FIABILIDAD (V): COMPARACIÓN (NO PARAMÉTRICA) DE MUESTRAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FIABILIDAD (V): COMPARACIÓN (NO PARAMÉTRICA) DE MUESTRAS"

Transcripción

1 FIABILIDAD (V): COMPARACIÓN (NO PARAMÉTRICA) DE MUESTRAS Autores: Ángel A Juan Pérez Rafael García Martín RELACIÓN CON OTROS MATH-BLOCS Este math-block forma parte de una sere de 8 documentos relaconados todos ellos con la Fabldad de componentes desde un punto de vsta estadístco: Conceptos Báscos (I) Identfcacón y descrpcón gráfca de los datos (II) Análss paramétrco de los tempos de fallo (III) Análss no paramétrco de los tempos de fallo (IV) Comparacón no paramétrca de muestras (V) Tests de vda acelerada (VI) Modelos de regresón para observacones censuradas (VII) Análss Probt (Éxto / fracaso) (VIII) ESQUEMA DE CONTENIDOS Comparacón de grupos Fabldad (V): Comparacón (no paramétrca) de muestras Ejemplo comparacón grupos (Statstca) Comparacón de n grupos (n > ) Proyecto e-math 1

2 INTRODUCCIÓN A menudo, puede resultar convenente usar métodos no paramétrcos para comparar los tempos de fallo procedentes de dferentes muestras Así, por ejemplo, en el caso de los portátles (vsto en el capítulo anteror), podríamos estar nteresados en comparar los tempos de supervvenca de los tres grupos determnados según el taller de reparacón al que corresponde cada observacón A pror, cuando los tempos de fallo no se dstrbuyan según una normal, podría pensarse en utlzar los métodos no paramétrcos cláscos, tales como los métodos Wlcoxon o Mann-Whtney para comparar dos muestras, o el Kruskal-Walls para varas muestras Sn embargo, estos métodos tradconales no son váldos cuando las muestras contenen observacones censuradas, debendo recurrr en tales casos a alguno de los métodos no paramétrcos específcos que se enuncan en el sguente cuadro: MÉTODOS PARA COMPARAR GRUPOS CON OBSERVACIONES CENSURADAS Comparacón de grupos Wlcoxon-Gehan Cox-Mantel F-Cox Log-rank Wlcoxon-Peto Comparacón de múltples grupos Wlcoxon-Gehan generalzado Cox-Mantel generalzado La mayoría de estos métodos proporconarán valores de una va Z que sgue una dstrbucón normal tpfcada (e, una N(,1)); dchos valores se usarán para hacer un contraste de hpótess sobre la smltud o no de los grupos A fn de que los resultados sean estadístcamente fables, será necesaro dsponer de muestras sufcentemente numerosas Es mportante observar además que, cuando se queran comparar dos o más grupos resulta fundamental examnar prmero la proporcón de observacones censuradas en cada uno de ellos, dado que s dcha proporcón dfere de forma notable según el grupo, los resultados podrían resultar bastante sesgados S ben no hay un crtero general sobre qué método es mejor, a la hora de comparar dos grupos, s las muestras provenen de una poblacón con dstrbucón Exponencal o Webull, los métodos Cox- Mantel y log-rank parecen ofrecer resultados más fables El test Wlcoxon-Gehan para múltples grupos es una generalzacón de los métodos Wlcoxon-Gehan De hecho, cuando se utlza este test con sólo dos grupos de muestras, los resultados que se obtenen son los msmos que con el Wlcoxon-Gehan Proyecto e-math

3 COMPARACIÓN DE GRUPOS Supongamos que se dspone de n 1 y n observacones pertenecentes a los grupos 1 y : n {( 1, 1) } 1 1 t = ( t n, δ ) = δ y { j j } j 1 donde: δ = 1 shay censura en t 1 1 y shay fallo en t1 δ j = 1 shay censura en t shay fallo en t j j Sea d = número total de fallos en ambas muestras, () Se unen las observacones procedentes de ambos grupos, y se consderan m nstantes (ordenados) en los cuales se haya producdo al menos 1 fallo: t m + 1 < t < < t con m d n1 n () En cada uno de los nstantes anterores, t, 1 m, se podrán resumr los datos en una tabla x: Nº de observ del grupo 1 que estaban en resgo justo antes del nstante t: n = n + d ESTADO MUESTRA Fallo (d) En Resgo (d + n) Supervventes (n) 1 d 1 n 1 n 1 d n n Total d n n Nº de observ del grupo 1 que han fallado justo en el nstante t Nº de observ del grupo 1 supervventes tras el nstante t Tendremos así que la hpótess nula H : probabldad de supervvenca es la msma en ambas muestras mplca la ndependenca de las categorías muestra y estado de la tabla x anteror Por tanto, bajo la hpótess nula, el valor esperado de d 1 (nº de fallos del grupo 1 en el nstante t ) será: E[d 1 /H ] E [d 1 ] = n 1 * d / n Usando las propedades de la dstrbucón Hpergeométrca, tambén se tene que: Var[d 1 /H ] Var [d 1 ] = [n 1 * n * n * d ] / [n * (n 1)] Proyecto e-math 3

4 Por su parte, es posble representar la evdenca en contra de la hpótess nula con el sguente estadístco de contraste, el cual es una suma ponderada de las dferencas entre el número de fallos observados y el número de fallos esperados en el grupo 1: θ = m = 1 donde w es el peso asocado al nstante t w [ d E [ d ] Se puede demostrar que el estadístco anteror sgue una dstrbucón normal Calculemos su meda y varanza: Bajo H, se cumplrá: 1 E[θ/H ] E [θ] = Var[θ/H ] Var [θ] = Σ w Var [d 1 ] = Σ [w * n 1 * n * n * d ] / [n * (n 1)] Estandarzando θ se obtendrá un estadístco de contraste que se dstrbuye según una normal tpfcada, e: 1 Z = θ Var ( θ) N(,1) o, equvalentemente, se tene que Z sgue una Ch-cuadrado con 1 grado de lbertad: Z θ = Var ( θ) 1) Tomando w = n estaremos en el método Wlcoxon-Gehan, el cual se reduce al test clásco de Wlcoxon cuando no hay observacones censuradas ) Tomando w = 1 estaremos en el método Log-rank o Cox-Mantel 3) Tomando w = n estaremos en el método Tarone-Ware 4) Tomando w = estmacón de S(t) en t = t estaremos en el método Wlcoxon-Peto Observacones: El test Wlcoxon-Gehan pone más peso en las observacones ncales, por tanto es más sensble a la hora de detectar la exstenca de dferencas a corto plazo entre grupos El test Log-rank pone el msmo peso en todas las observacones, por lo tanto resulta más sensble a la hora de detectar la exstenca de dferencas a largo plazo entre grupos Debdo a la forma en que los tests se formulan (los térmnos del sumatoro en la expresón de θ no están elevados al cuadrado), éstos sólo serán potentes cuando la tasa de resgo de un grupo sempre sea menor que la del otro (e, al representar sus respectvas funcones tasa de resgo, éstas no se crucen) En caso contraro, podría ocurrr que algunos térmnos del sumatoro anteror postvos y otros negatvos, cancelándose mutuamente χ 1 Proyecto e-math 4

5 COMPARACIÓN DE VARIOS GRUPOS Los métodos anterores para comparar grupos se pueden generalzar al caso de k grupos: Se ordenan los tempos de fallo: t < < < t t m con m d n1 nk y para cada t se construye la sguente tabla xk: ESTADO Muestra Fallo (d) En Resgo (d + n) Supervventes (n) 1 d 1 n 1 n 1 k d k n k n k Total d n n Por tanto, bajo la hpótess nula, el valor esperado de d j (nº de fallos del grupo j-ésmo en el nstante t ) será: y los componentes de la matrz de covaranza serán: E[d j /H ] E [d j ] = n j * d / n n' j ( n' n' j ) d n Var [ d ] = y Cov [ d, d ] j n' ( n' 1) j l = n' n' n' d j l n ( n' 1) La evdenca contra H vendrá representada por el estadístco de contraste: θ = m = 1 w D donde w es el peso asocado a las observacones en el nstante t, y D d = d 1 k E E [ d ] 1 [ ] dk A efectos práctcos, se usará el estadístco de contraste χ construdo a partr de θ: χ = θ V 1 w el cual sgue una dstrbucón χ con (k-1) grados de lbertad En la expresón anteror, V w = w V, sendo w el vector de pesos w Tomando w = n se obtene el método de Wlcoxon-Gehan generalzado mentras que tomando w = 1 tendremos el test de Log-rank o Cox-Mantel generalzado θ Proyecto e-math 5

6 EJEMPLO COMPARACIÓN DE GRUPOS Usando el programa STATISTICA y, nuevamente, el ejemplo de los portátles (consderando tres grupos, uno por cada taller de reparacón) se mostrará cómo es posble aplcar en la práctca los métodos anterores de comparacón: Entrada de datos (nput): Selecconamos la opcón Comparng multple samples en el menú ncal del módulo Pulsar sobre el botón Varables para selecconar los tempos de fallo, el ndcador de censura, y la varable que determna los grupos (Taller ) Comprobar que la opcón Code for censored responses muestra los códgos correctos de las varables censuradas Dentro de la opcón Codes (for groups), pulsar sobre el botón All : Proyecto e-math 6

7 Salda de datos (output): El programa mostrará los sguentes resultados: Comparacón no paramétrca de muestras Notar que el test Ch-Cuadrado es cas sgnfcatvo en este caso (p-valor =,567), por lo que estaríamos tentados de rechazar la hpótess nula (no hay dferencas mportantes entre los tres grupos) en favor de la hpótess alternatva (la duracón de los portátles depende del taller donde fueron arreglados) A fn de poder aprecar mejor estas más que posbles dferencas, se podrían representar en un msmo gráfco las funcones de supervvenca de cada grupo Para ello se debe pulsar sobre la opcón Cumul prop survvng by group (Kaplan-Meer) : Cumulatve Proporton Survvng (Kaplan-Meer) Complete Censored 1,,9 Cumulatve Proporton Survvng,8,7,6,5,4,3, Tme A B C Claramente, la funcón de supervvenca correspondente al taller C muestra una dsmnucón ncal menos acusada que la del resto de talleres Por tanto, deberíamos conclur que los portátles reparados en el taller C tenen una mayor probabldad de sobrevvr, en especal durante los prmeros 1 días crítcos posterores a la reparacón Proyecto e-math 7

8 Pulsando sobre el botón Percent survvng by group se obtendrán las tablas de supervvenca para cada grupo: Entrada de datos (nput): Ahora que ya se ha comprobado que no todos los grupos son smlares, sería convenente comparar dos de ellos, el A y el C, para comprobar nuestra observacón anteror de que el taller C parece tener unos resultados dferentes a los del resto, en partcular a los del taller A Para ello, se deberá selecconar la opcón Comparng two samples en el menú ncal del módulo Pulsando sobre el botón Varables ndcaremos las varables que contenen los tempos de fallo, el ndcador de censura, y los grupos (Taller ) Comprobar que la opcón Code for censored responses muestra los códgos correctos de las varables censuradas, y selecconar los códgos de los grupos: Proyecto e-math 8

9 Salda de datos (output): a contnuacón se muestran los resultados: Comparacón no paramétrca de muestras Selecconando cada uno de los métodos se rán obtenendo, entre otras, las sguentes ventanas: Observar que, en este ejemplo, algunos de los tests dan p-valores cercanos al,5 (como el Wlcoxon-Gehan), mentras que otros no son estadístcamente sgnfcatvos (como el F-Cox) Por tanto, se podría conclur, aunque sn excesva segurdad, que los resultados obtendos en ambos talleres son dferentes, proporconando el taller C mayor fabldad en las reparacones de portátles Proyecto e-math 9

10 BIBLIOGRAFÍA [1] Conover, WJ (198) Practcal nonparametrc statstcs Wley New York [] D Agostno, RB y Stephens, MA (eds) (1986) Goodness-of-ft technques Marcel Dekker New York [3] Gbbons,JD (1971) Nonparametrc Statstcal Inference McGraw Hll San Francsco [4] Kendall, MG y Gbbons, JD (1991) Rank Correlaton Methods (5a edcón) Grffn: Londres [5] Koopmans, L (1987) Introducton to Contemporary Statstcal Methods (a edcón) PWS Publshers [6] Lehmann, EL (1975) Nonparametrcs: Statstcal Methods Based on Ranks McGraw Hll San Francsco [7] Leach, C (1989) Fundamentos de estadístca: Enfoque no paramétrco Lmusa Méxco, D F [8] Pur, ML y Sen, PK (1971) Nonparametrc methods n multvarate analyss Wley Nueva York [9] Randles, RH y Wolfe, DA (1979) Introducton to the Theory of Nonparametrc Statstcs Wley Nueva York [1] Slvermann, BW (1986) Densty Estmaton Chapman and Hall: Londres ENLACES [W1] Lbro electrónco de StatsoftInc (creadores del programa Statstca) [W] Lbro electrónco edtado por el profesor Rossn Proyecto e-math 1

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

) para toda permutación (p p 1 p

) para toda permutación (p p 1 p 09 Elena J. Martínez do cuat. 004 Análss de la varanza de dos factores El problema anteror consderaba la comparacón de muestras para detectar dferencas entre las respectvas poblacones. En el modelo de

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

Un estimado de intervalo o intervalo de confianza ( IC

Un estimado de intervalo o intervalo de confianza ( IC Un estmado puntual, por ser un sólo número, no proporcona por sí msmo nformacón alguna sobre la precsón y confabldad de la estmacón. Debdo a la varabldad que pueda exstr en la muestra, nunca se tendrá

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

Análisis de Varianza no paramétricos

Análisis de Varianza no paramétricos Capítulo VII Análss de Varanza no paramétrcos Anova de Kruskal-Walls Anova de Fredman Anova de Q de Cochran Introduccón Las técncas de análss de varanza no paramétrcos son útles cuando los supuestos de:

Más detalles

Análisis de Resultados con Errores

Análisis de Resultados con Errores Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo,

1 EY ( ) o de E( Y u ) que hace que g E ( Y ) sea lineal. Por ejemplo, Modelos lneales generalzados En los modelos no lneales (tanto en su formulacón con coefcentes fjos o coefcentes aleatoros) que hemos vsto hasta ahora, exsten algunos que se denomnan lnealzables : son modelos

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

CAPÍTULO III ACCIONES. Artículo 9º Clasificación de las acciones. Artículo 10º Valores característicos de las acciones. 10.

CAPÍTULO III ACCIONES. Artículo 9º Clasificación de las acciones. Artículo 10º Valores característicos de las acciones. 10. CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural serán las establecdas por la reglamentacón específca vgente o

Más detalles

Análisis de la varianza de un factor

Análisis de la varianza de un factor Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para

Más detalles

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta

Más detalles

Tema 1.- Variable aleatoria discreta (V2.1)

Tema 1.- Variable aleatoria discreta (V2.1) Tema.- Varable aleatora dscreta (V2.).- Concepto de varable aleatora A cada posble resultado de un expermento lo llamamos suceso elemental, y lo denotamos con ω, ω 2, Llamamos espaco muestral al conjunto

Más detalles

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Unidad 2 Representación Algebráica

Unidad 2 Representación Algebráica Undad Representacón lgebráca Gráfcas no drgdas Matrz de Incdenca La matrz de ncdenca de una gráfca G se denota como (G) y se defne como: a, S el vértce v ncde en la línea e n cada columna hay exactamente

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Algunas aplicaciones del test del signo

Algunas aplicaciones del test del signo 43 Algunas aplcacones del test del sgno Test de Mc emar para sgnfcacón de cambos: En realdad este test se estuda en detalle en Métodos no Paramétrcos II, en el contexto de las denomnadas Tablas de Contngenca.

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

Análisis de la varianza de un factor

Análisis de la varianza de un factor Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

Análisis de supervivencia

Análisis de supervivencia Tempo a un evento Curso de Análss de Supervvenca Víctor Abrara 1 Análss de supervvenca Conjunto de técncas que permten estudar la varable tempo hasta que ocurre un evento y su dependenca de otras posbles

Más detalles

Prueba de Inferencia Estadística y Contraste de Hipótesis. 8 de octubre de 2012 GRUPO A

Prueba de Inferencia Estadística y Contraste de Hipótesis. 8 de octubre de 2012 GRUPO A Prueba de Inferenca Estadístca y Contraste de Hpótess 8 de octubre de 01 GRUPO A 1.- Se ha observado un ángulo cnco veces, obtenéndose los sguentes valores: Se pde: 65º5 ; 65º33 ; 65º3 ; 65º8 ; 65º7 a)

Más detalles

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas Tema : Jerarquía Dgtal Síncrona, SDH Dsponbldad de Sstemas Tecnologías de red de transporte de operadora MÁSTER EN INGENIERÍ TELEMÁTIC Profesor: Espín Defncones Fabldad (Relablty): Probabldad de que el

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septiembre de :30 horas. Pregunta 19 A B C En Blanco

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septiembre de :30 horas. Pregunta 19 A B C En Blanco EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septembre de 01 15:30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e mal: Pregunta 1 A B C

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal Solucón de los Ejerccos de ráctca # 1 Econometría 1 rof. R. Bernal 1. La tabla de frecuencas está dada por: Marca A Marca B

Más detalles

Estimación no lineal del estado y los parámetros

Estimación no lineal del estado y los parámetros Parte III Estmacón no lneal del estado y los parámetros 1. Estmacón recursva El ltro de Kalman extenddo 12 es una técnca muy utlzada para la la estmacón recursva del estado de sstemas no lneales en presenca

Más detalles

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo

Aplicación de curvas residuo y de permeato a sistemas batch y en continuo Aplcacón de curvas resduo de permeato a sstemas batch en contnuo Alan Dder érez Ávla En el presente trabajo se presentara de manera breve como obtener las ecuacones que generan las curvas de resduo, de

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Aspectos fundamentales en el análisis de asociación

Aspectos fundamentales en el análisis de asociación Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes

Más detalles

Tema 3: Procedimientos de Constrastación y Selección de Modelos

Tema 3: Procedimientos de Constrastación y Selección de Modelos Tema 3: Procedmentos de Constrastacón y Seleccón de Modelos TEMA 3: PROCEDIMIENTOS DE CONTRASTACIÓN Y SELECCIÓN DE MODELOS 3) Introduccón a los Modelos con Restrccones Estmacón Restrngda 3) Contrastes

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

TEMA 7. ANÁLISIS DE SUPERVIVENCIA

TEMA 7. ANÁLISIS DE SUPERVIVENCIA TEMA 7. ANÁLISIS DE SUPERVIVENCIA CONTENIDOS 7. Funcón de supervvenca. 7.2 Estmacón no paramétrca de la funcón de supervvenca. 7.2. Tempos de supervvenca dscretos. Estmador de Kaplan-Meer. 7.2.2 Tempos

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patrca Valdez y Alfaro renev@unam.m Versón revsada: uno 08 T E M A S DEL CURSO. Análss Estadístco de datos muestrales.. Fundamentos de la

Más detalles

Análisis de la Varianza de dos factores con replicaciones: Caso Balanceado (Scheffé, 1959)

Análisis de la Varianza de dos factores con replicaciones: Caso Balanceado (Scheffé, 1959) Modelo Lneal 03 Ana M Banco 1 Análss de la Varanza de dos factores con replcacones: Caso Balanceado cheffé, 1959 En este eemplo nos nteresa el tempo de coagulacón en mnutos del plasma sanguíneo para 3

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Enlaces de las Series de Salarios. Metodología

Enlaces de las Series de Salarios. Metodología Enlaces de las eres de alaros Metodología ntroduccón La Encuesta de alaros en la ndustra y los ervcos (E, cuyo últmo cambo de base se produjo en 996) ha sufrdo certas modfcacones metodológcas y de cobertura,

Más detalles

Capítulo 7 Bucles. Bucle For-Next. Informática

Capítulo 7 Bucles. Bucle For-Next. Informática Capítulo 7 Bucles Bucle For-Net Un procedmento más práctco para controlar varables que deben tomar valores numércos entre un valor ncal hasta un valor fnal, con un ncremento determnado, es el sguente:

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Riesgos Proporcionales de Cox

Riesgos Proporcionales de Cox Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

3 - VARIABLES ALEATORIAS

3 - VARIABLES ALEATORIAS arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70 Análss del caso promedo Técncas Avanzadas de Programacón - Javer Campos 70 Análss del caso promedo El plan: Probabldad Análss probablsta Árboles bnaros de búsqueda construdos aleatoramente Tres, árboles

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad UNIVERSIDAD NAIONAL MAYOR DE SAN MAROS FAULTAD DE IENIAS MATEMÁTIAS E.A.P. DE ESTADÍSTIA Métodos multvarantes en control estadístco de la caldad apítulo IV. Gráfcos de control MUSUM TRABAJO MONOGRÁFIO

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI)

TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) 14.1. La Curva Característca de los ítems (CCI) 14.. Los errores típcos de medda 14.3. La Funcón de Informacón

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

3 LEYES DE DESPLAZAMIENTO

3 LEYES DE DESPLAZAMIENTO eyes de desplazamento EYES DE DESPAZAMIENTO En el capítulo dos se expone el método de obtencón de las leyes de desplazamento dseñadas por curvas de Bézer para mecansmos leva palpador según el planteamento

Más detalles

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales: EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un epermento, un número real.

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Tema 21: Distribución muestral de un estadístico

Tema 21: Distribución muestral de un estadístico Análss de Datos I Esquema del Tema 21 Tema 21: Dstrbucón muestral de un estadístco 1. INTRODUCCIÓN 2. DISTRIBUCIÓN MUESTRAL DE LA MEDIA 3. DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN Bblografía * : Tema 15

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Introducción a las Subastas de Múltiples Objetos

Introducción a las Subastas de Múltiples Objetos Introduccón a las Subastas de Múltples Objetos Alvaro J. Rascos Vllegas Unversdad de los Andes Abrl de 2010 lvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

RECUENTO DE MICROORGANISMOS VIABLES EN MEDIOS LIQUIDOS: TECNICA DEL NUMERO MAS PROBABLE (NMP).

RECUENTO DE MICROORGANISMOS VIABLES EN MEDIOS LIQUIDOS: TECNICA DEL NUMERO MAS PROBABLE (NMP). RECUENTO DE MICROORGANISMOS VIABLES EN MEDIOS LIQUIDOS: TECNICA DEL NUMERO MAS PROBABLE (NMP). Cátedra de Mcrobología General- Facultad de Cencas Exactas- UNLP. En muchas ocasones, ya sea por un bajo número

Más detalles

Modelos lineales Regresión simple y múl3ple

Modelos lineales Regresión simple y múl3ple Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una

Más detalles