ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN"

Transcripción

1 ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores Dominio de y. Se trata de una irracional: que hagan negativo el radicando. Funciones lineales Funciones cuadráticas Transformación de funciones Funciones homográficas o hiperbólicas Ecuación ymn. m es la pendiente n es la ordenada del origen. Ecuación ya bc Casos: Logarítmicas (como en irracionales además del cero). Racionales (ecluir valores que anulen el denominador) m> y n> (corta a Y por encima del origen y forma con X ángulo agudo) m> y n< (corta a Y por debajo del origen y forma con X ángulo agudo) m< y n> (corta por encima y ángulo obtuso) m< y n< (corta por debajo y ángulo obtuso) - La gráfica es una parábola. - Vértice en el punto de absica b a - Corta eje X (cuando lo hace) en las soluciones de la ecuación de º grado asociada) - Corta al aje Y en (, c) - Si a> es cóncava - Si a< es convea Ecuación - yf()k es como f() desplazada k unidades hacia arriba. - y-f() es simétrica de f() respecto al eje X - y(a) es como f() desplazada a unidades hacia la izquierda o derecha según a sea ó -. - Yf(-) es simétrica de f() respecto al eje Y Ecuación: a b y c d - La gráfica es una hipérbola. - Tiene como asíntotas las rectas ya/c (horizontal) yd/c (vertical) - Si ad y c la hipérbola tiene por asíntotas los ejes X - (-)/() - Dom( y ),, ] [ [ [ m> m> n> n< m< m< n> n< a> a< Vemos las gráficas de y (trazo grueso) y la de y(-) (trazo fino) desplazada unidades a la derecha: Representar la función y : Sus asíntotas son -, y - Página de

2 Funciones a trozos Su dominio está dividido en varios intervalos en los que la ecuación de la función cambia Su forma es (en el dominio [a, d]: g( ) si a < b f ( ) h( ) si b < c i( ) si c < d Se representa cada tramo por separado sobre los mismos ejes, pudiendo los tramos de gráfica juntarse o no en los puntos de separación de los intervalos. Gráfica de: si < f ( ) si < Funciones en valor absoluto Su ecuación: y f() Se interpreta como una función definida en dos trozos así: f ( ) si f ( ) y f ( ) si f ( ) < Hay que resolver la inecuación: f ( ) para determinar los ites de cada trozo si Gráfica de y si < Donde el valor -/ sale de resolver la inecuación: Composición de funciones Las funciones: yf() yg() La función compuesta de ambas es: ( f g)( ) f g( ) [ ] Es decir se sustituye la en la función f por la función g(). Puede calcularse también: ( g f )( ) g f ( ) [ ] Donde ahora se sustituye la de g por la función f() La función compuesta ( g f )( ) de las funciones: f ( ) g( ) 4 Es: ( g f )( ) g [ f ( ) ] Función recíproca o inversa La función yf() La función recíproca de yf() se obtiene (caso de eistir), despejando en función de y e intercambiando las variables en el resultado. Se ha de cumplir que: ( f f )( ) ( f f )( ) I ( ) Donde la función i() llamada identidad es: I() Es decir, asocia a cada valor él mismo. Las gráficas de f() y f - () son simétricas respecto a la bisectriz del primer cuadrante. D Inversa de y f ( ) 4 Despejamos en función de y : 4y 4y (4y ) 4y Cambiando ahora las variables: y f ( ) 4 Vemos que la composición es la identidad: 8 ( f f )( ) f f ( ) 8 Página de

3 Función eponencial La ecuación: y a a Con a - Pasan por (, ) y (, a) - Si a> es creciente - Si a< es decreciente. La gráfica de y es: 4, 4,,,, -4-4 Función logarítmica La ecuación: y log a - Es inversa de la eponencial - Pasa por (, ) y (a,) - Si a> es creciente - Si <a< es decreciente - Si dominio es IR La gráfica de,8,,4 y log es:, 4 -, Trigonométricas inversas Límite de una función en un punto. Límites por la izquierda y por la derecha. Cálculo práctico de ites yarc sen yarc cos c yarc tg función y punto en estudio función y punto. Si sen a, entonces arc sen a Si cos b entonces arc cos b Si tg c entonces arc tg c La gráfica de cualquiera de las funciones trigonométricas inversas es la simétrica respecto a la bisectriz del primer cuadrante, de la gráfica de la función trigonométrica correspondiente Para calcular f ( ) se a escribe una sucesión de valores de que se acerque a a, se calcula la sucesión de los valores de f() y se comprueba si se acerca ésta última a algún valor real. Si se toma una sucesión de valores que crezca indefinidamente y la sucesión de f() tiende a l, escribimos: f ( ) l Si una sucesión de valores de tiende a a y la sucesión de f() crece indefinidamente, escribimos: f ( ) a Si la sucesión de valores de se aproima a a pero se mantiene siempre menor que a, escribimos (ite por la izquierda): f ( ) l a Si la sucesión de valores de se aproima a a pero se mantiene siempre mayor que a, escribimos (ite por la derecha): f ( ) l a -,4 Calcula: sen(arccos( )) senº O bien: La CNyS para que una función tenga ite cuando tiende a a es que los ites por la derecha y por la izquierda coinciden. Si una función es continua para calcular f ( ), en realidad calculamos f(a) Calcula a senº Calcula. Veamos las sucesiones: - -, -, -, Por tanto: Veamos ahora:,,, Por tanto: Calcula Sucesiones: Página de

4 Límites infinitos función y punto. Si aplicando el método anterior a una función a obtenemos ; a, se calculan los ites laterales. Calcula: 4 lim 4 lim lim 4 lim ( )( ) lim 4 ( )( ) Límites en el infinito función Si obtenemos / nos quedamos con los monomios de mayor grado de numerador y denominador Si obtenemos, en una función con radicales, multiplicamos y dividimos por el conjugado Si obtenemos, en funciones racionales, efectuamos la operación. Calcula: 4 9 Para tenemos Calcula: ( ) /. Dividiendo todo por : ( )( ) ( ) ( ) ( ) Calcula: ( ) ( ) 4 Casos de indeterminación /, / e función y punto. Para calcular ites en, cambiamos por y por Si aplicando el método anterior a una función racional obtenemos el valor /, factorizamos numerador y denominador, simplificamos los factores comunes y calculamos el ite de lo que resta. Calcula: ( ) ( ) ( ) ( ) Calcula: Haciendo 7 se obtiene / Factorizando el denominador: 7 7 ( )( 7) 7 Si la indeterminación / procede de funciones con radicales, multiplicamos y dividimos por el conjugado, simplificamos los factores comunes y calculamos el ite de lo que resta. Calcula: Haciendo se obtiene / ( ) ( ) ( ) ( ) ( ) ( ) ( ) Página 4 de

5 Continuidad de una función Asíntotas La ecuación de la función Una función yf() es continua en el punto a si se cumplen las condiciones:. Eiste f(a). Eiste f ( ) a. Los dos valores anteriores coinciden. Si una función cumple: a) f ( a) y f ( ) pero ambos a valores son distintos, decimos que en a hay una discontinuidad evitable. b) Si los ites laterales en a eisten pero no coinciden y ambos son finitos, esto es: f ( ) f ( ) eiste en a a a una discontinuidad de salto finito. c) Si alguno de los ites laterales es infinito, hay discontinuidad de salto infinito. función -Sí f ( ) k, la recta yk es una función (funciones racionales) asíntota horizontal. -Si f ( ), la recta k es una k asíntota vertical -La recta ymn es una asíntota oblicua si se cumple que: f ( ) m [ ( ) ] n f m -Si eisten asíntotas horizontales no pueden eistir asíntotas oblicuas hacia el mismo lado. Si grado( P( ) ) grado ( Q( ) ) Las asíntotas verticales u oblicuas se obtienen efectuando la división P( ) r( ) f ( ) c( ) Q( ) Q( ) Si grado( P( ) ) grado ( Q( ) ) < la recta y (eje OX) es una asíntota horizontal Estudia la continuidad de la función: y Veamos qué valores de anulan el denominador: En y en la función no está definida y como además: En hay una discontinuidad de salto infinito. Sea ahora la función: si f ( ) si Como f() y f ( ) En hay una discontinuidad evitable Encuentra las asíntotas de la función: f ( ) 4 Como: f ( ) m n La recta y-7 es una asíntota oblicua. lim 4 lim 4 Como lim 4 lim 4 Las rectas y son asíntotas verticales. No eisten asíntotas horizontales Encuentra las asíntotas de la función: 4 f ( ) Como: 4 4 f ( ) ( 7) La recta y-7 es una asíntota oblicua. Encuentra las asíntotas de la función: f ( ) 4 grado P( ) < grado Q( ) Como ( ) ( ) y es una asíntota horizontal. Página de

6 función y asíntota Posición de la curva: Para las asíntotas verticales, se estudian los ites laterales Para las asíntotas horizontales y oblicuas se estudia el signo de f()-asíntota En el caso de funciones racionales, r( ) esto coincide con el signo de Q( ) 4 f ( ) ; A.V. en -: 4 f ( ) 4 f ( ) A.H. en y-7: < 4 4 ( 7) > si si función y asíntota Puntos de corte de curva y asíntota horizontal u oblicua : Para funciones racionales se obtienen igualando a cero el resto y despejando. r( ) 4 f ( ) 4 4 Y es una asíntota horizontal. Punto de corte de curva y asíntota: 4 4; y 4, ( ) Página de

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

FUNCIONES Y GRÁFICAS.

FUNCIONES Y GRÁFICAS. FUNCIONES Y GRÁFICAS. CONTENIDOS: Concepto de función. Gráfica de una función. Estudio cualitativo de funciones dadas por sus gráficas Idea intuitiva de continuidad de una función. Repaso de funciones

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () =,5; f (,9) =,95; f (,99) =,995 Calcula f (,999); f (,9999); f (,99999); A la vista

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

MATEMÁTICAS. TEMA 5 Límites y Continuidad

MATEMÁTICAS. TEMA 5 Límites y Continuidad MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

LÍMITES DE FUNCIONES Y DE SUCESIONES

LÍMITES DE FUNCIONES Y DE SUCESIONES LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

Gráfica de una función

Gráfica de una función CAPÍTULO 9 Gráfica de una función 9. Bosquejo de la gráfica de una función Para gráficar una función es necesario:. Hallar su dominio sus raíces.. Decidir si es par o impar, o bien ninguna de las dos cosas..

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad MATEMÁTICAS I º Bachillerato Capítulo 7: Límites y continuidad file:///c:/users/cuenta~/appdata/local/temp/b006%0limitesycontinuida D%0Adela. 00 Índice. CONCEPTO DE LÍMITE.. DEFINICIÓN.. LÍMITES LATERALES..

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()

Más detalles

10 Cálculo. de derivadas. 1. La derivada. Piensa y calcula. Aplica la teoría

10 Cálculo. de derivadas. 1. La derivada. Piensa y calcula. Aplica la teoría 0 Cálculo de derivadas. La derivada Piensa y calcula Calcula mentalmente sobre la primera gráfica del margen: a) la pendiente de la recta secante, r, que pasa por A y B b) la pendiente de la recta tangente,

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27.

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27. . Determina el dominio de la función:. f() = -. f() =. f() = 4. f() = -6. f() = 6. f() = + 7. f() = - 8. f() = e 9. f() = + 0. f() = -. f() = -. f() = -. f() = + 4. f() = +. f() = + 6. f() = - + 7. f()

Más detalles

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6.1.- Definición. Una asíntota es una recta que se encuentra asociada a la gráfica de algunas curvas y que se comporta como un límite gráfico hacia la cual la

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

TEMA 5. REPRESENTACIÓN DE FUNCIONES

TEMA 5. REPRESENTACIÓN DE FUNCIONES 94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

1. Limite de Funciones

1. Limite de Funciones 1. Limite de Funciones 1.1. Introducción. Consideremos la función f() = { 1+ 2 si > 0 1 2 si < 0 Se observa que la función no está definida en 0 = 0. Sin embargo, se observa que cuando se consideran valores

Más detalles

TEMA 1: Cálculo Diferencial de una variable

TEMA 1: Cálculo Diferencial de una variable TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos

Más detalles

(Apuntes en revisión para orientar el aprendizaje)

(Apuntes en revisión para orientar el aprendizaje) (Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Análisis de funciones y representación de curvas

Análisis de funciones y representación de curvas 12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario

Más detalles

Funciones reales de variable real: límites y continuidad

Funciones reales de variable real: límites y continuidad Capítulo 3 Funciones reales de variable real: límites y continuidad 3.. Funciones reales de variable real 3... ntroducción Una función f : A B consiste en dos conjuntos, el dominio A = Dom(f) y el rango

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta. año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Calcular los etremos relativos de las siguientes funciones: a) f ( ) D(f) (Por ser polinómica) ; Posibles máimos o mínimos 6

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

Capítulo 2: Concepto y Cálculo de Límites

Capítulo 2: Concepto y Cálculo de Límites Capítulo : Concepto y Cálculo de Límites Geovany Sanabria Contenido Concepto de Límite Una definición intuitiva de Límite Ejercicios 6 Problemas con la utilización de sucesiones para calcular límites 7

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Matemática I Extremos de una Función. Definiciones-Teoremas

Matemática I Extremos de una Función. Definiciones-Teoremas Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1.- Se construye un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto. Epresar el volumen V de ese depósito en función del radio r del cilindro y de su altura h..-

Más detalles

Selectividad Septiembre 2006 SEPTIEMBRE 2006

Selectividad Septiembre 2006 SEPTIEMBRE 2006 Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual

Más detalles

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida Concepto de integral definida: INSTITUTO UNIVERSITARIO DE TECNOLOGÍA INTEGRAL DEFINIDA Sea una función continua definida en [a, b]. Supongamos que dividimos este intervalo en n subintervalos : [a, ], [,

Más detalles

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

Guía 2 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO ADMINISTRACIÓN TURÍSTICA Y HOTELERA II SEMESTRE

Guía 2 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO ADMINISTRACIÓN TURÍSTICA Y HOTELERA II SEMESTRE Guía 2 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO ADMINISTRACIÓN TURÍSTICA Y HOTELERA II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL.

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Gráficas. Funciones Reales. Variable Real

Gráficas. Funciones Reales. Variable Real I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Gráficas de Funciones Reales de Variable Real Por Javier Carroquino CaZas Catedrático de matemáticas del I.E.S.

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS Y. Representa en los mismos ejes las siguientes funciones: y = - ; b) y = ; c) y = +. Representa

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional.

1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional. 1. Encontrar el dominio de la función racional. h(x) x 2 3x 1 (x 2 4)(x 2 + 11x + 24) Para encontrar el dominio de una función racional debemos encontrar los valores de la variable que hacen cero el denominador.

Más detalles

Observaciones del profesor:

Observaciones del profesor: Calificación total máxima: 10 puntos. Tiempo: 60 minutos. OPCIÓN A Ejercicio 1. (Puntuación máxima: 4 puntos) Se considera la matriz: A=( ) a) Determina la matriz B= A 2-2A 1,5 PUNTOS b) Determina los

Más detalles

Representación Gráfica de la Hipérbola y la Parábola

Representación Gráfica de la Hipérbola y la Parábola Representación Gráfica de la Hipérbola y la Parábola La Parábola Todas las funciones que tienen por epresión algebraica un polinomio de º grado, tienen por representación n gráfica una parábola. f = a

Más detalles

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X =

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X = Selectividad Junio 011 Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUMNO/A DEBERÁ ESCOGER UNO DE

Más detalles