DE COSTES Nuestra empresa tiene centros de distribución en tres ciudades europeas: Zaragoza, Milán y Burdeos. Hemos solicitado a los responsables de cada uno de los centros que
Guía breve para la. Versión abreviada del Manual para la. evaluación de desempeño y potencial
Guía breve para la evaluación de desempeño y potencial Versión abreviada del Manual para la evaluación de desempeño y potencial Febrero 2013 INSTITUCIONES PÚBLICAS SUSTENTADAS EN EL BUEN DESEMPEÑO DE SUS
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Escritura de ecuaciones de problemas de algebraicos
1 Escritura de ecuaciones de problemas de algebraicos Herbert Mendía A. 2011-10-12 www.cimacien.org.gt Conocimientos previos necesarios Operaciones básicas: suma, resta, multiplicación y división. Jerarquía
SUPERMERCADO EL LEÓN
SUPERMERCADO EL LEÓN Mi clase se desarrolla entre rincones y proyectos de trabajo donde su aprendizaje está basado en la experiencia y el juego como recursos fundamentales. Para integrar y desarrollar
CAPITULO VI CONCLUSIONES. Al haber analizado los conceptos presentados en este trabajo, pudimos llegar a la
CAPITULO VI CONCLUSIONES 6.1 Conclusión Al haber analizado los conceptos presentados en este trabajo, pudimos llegar a la conclusión de que la comunicación organizacional, es el flujo de información que
Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio
Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:
Competencia Matemática tica y PISA (OCDE,2003) 6. Matemátizar se identifica con la resolución de problemas
Competencia matemática y PISA (OCDE,2003) Programme for International Student Assessment Ministerio de Educación y Ciencia (MEC)- Instituto Nacional de Evaluación y Calidad del Sistema Educativo (INECSE)
Un desafío de la alfabetización científica: hacer ciencia a través del lenguaje Por Nora Bahamonde*
Capacitación en Alfabetización Inicial CIENCIAS NATURALES En el último encuentro de Capacitación en Alfabetización Inicial, realizamos una pequeña disertación en la que intentamos dar algunas pautas relacionadas
INSTITUTO VALLADOLID PREPARATORIA página 9
INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que
Guía para la elaboración de Proyectos de Formación Sindical Ambiental e Investigación en Trabajo y Desarrollo Sustentable
Guía para la elaboración de Proyectos de Formación Sindical Ambiental e Investigación en Trabajo y Desarrollo Sustentable 1- Denominación del Proyecto Esto se hace indicando, de manera sintética y mediante
3º Grado Educación Infantil Bilingüe Números. Método Singapur y F. Bravo E R
MATEMÁTICAS PARA EDUCACIÓN INFANTIL N Enseñamos y aprendemos llos números:: Método Siingapur y Fernández Bravo,, Porr Clarra Garrcí ía,, Marrtta Gonzzál lezz y Crri isstti ina Lattorrrre.. Ú M E R O S
MATERIAL COMPLEMENTARIO PARA ACTIVIDAD OBLIGATORIA DEL MÓDULO 2
MATERIAL COMPLEMENTARIO PARA ACTIVIDAD OBLIGATORIA DEL MÓDULO 2 Secuencia 6to. Grado Fracciones y escrituras decimales 4.1. Propósitos La secuencia apunta a que los alumnos puedan producir y analizar argumentos
TRABAJO COOPERATIVO EN ROBOTS
SEMINARIO Diseño y construcción de microrrobots TRABAJO COOPERATIVO EN ROBOTS Autor: Luis De Santiago Rodrigo 3º Ingeniería de Telecomunicación 1.-ÍNDICE E INTRODUCCIÓN Éste trabajo pretende ser una pequeña
Los números racionales
Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones
Descripción y tabla de especificaciones para prueba formativa Área Matemática Año 2014
Descripción y tabla de especificaciones para prueba formativa Área Matemática Año 2014 Contenidos 1. El referente conceptual de la evaluación... 1 CUADRO 1. TABLA DE ESPECIFICACIONES EN EL ÁREA DE MATEMÁTICA...
La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx
La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad
CAPÍTULO III 3. MÉTODOS DE INVESTIGACIÓN. El ámbito de los negocios en la actualidad es un área donde que cada vez más
CAPÍTULO III 3. MÉTODOS DE INVESTIGACIÓN El ámbito de los negocios en la actualidad es un área donde que cada vez más se requieren estudios y análisis con criterios de carácter científico a fin de poder
La Zona de Desarrollo Próximo (ZDP)
I.S.F.D N 808 Profesorado de Matemática Área: Profesora: Alumna: Psicología del Aprendizaje Ileana Farré Melanie Yanel Beribey Romero Actividad: Definir y brindar por lo menos un ejemplo de los siguientes
SUMA Y RESTA DE FRACCIONES
SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:
Propuesta didáctica: Completar cuadrículas
Propuesta didáctica: Completar cuadrículas Clase: Inicial 4 años Contenidos programáticos y contenidos involucrados: La relación entre colecciones. La relación entre cantidades. El número como cuantificador.
PROCESO DE ASIGNACIÓN DE CRÉDITOS A LOS PLANES DE ESTUDIOS 1
PROCESO DE ASIGNACIÓN DE CRÉDITOS A LOS PLANES DE ESTUDIOS 1 Noción de crédito académico El crédito constituye una unidad de medida del trabajo académico del estudiante, que en su concepción más moderna,
Enunciado unidades fraccionarias fracción fracciones equivalentes comparar operaciones aritméticas fracciones propias Qué hacer deslizador vertical
Enunciado Si la unidad la dividimos en varias partes iguales, podemos tomar como nueva unidad de medida una de estas partes más pequeñas. Las unidades fraccionarias son necesarias cuando lo que queremos
Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos.
Volumen Unidad IV En esta unidad usted aprenderá a: Calcular el volumen o capacidad de recipientes. Convertir unidades de volumen. Usar la medida del volumen o capacidad, para describir un objeto. Le servirá
ECONOMÍA SOCIAL SOLIDARIA
ECONOMÍA SOCIAL SOLIDARIA Módulo básico de capacitación para las organizaciones afiliadas a StreetNet Internacional Objetivos de este módulo de capacitación StreetNet Internacional fue fundada en el 2002
FASES DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS
FASES DEL PROCESO DE RESOLUCIÓN DE PROBLEMAS Varios autores han tratado de identificar y describir las distintas fases en el proceso de resolución de problemas. Polya (1945), en su modelo descriptivo,
GUÍA PARA LA FORMULACIÓN PROYECTOS
GUÍA PARA LA FORMULACIÓN PROYECTOS Un PROYECTO es un PLAN DE TRABAJO; un conjunto ordenado de actividades con el fin de satisfacer necesidades o resolver problemas. Por lo general, cualquier tipo de proyecto,
Operativo Nacional de Evaluación. Informe de resultados. Interpretación pedagógica de logros y dificultades 3 EGB
Operativo Nacional de Evaluación Informe de resultados 2 0 0 0 Interpretación pedagógica de logros y dificultades 3 EGB TERCER AÑO E.G.G.B.B. Introducción En los resultados de la prueba muestral de Matemática
Utilidades retenidas
6 Utilidades retenidas Al finalizar la unidad, el alumno: Identificará la finalidad de la retención de utilidades en las empresas. Identificará la finalidad, ventajas y desventajas de la distribución de
Centro de Capacitación en Informática
Combinación de funciones y fórmulas =SI(Y(...)...) o =Si(O(...)...) En secciones anteriores vimos que la función SI() debía cumplir una condición, como por ejemplo, controlar si en una celda determinada
Su éxito se mide por la pertinencia y la oportunidad de la solución, su eficacia y eficiencia.
APUNTES PARA EL CURSO PROCESOS COGNITIVOS: RESOLUCIÓN DE PROBLEMAS Y TOMA DE DECISIONES Elaborado por Vicente Sisto Campos. Se trata de la confluencia de la capacidad analítica del equipo de identificar
Tema 4. Números índice
Tema 4. Números índice Durante la explicación del tema anterior, el de las variaciones estacionales surgió la frase: calcular el índice estacional, este número indicó qué tan arriba o qué tan abajo estarían
SECRETARÍA DE EDUCACIÓN PÚBLICA SUBSECRETARÍA DE EDUCACIÓN SUPERIOR COORDINACIÓN GENERAL DE UNIVERSIDADES TECNOLÓGICAS
SECRETARÍA DE EDUCACIÓN PÚBLICA SUBSECRETARÍA DE EDUCACIÓN SUPERIOR COORDINACIÓN GENERAL DE UNIVERSIDADES TECNOLÓGICAS CRITERIOS GENERALES PARA LA PLANEACIÓN, EL DESARROLLO Y LA EVALUACIÓN, EN LA IMPLANTACIÓN
SUMAR Y RESTAR CANTIDADES EXPRESADAS CON FRACCIONES Y DECIMALES CON DISTINTO SIGNIFICADOS
SUMAR Y RESTAR CANTIDADES EXPRESADAS CON FRACCIONES Y DECIMALES CON DISTINTO SIGNIFICADOS 4to. Grado Grupo RED Universidad de La Punta CONSIDERACIONES GENERALES Desde la perspectiva que asocia el aprendizaje
5 o. Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas. MATEMÁTICA Guía didáctica
Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Guía didáctica 5 o Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Guía didáctica NIVEL
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10.
_ 9-.qxd //7 9:7 Página 9 Divisibilidad INTRODUCCIÓN El concepto de divisibilidad requiere dominar la multiplicación, división y potenciación de números naturales. Es fundamental dedicar el tiempo necesario
PROGRAMACIÓN CREATIVA PARA EL APRENDIZAJE DE LAS MATEMÁTICAS Y LA RESOLUCIÓN DE PROBLEMAS CON SCRATCH
PROGRAMACIÓN CREATIVA PARA EL APRENDIZAJE DE LAS MATEMÁTICAS Y LA RESOLUCIÓN DE PROBLEMAS CON SCRATCH Álvaro Molina Ayuso, I.E.S. La Pedrera Blanca, Chiclana de la Frontera (Cádiz) RESUMEN. En este taller
El proyecto de Innovación Curricular
El proyecto de Innovación Curricular Las actuales demandas educativas nos plantean la necesidad de elaborar propuestas cada vez más innovadoras que formen a un alumno capaz de enfrentar una sociedad en
Tema : ELECTRÓNICA DIGITAL
(La Herradura Granada) Departamento de TECNOLOGÍA Tema : ELECTRÓNICA DIGITAL.- Introducción. 2.- Representación de operadores lógicos. 3.- Álgebra de Boole. 3..- Operadores básicos. 3.2.- Función lógica
Reconocimiento de Créditos Automatizado. Módulo de Gestión
Reconocimiento de Créditos Automatizado Módulo de Gestión versión 1.0 Índice Reconocimiento de Créditos Automatizado... 1 Módulo de Gestión... 1 versión 1.0... 1 1. Introducción... 2 2. Buzón de Solicitudes...
Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A
SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,
1. PLANTEAMIENTO DEL PROBLEMA. 1.1 Descripción del problema
1. PLANTEAMIENTO DEL PROBLEMA 1.1 Descripción del problema Son muchas las necesidades que presentan los niños y las niñas en el nivel de Educación Parvularia, debido a que es el primer peldaño de la educación
Fundamentos de negocio Recursos Humanos > El personal adecuado es esencial en el avance de tu empresa (Selección > Guía para seleccionar al personal
Selección Una vez que concluye el reclutamiento, el siguiente paso es "escoger" al candidato más adecuado para el puesto vacante entre las personas que aspiran al puesto. Este proceso es delicado ya que
Aplicaciones Lineales
Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las
2.2. LA COMPRA. TOMA DE DECISIONES DEL CLIENTE.
2.2. LA COMPRA. TOMA DE DECISIONES DEL CLIENTE. En este epígrafe abordaremos el estudio del comportamiento de compra del consumidor, para ello tendremos que estudiar tanto las distintas situaciones de
La ventana de Microsoft Excel
Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft
El Minicomputador de Papy: Una Estrategia Didáctica para Comprender y Fortalecer las Operaciones Básicas. Proyecto Juega y Construye La Matemática
El Minicomputador de Papy: Una Estrategia Didáctica para Comprender y Fortalecer las Operaciones Básicas Proyecto Juega y Construye La Matemática Jesús Armando Ríos M., riosarmando8@hotmail.com Mario Almeida,
Cuáles son las funciones y desempeño asociadas del equipo en su contexto operativo?, o un poco mas coloquialmente;
Desarrollando un Plan de Mantenimiento apoyados en RCM Vamos ahora a ver un poco hacia adentro las 7 preguntas fundamentales para el desarrollo del RCM y veamos como podemos hacerlo en una forma práctica
Introducción. Rene Coulomb* y Martha Schteingart*
Introducción Rene Coulomb* y Martha Schteingart* Este libro ofrece un panorama completo de los distintos enfoques y aspectos que configuran la problemática de la vivienda en México, poniendo énfasis también
Ross desea ordenar una pizza, de cuántas opciones diferentes puede seleccionar Ross la pizza con sus complementos?
M510: La pizza A) PRESENTACIÓN DEL PROBLEMA En una pizzeria ofrecen la pizza base con queso y tomate y le puedes agregar dos de cuatro opciones como complemento: aceitunas, jamón, champiñones o salami.
FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 MÓDULO DE DISEÑO Y PRODUCCIÓN DE MATERIALES UNIDAD 6 B
141 1 FORMACIÓN DE EQUIPOS DE E-LEARNING 2.0 Unidad 6 B 142 2 Índice SEGUIMIENTO DE PERSONAS 1 INFORMES 2 143 3 SEGUIMIENTO DE PERSONAS E INFORMES EN MOODLE El seguimiento de los participantes en Moodle
Aprender a decidir. Autora: Nuria Carballo Labella
Autora: Nuria Carballo Labella. - 1 - Aprender a decidir. Autora: Nuria Carballo Labella Resumen: Este artículo muestra cómo se puede entrenar en el aula el proceso para tomar decisiones académicas y profesionales.
Estructuras de Datos y Algoritmos. Árboles de Expresión
Estructuras de Datos y Algoritmos Árboles de Expresión Año 2014 Introducción Los avances tecnológicos producen día a día una gran cantidad de información que debe ser almacenada y procesada en forma eficiente.
Economía en la escuela
Título de la actividad: Cálculo de precios de productos al pagar al contado o en cuotas. Introducción Uno de los Objetivos Fundamentales Transversales para el nivel de 8 básico plantea desarrollar en los
SECUENCIA: JUEGO DE LOTERIA
SECUENCIA: JUEGO DE LOTERIA SE PLANTEARÁ ESTA PROPUESTA EN VARIAS ETAPAS DE TRABAJO, UTILIZANDO UN JUEGO DE LOTERÍA CONVENCIONAL CONTENIDOS: NUMERACIÓN. LECTURA DE NÚMEROS HASTA EL 100. RELACIONES ENTRE
Profr. Efraín Soto Apolinar. Números reales
úmeros reales En esta sección vamos a estudiar primero los distintos conjuntos de números que se definen en matemáticas. Después, al conocerlos mejor, podremos resolver distintos problemas aritméticos.
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION Nombre de la alumna: Área: MATEMATICAS Asignatura: Matemáticas Docente: Luis López Zuleta Tipo de Guía: Conceptual PERIODO GRADO FECHA DURACION CUATRO 7º octubre de
Puedes Desarrollar Tu Inteligencia
Puedes desarrollar tu Inteligencia (Actividad-Opción A) Puedes Desarrollar Tu Inteligencia Una nueva investigación demuestra que el cerebro puede desarrollarse como un músculo Muchas personas piensan que
GUÍAS. Módulo de Diseño de software SABER PRO 2013-2
GUÍAS Módulo de Diseño de software SABER PRO 2013-2 GUÍAS Módulo de diseño en ingeniería El diseño de productos tecnológicos (artefactos, procesos, sistemas e infraestructura) está en el centro de la naturaleza
Matemática. [ en Puerto ] info@puertodepalos.com.ar. www.puertodepalos.com.ar. /EditorialPuertodePalos ISBN 978-987-547-588-5
Matemática [ en Puerto ] www.puertodepalos.com.ar info@puertodepalos.com.ar /EditorialPuertodePalos ISBN 978-987-547-588-5 9 789875 475885 6 [ Números naturales ] 1 CAPÍTULO En la provincia de Buenos Aires
10. La organización de las niñas y de los niños. 10.1 Criterios para la organización de las niñas y de los niños
10. La organización de las niñas y de los niños Las investigaciones sociales han comprobado que a medida que crecen las niñas y los niños aumenta el interés por tener amigos y disminuyen significativamente
VENTAJAS Y DESVENTAJAS DE LAS TECNOLOGIAS
VENTAJAS Y DESVENTAJAS DE LAS TECNOLOGIAS EN NUESTRAS VIDAS JOCABED VALENZUELA GARCIA ESLI GUADALUPE LAZCANO RODRIGUEZ INTRODUCCION: Le tecnología es un sinónimo de innovación y de cosas nuevas para facilitar
Planes Estratégicos Individualizados para PYMES de la Provincia de Granada
Planes Estratégicos Individualizados para PYMES de la Provincia de Granada Retos de las empresas en la provincia de Granada Ante la actual situación por la que pasan las mayorías de las economías a nivel
GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES
GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES Tema: Cartas de Servicios Primera versión: 2008 Datos de contacto: Evaluación y Calidad. Gobierno de Navarra. evaluacionycalidad@navarra.es
Preguntas. sobre el Tribunal de Justicia de la Unión Europea
Preguntas sobre el Tribunal de Justicia de la Unión Europea POR QUÉ UN TRIBUNAL DE JUSTICIA DE LA UNIÓN EUROPEA (TJUE)? Con el fin de construir Europa, los Estados (actualmente 28) concluyeron entre ellos
Tema 4: Problemas aritméticos.
Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha
Jugamos con las probabilidades en una feria de reciclaje
QUINTO XXXX Grado - - Unidad X 6 - - Sesión XX 01 Jugamos con las probabilidades en una feria de reciclaje En esta sesión se espera que los niños y las niñas identifiquen todos los posibles resultados
Centro de Capacitación en Informática
Fórmulas y Funciones Las fórmulas constituyen el núcleo de cualquier hoja de cálculo, y por tanto de Excel. Mediante fórmulas, se llevan a cabo todos los cálculos que se necesitan en una hoja de cálculo.
Ejercicio Nº 3: Realizar aumentos en una Tabla de Sueldos
SESION5: BASE DE DATOS PLANILLAS Ejercicio Nº : Realizar aumentos en una Tabla de Sueldos Veamos pues. En la hoja de calculo se tiene la Tabla de Sueldos de varios empleados (aquí ahora vemos solo empleados,
Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal
Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó
DINÁMICAS PARA GRUPOS MULTICULTURALES. Las dinámicas que aportamos ofrecen posibilidades didácticas para desarrollar con grupos multiculturales.
DINÁMICAS PARA GRUPOS MULTICULTURALES Las dinámicas que aportamos ofrecen posibilidades didácticas para desarrollar con grupos multiculturales. INDICE FICHA PEDAGÓGICA 1: El contrato de grupo. Las reglas
Línea Base Juan Carlos Bajo Albarracín Qué es una línea base Cómo implantar la Ley 29783: El concepto sistema de gestión en la Ley 29783
Línea Base Juan Carlos Bajo Albarracín Director de Seguridad y Salud PRYSMA INTERNACIONAL PERÚ Lo primero que debemos hacer antes de implantar o adecuar el sistema de seguridad y salud en el trabajo a
EL DESARROLLO DEL JUEGO Y EL USO DEL JUGUETE
Análisis de Datos en Psicología I nº 1 Prácticas coordinadas (Psicología del desarrollo I) EL DESARROLLO DEL JUEGO Y EL USO DEL JUGUETE GRUPO DE TRABAJO NOMBRE y APELLIDOS FIRMA Fecha de entrega: EJEMPLO
FUNCIONES DE PROPORCIONALIDAD
UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),
ACCIÓN CLAVE2 (KA2)-COOPERACIÓN PARA LA INNOVACIÓN Y LAS BUENAS PRÁCTICAS ASOCIACIONES ESTRATÉGICAS
ACCIÓN CLAVE2 (KA2)-COOPERACIÓN PARA LA INNOVACIÓN Y LAS BUENAS PRÁCTICAS ASOCIACIONES ESTRATÉGICAS Nota aclaratoria: Hay que distinguir entre países del Programa Erasmus + (28 Estados miembros de la Unión