Transformador VALORES NOMINALES Y RELATIVOS
|
|
- Manuel Ferreyra Fernández
- hace 6 años
- Vistas:
Transcripción
1 Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia d salida, las tsios, las coits, la fcucia, la vlocidad d gio, tc. as omas stablc los datos míimos qu db figua stas placas, qu db sta colocadas u luga bi visibl impsas foma idlbl. Cuato mayo s la impotacia d la máquia, mayo s la ifomació qu da l fabicat. Estos valos dados lo placa d caactísticas s toma como los omials d la máquia. as magituds spcificadas po los fabicats, la chapa d caactísticas, cospod a u svicio, qu si o s dic ada al spcto, s sobtid qu s tata d svicio cotiuo o qu s l más comú d los svicios idica qu la máquia pud fucioa a potcia omial costat, si límit d timpo, y alcaza l quilibio témico co l mdio ambit. aa l caso d tasfomados d dos aollamitos s db da como míimo, los valos omials dados la tabla. Tabla. Valos omials míimos d u tasfomado. otcia apat omial Tsió pimaia omial Tsió scudaia omial cucia omial Muy fcutmt s agga las coits pimaia y scudaia omials, las coxios, los sultados d sayos, psos, dimsios, tc. Tampoco db falta l omb dl fabicat. a potcia apat omial d u tasfomado d dos aollamitos stá dfiida d la siguit maa: Coocida sta potcia y las tsios omials s pud calcula las coits omials como: f aa qu las tsios omials sult idpdits dl stado d caga dl tasfomado, s spcifica vacío; po lo tato la lació d tasfomació calculada a pati d las tsios omials dadas po l fabicat, dbía coicidi co la qu almt ti l tasfomado:
2 a a 3 Cuado l tasfomado sté caga, la máxima coit qu s l pud xigi al scudaio, paa l svicio spcificado la placa d caactísticas, s la omial; stas codicios la coit absobida po l pimaio, dpdido dl facto d potcia d la caga, galmt s u poco más gad qu la omial, poqu s l suma la coit d vacío. o oto lado, si la tsió d alimtació s la omial, dbido a las caídas itas, la tsió d salida s, dpdido tambié dl facto d potcia d la caga, ligamt distita a la omial, la figua s musta stas codicios d fucioamito. ig.. Valos caga. Y po los mismos motivos, si l tasfomado stá caga, y s dsa t a la salida la tsió omial; la tsió pimaia dbá s ligamt distita a la omial, si la caga s iductiva, dbá s u poco mayo. os valos omials o psta máximos absolutos, qu o s pud supa, po l cotaio todas las máquias so factibls d s sobcagadas tasitoiamt si qu s poduzca daños, po s db pocd co ga pudcia y coocimito d causa ya qu las sobcagas poduc mayos caltamitos y acota la vida útil d los matials aislats y coscutmt d la máquia. VAORE REATVO Muy fcutmt s más útil xpsa las magituds y paámtos foma lativa qu valos absolutos, po jmplo dci qu u tasfomado ti ua coit d vacío d 5 A s útil po o idica si ésta coit s gad o s pquña, si cambio s dic qu la coit d vacío s dl 3% d la omial s sabá qu s tata d u tasfomado omal. E l uso d valos lativos s fudamtal l coocimito d la bas d fcia d dichos valos: cuado s tata d ua máquia aislada lo más covit s toma como fcias o bass los valos omials d la misma. Esto o simp s así, po jmplo, cuado s tata d u sistma qu icluy vaias máquias, galmt distitas y posiblmt otos lmtos, lo más covit s adopta ua bas d potcia igual paa toda la istalació y, si hay tasfomados, tsios distitas paa las distitas sccios d la misma. Est pocdimito, qu s muy utilizado l studio d sistmas lécticos d potcia, aquí sá dsaollado solamt su aspcto más básico. E la tabla s sum las magituds y paámtos d bas los tasfomados moofásicos d dos aollamitos.
3 E l caso d los tasfomados, moofásicos o tifásicos, d más d dos aollamitos, cada uo d los aollamitos ti su popia potcia apat omial icluso s bastat fcut, qu la potcia apat dl pimaio sa mo a la suma d las potcias apats d los otos aollamitos. E sos casos, paa l cálculo d la coit omial y d la impdacia o admitacia d bas, s db usa la potcia apat omial dl aollamito custió. Tabla. Valos d bas tasfomados moofásicos. aa potcias, Q, aa tsios aa coits aa impdacias R, X, imaio cudaio b b b b b aa admitacias G, B, Y Y b b b Y b i la máquia s tifásica, lo omal s tabaja co la potcia total y co los valos d lía d las tsios y d las coits; como las impdacias y las admitacias so valos d fas, galmt fidas a ua coxió stlla, la bas s pud calcula tabajado dictamt co los valos d lía, d la siguit foma: 3 bυ 4 3 i s tabaja sob la bas d ua coxió tiágulo, lo qu gal sulta poco páctico, sulta: 3 b 3 3bΥ as admitacias d bas so las cípocas d las xpsios 4 y 5. os valos lativos s pud xpsa tato po cito % o tato po uo / ó pu; la pima s la foma qu coitmt uo s xpsa, po la sguda foma s adapta más los cálculos técicos, ya qu o s csaio agga úmos las xpsios. o jmplo, la potcia d vacío pud xpsas fomo lativa como: % W W VA b VA b 6 3
4 E st caso la bas d potcias s la misma paa l pimaio qu paa l scudaio, cambio o ocu lo mismo paa las stats magituds y paámtos; así las dl pimaio db fis a las bass dl pimaio y las dl scudaio a las dl scudaio, po jmplo: E gal s idicaá t paétsis si las magituds o los paámtos stá % o pu. i o s hac igua aclaació, s sobtdá qu s tata d u valo absoluto. Tabajado co valos lativos o hac falta filos, ya qu ti l mismo valo paa ambos lados dl tasfomado, po jmplo, la coit d vacío mdida dsd l pimaio y xpsada tato po uo, s: i stá mdida dsd l scudaio valdá: b b b b 7 8 a Y Qu xpsada tato po uo sulta: ig. : Cicuito d vacío. b D igual foma paa todas las otas magituds. a a b Algo smjat ocu al tabaja co las tsios o coits d los sistmas tifásicos, l mismo valo tato po uo o po cito s válido paa las magituds d fas o d lía ya qu sgú s ds s utilizaá como bas l cospodit valo d fas o d lía. Rspcto a las potcias ocu oto tato, s pud tabaja co potcias po fas o totals y stos casos o apac los 3. cosϕ d fas cosϕ 9 4
5 Tabajado co las potcias totals: 3 cosϕ total cosϕ 3 i l 3. Obsévs qu l facto d potcia st caso l cos ϕ s ua magitud tato po uo, ya qu xpsa qu pat d la potcia apat s activa. as xpsios matmáticas obtidas tabajado co valos absolutos, s las pud utiliza, si modificació algua, utilizado todo /; po o simp s así tabajado %. o jmplo: Dividido po: Rsulta: Cu A W Ω VA V 3 A Cu Cu Dmostacios como la atio, s cumpl todos los casos, po lo tato o s csaio alizalas. Esto qu s acaba d v s muy impotat, y pmit simplifica la solució d muchos poblmas. Ota caactística muy útil d los valos lativos s qu magituds y paámtos qu psta cosas distitas, sulta uméicamt iguals t sí, po jmplo la potcia d cotocicuito val: Qu si s xpsa todo tato po uo, sulta: Ya qu: Tambié: Y tato po uo: 4 W Ω A 5 tambié % 6 7 u V Ω A 8 u tambié % 9 Es dci qu tato po uo, o tato po cito, y a coit omial, s cumpl qu: u D igual foma sulta las siguits igualdads % o /, tabla. 5
6 Tabla. gualdads % y /. u x u x Q u z p G p m Bm Q Y Estas igualdads so muy útils y covi tlas simp pst, po tata d codalas d mmoia pac muy difícil, si mbago, obsvádolas co cuidado s pud apcia qu las magituds y paámtos qu sulta iguals t sí, stá asociadas a u mismo lmto dl cicuito quivalt, figua 3. ux u a a x m p Q B m G p Qcc cc ig. 3. Cicuito quivalt. Admás t las magituds y paámtos d la tabla xist las lacios pitagóicas y tigoométicas popias d las amas si y paallo qu s pud dduci d los tiágulos d la figua 4. u cc z cc Y ux x Qcc ϕ cc ϕ m BmQ u cc p Gp ig. 4. Rlacios pitagóicas. i s compaa los valos d las magituds y paámtos xpsadas foma lativa d tasfomados d distitas potcias y tsios, s obsva qu so otablmt póximas t sí; sto s paticulamt útil paa hac pdtmiacios apoximadas d caactísticas d u tasfomado. A cotiuació s tascib alguos valos típicos obtidos d vaios autos, tablas V y V. 6
7 al 6 %,5 al % p Tabla V. Rama paallo. Tabla V. Rama si. Dismiuy al aumta Tsió omial mayo u otcia omial u kv % MVA % Mo d 6,5 a 5,,8 a, 6 a 3,5 a 8,3,5 a,8 3 6 a,,3 a,5 6 9 a 3,,8 a, 9 a 5,5 a,7 a 5 3,4 a,6 i bi l studio d ua máquia léctica s muy poco pobabl qu sa csaio aliza algú cambio d bas, pud s qu al aaliza l compotamito d u gupo d máquias, sult covit fi todo a ua bas comú. os cambios d bas s aliza multiplicado a la magitud o l paámto tato po uo, o tato po cito, po su spctiva bas, paa qu qud valo absoluto, y lugo dividido po la uva bas: bas Valo / bas Valo / bas bas o mismo val %, po jmplo si s ti magituds y paámtos fidas a las bass b y b y s las qui fi a las uvas bass b y b, los subídics t paétsis idica la bas a la qu stá fida la magitud o l paámto, po jmplo: 5 BBOGRAÍA b b b b b b b b b b b b b b b b b b EE taff dl MT: Cicuitos Magéticos y Tasfomados Editoial Rvté, 943. A. E. itzgald, C. Kigsly y A. Kusko: Máquias Elécticas Ed. Mac Gaw Hill, 975. tph J. Chapma: Máquias Elécticas Editoial Mac Gaw Hill, 5. B.. Guu y H. R. Hizioğlu: Máquias Elécticas y Tasfomados Editoial Oxfod ivsity ss, 3. b b g. Nobto A. mozy 9 7
3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?
CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.
v = (área de la base)(altura) = (ab)h
El volumn dl paallpípdo d la figua siguint s v = (áa d la bas)(altua) = (ab)h IGURA El volumn dl cilindo cicula cto d la figua 4, a) siguint s (m )h. h a) ~---------------v~---------------- IGURA 4 TI
En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado.
EJECCO DE OTENCA EN TEMA TFÁCO. EJECCO 1.- n sistma tifásico tifila d 40 V y scuncia T, alimnta una caga tifásica quilibada conctada n tiángulo, fomado po impdancias d valo 0 80º Ω. Halla la lctua d dos
Z = número atómico o número de protones del núcleo Z = 1 (H); 2 (He + ); 3 (Li 2+ ).
CAPITULO. l átoo d idógo ) Atoo d idógo idogoid Z úo atóico o úo d poto dl úclo Z (H); (H + ); (Li + ). F q q / ε F q q / θ.6-9 cul.8 - u N u cul /( ε ) / φ V() -Z / ( u ) Hˆ Hˆ Hˆ + Ψ (, ) ψ ( )ψit( )
Máquinas Eléctricas II CT-3311
Sofia Gua Uivsidad Simó Bolíva Dpatamto d Covsió y Taspot d Egía Auto: Sofía Gua. Caé: Pofso: J. M. All Máquias Elécticas II CT-3311 A ua máquia d iducció d 1 kw, 416 V, pas d polos, coxió stlla y 6 Hz,
al siguiente límite si existe: . Se suele representar por ( x )
UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
Señales y Sistemas. Análisis de Fourier.
Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos
IES CASTEAR BADAJOZ PRUEBA DE ACCESO (OGSE) UNIVERSIDAD DE A RIOJA JUNIO (GENERA) (RESUETOS po Antonio Mnguiano) MATEMÁTICAS II Timpo máimo: hoas y minutos El alumno contstaá a los jcicios d una d las
2. Utilizando el método adimensional basado en el factor de calidad Q, determine:
Uivrsidad Simó Bolívar Dpartamto d Covrsió y Trasport d Ergía Autor: Eduardo Albaz. Cart: 06-391 Profsor: J. M. Allr Máquias Eléctricas II CT-311 U motor d iducció coxió strlla d 100 kw, 416 V, rdimito
Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.
Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su
SEGUNDO TALLER DE REPASO
Docnt: Ángl Aita Jiménz SEGUNDO TALLER DE REPASO EJERCICIOS DE LEY DE GAUSS 1. Una sfa aislant d adio R tin una dnsidad d caga unifom ρ y una caga positiva total Q. Calcula l campo léctico n las gions.
Cap. II: Principios Fundamentales del Flujo de Tránsito
Cap. II: Pricipios Fudamtals dl Flujo d Trásito Diagrama Espacio-Timpo Distacia 1 2 Itralo (i) 3 4 5 6 Espaciamito () Timpo Flujo, q Dsidad, Vlocidad, Tasa horaria quialt a la cual trasita los hículos
8 Límites de sucesiones y de funciones
Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...
dt Igualando la fuerza de inercia en el satélite con la fuerza gravitacional, tenemos:
ECUACIONES DE LA ORBITA LAS ECUACIONES DE LA ORBITA Lys d Kpl Las óbitas son planas y l satélit dscib una lips con un foco n l cnto d masa d la Tia. El adio vcto dscib áas iguals n timpos iguals. Los cuadados
EXÁMEN TIPO DE ACÚSTICA APLICADA
EXÁMEN PO DE ACÚCA APLCADA P.. - El uido n los alddos dl áa d taao d una cotadoa d mtal fu analizado n andas d octava dando como sultado los valos d la siguint tala: Fcuncia cntal n Hz Nivl d ntnsidad
TEMA 1: CALCULO DIRECTO DE LÍMITES
INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas
Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.
1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día.
Est documto coti las actividads o prscials propustas al trmiar la clas dl día qu s idica. S sobrtid qu tambié s db ralizar l studio d lo plicado clas auqu o s icluya sa tara st documto. Clas 5 d ovimbr
INFERENCIA ESTADISTICA
Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------
Facultad de Ingeniería Física 1 Curso 5
Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d
Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s
11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS)
INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) Los sistmas o lials pud llgar a tr comportamitos ralmt sorprdts alguos casos: por u lado pud llgar a tr diámicas totalmt difrts sgú l valor qu
EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3
Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más
La distribución canónica y la aproximación clásica. Espacio de fases clásico. Distribución de velocidades de Maxwell. Aplicaciones de la distribución
La distibució caóica y la aoiació clásica. Esacio d fass clásico. Distibució d locidads d Mawll. Alicacios d la distibució d locidads d Mawll. Efusió y hacs olculas La distibució caóica sgú la aoiació
DEFORMACIONES. 1. Sean x, y, z la posición inicial de una partícula cuyo movimiento está descrito en un sistema lagrangiano por:
Facltad d Cincias Epimntals Univsidad d Almía DEFORMACIONES. San,, la posición inicial d na patícla co moviminto stá dscito n n sistma lagangiano po: t X ( )( t Y ( )( + ( )( + ( )( + + Z Encnt: a) l vcto
PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)
PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad
Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller. 7.1 Conceptos generales sobre transformación de coordenadas
Unisidad Simón Bolía Consión d Engía Eléctica - Pof José Manul All Tansfomación d Coodnadas 71 Concptos gnals sob tansfomación d coodnadas El sistma d cuacions difncials 61, qu modla l compotaminto d la
DIRECCIÓN FINANCIERA I
DIRECCIÓN FINNCIER I GRDO EN DMINISTRCIÓN DIRECCIÓN DE EMPRESS UNIVERSIDD DE VLLDOLID Este documeto ha sido elaboado po Susaa loso Bois, Pablo de dés loso, Valetí zofa Palezuela, José Maía Fotua Lido,
1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:
.- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim
ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas
UNIVESIDD USTL DE CILE INSTITUTO DE CIENCI Y TECNOLOGI DE LOS LIMENTOS (ICYTL) / SIGNTU: INGENIEI DE POCESOS III (ITCL 34) POESO: Elton. Moals Blancas UNIDD : TNSEENCI DE CLO PO CONDUCCION (ESTDO ESTCIONIO)
5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica
Experimentos factoriales con factores aleatorios
Expimntos factoials con factos alatoios Intoducción Si considamos la situación d xpimntos factoials n los cuals s studian dos factos A y B, s pudn psnta dos modlos altnativos: MODELO DE EFECTOS ALEATORIOS:
AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES
7 CAPITULO 4 AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES Existe vaios métodos de ayudas gáficas paa el diseño, acople y solució de poblemas e líeas de tasmisió, que ha ido evolucioado co el tiempo. Keell
LA VISIÓN NECESARIA PARA LA EXPRESIÓN DE LA VIDA EN LOS GRUPOS CON VIDA, PARTE III 2 CORINTIOS 4.1; EFESIOS 4.12
LA VISIÓN NCSAIA PAA LA XPSIÓN D LA VIDA N LOS GUPOS CON VIDA, PAT III 2 COINTIOS 4.1; FSIOS 4.12 NCSITAMOS S: *AVIVADOS *FVOIZADOS *Y FUCTÍFOS. Y LOS GUPOS PODÁN S GUPOS CON VIDA QU TASMITN VIDA. L CUPO
GUÍA VII: MÁQUINAS ASINCRÓNICAS
Sita Elctocánico, Guía VI: Máquina Aincónica GUÍA VII: MÁQUINAS ASINCRÓNICAS. El tato d una áquina aincónica tiáica d 6 olo tá conctado a una d d 50 [Hz]. Dtin la cuncia d la coint n l oto aa cada una
UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2006
I.E.S. Al-Ándalus. Aahal. Svilla. Dpto. Física y Química. Slctividad Andalucía. Física. unio 6 - UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. UNIO 6 OPCIÓN A. San dos conductos ctilínos
Campo eléctrico en presencia de aislantes.
Cam léctic scia d aislats. Cmtamit d ls aislats u cam lctstátic (I). i itducims u diléctic t las amaduas d u cdsad la, la dd t las amaduas dismiuy, auqu la caga las amaduas cambia. Q Q d A V 1 V 2 Oy 0
Capitulo III. III 2. Métodos analíticos de análisis cinemático. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica
Unvsa Cantaba Dpatamnto Ing. Estuctual y Mcánca Captulo III III. Métoos analít análss cnmátco 1 Cnmátca y Dnámca Máqunas. III. Métoos analít análss cnmátco. Unvsa Cantaba Dpatamnto Ing. Estuctual y Mcánca
TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS
Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar
TEMA 6 DISTRIBUCIONES DE PROBABLIDAD DISCRETAS
www.ova.ud.s/wbags/ild/wb/d.htm -mal: mozas@l.ud.s TEMA 6 DISTRIBUCIONES DE PROBABLIDAD DISCRETAS Dstbucó dgada u uto c.- Fucó d obabldad: P( = c) = ; P( c) = 0. Fucó d dstbucó: F() = 0, c, c Momtos: E()
PROBLEMAS CAPÍTULO 5 V I = R = X 1 X
PROBLEMAS APÍULO 5.- En el cicuito de la figua, la esistencia consume 300 W, los dos condensadoes 300 VAR cada uno y la bobina.000 VAR. Se pide, calcula: a) El valo de R,, y L. b) La potencia disipada
Tema 5: Campo Gravífico
Ta 5 Ta 5: Capo Gavífico 5..- Potncial y Capo d la Gavdad. Goid Podos v la Tia coo un sólido con otación unifo. D sta foa, todo punto atial d stá staá sotido a una fuza gavitatoia dbida a la asa tst y
LA RIOJA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO
LA RIOJA / SPIBR 04. LOGS / ÍSICA / XAN COPLO XAN COPLO l alumno lgiá una sola d las opcions d poblmas, así como cuato d las cinco custions popustas. No dbn solvs poblmas d opcions difnts, ni tampoco más
FORMULARIO DE ESTADÍSTICA
Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate
Análisis del caso promedio El plan:
Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas
GUÍA III : FUERZAS ELECTROMAGNÉTICAS
Sitma Elctomcánico, Guía III: Fuza Elctomagnética GUÍA III : FUERZAS EECROMAGÉICAS. El núclo d la figua tin una pmabilidad dl fio infinita y cción tanval d 9 [cm ]. El dvanado tin 5 [vulta] y una itncia
a) [1,5 puntos] Discutir y resolver en función de los valores del parámetro m el sistema lineal = + + = + = + =
Puebas de Aptitud paa el Acceso a la Uivesidad. JUNIO 009. Matemáticas II.. ÁLGEBRA Opció A a) [,5 putos] Discuti y esolve e fució de los valoes del paámeto m el sistema lieal + y + z = + + = m + m y +
IV. Gases ideales cuánticos
IV. Ga idal cuático Boo y Fmio Fucio d ditibució o Bo-Eiti (boo) o Fmi-Diac (fmio) o límit cláico (Maxwll-Boltzma) Aplicacio: o lcto d coducció mtal o 3 H y 4 H o Ga d foto Ly d Plack Módulo d Mcáica Etadítica
Potenciales de interacción. Química Física del Estado Sólido U A M
Potcials itacció Quíica ísica l Estao Sólio U M 5 6 Potcials itacció Cotios Itaccios lctostáticas básicas caga - caga caga - ipolo Capo ipola caga - ipolo iucio t ipolos fctos téicos sob u colctivo ipolos
MATEMÁTICAS Y CULTURA B O L E T Í N No. 273 COORDINACIÓN DE MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE
MATEMÁTICAS Y CULTURA B O L E T Í N 23.04.20 No. 273 COORDINACIÓN DE MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE E l Boltí Matmáticas Y Cultura No. 257 dl 23 d abril
CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES
CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o
Automá ca. Apéndice:TransformadadeLaplace. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez
Auomáca Apédic:Tafomadadaplac JoéRamólaaGacía EhGozálzSaabia DámaoFádzPéz CaloToFo MaíaSadaRoblaGómz DpaamodTcologíaElcóica IgiíadSimayAuomáca Apédic: Tafomada d aplac Apédic Tafomada d aplac A.. INTRODUCCIÓN
CAPACITANCIA Y DIELÉCTRICOS
Capitulo v CAPACITANCIA Y DIELÉCTRICOS 196 5.1. Intoducción Cuando ncsitamos lcticidad, s ncsaio psiona un intupto y obtnla dl suministo. Po oto lado si tnmos accso a un gnado, podmos asguanos qu obtnmos
LAZOS DE AMARRE DE FASE
LAZOS DE AMARRE DE FASE Maco Atoio Péez Ciseos *, Mak Readma * Divisió de Electóica Computació, CUCEI, Uivesidad de Guadalajaa, México. Cosulto Cotol Sstems Piciples RESUMEN: Este atículo peteece a la
Ecuaciones generales Modelo de Maxwell
Elcticidad y Magntimo 9/ Ecuacion gnal Modlo d Maxwll Intoducción Funt d campo: Caga léctica. Coint léctica. Ecuación d continuidad. Dfinición dl campo lctomagnético. Ecuacion d Maxwll. Foma Intgal. Foma
Figura 1.63: letra i superpuesta con los símbolos = e. Figura 2.1: donde dice δc debe decir δs.
Fe de eatas Debido a poblemas técicos duate la impesió de esta pimea edició de lectomagetismo elemetal, vaias iguas peseta eoes ue o existía e el mauscito oigial pesetado po el auto. uellas e las cuales
TEMA 5: Efectos de los Rectificadores sobre la red de alimentación.
TEMA 5 : Efctos d los Rctificadors sobr la rd d alimtació TEMA 5: Efctos d los Rctificadors sobr la rd d alimtació. Ídic TEMA 5: Efctos d los Rctificadors sobr la rd d alimtació. 5..- Factor d Potcia....
2. Medición de Índices de Refracción. Neil Bruce
. Medició de Ídices de Refacció Neil Buce Laboatoio de Optica Aplicada, Ceto de Ciecias Aplicadas y Desaollo Tecológico, U.N.A.M., A.P. 70-86, México, 0450, D.F. Objetivos Istumeta e el laboatoio métodos
Tema 3 Análisis de Sistemas LTI en el dominio transformado
Tm 3 Aálisis d Sistms LTI l domiio tsfomdo Itoducció ttp://vido.googl.s/vidoply? docid67693938367 Filtos Pso Bo Low Pss Filts Filtos idls lp sto c < < < c lp c si c c Filtos Pso Alto ig Pss Filts p lp
Tema 5. DIAGONALIZACIÓN DE MATRICES
José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los
Guía 0: Repaso de Análisis Matemático
ÍSICA II A/B Pim Sgundo Cuatimst d 009 Guía 0: Rpaso d Análisis Matmático ). Calcula n coodnadas sféicas la intgal f,, d sindo,, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo f,, ) ) g
5 Procedimiento general para obtener el esquema equivalente de un transformador
Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de
BMW i. Freude am Fahren. BMW i Wallbox. Instrucciones de actualización USB
BMW i Fud am Fahn BMW i Wallbox Instuccions d actualización USB 5 ES BMW i Wallbox Instuccions d actualización USB BMW i Wallbox Instuccions d actualización USB Contnido 8 Ppaa la stación d caga d coint
TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.
Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de
INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS
Maste de Cotabilidad, Auditoía y Cotol de Gestió INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Cuso 007/008 Cuso 007/008 Maste de Cotabilidad, Auditoía y Cotol de Riesgos DEPÓSITO FORWARD-FORWARD Acuedo
Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.
1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.
RESUMEN CORRIENTE ALTERNA
ESUMEN OENTE TEN.- TENDO EEMENT Mdant un altnado lmntal obtnmos una fuza lctomotz snusodal cuyo ogn s la vaacón d flujo magnétco n l tmpo sgún: B S BS cos α BS cosωt d ξ BSωsnωt dt V Vmsnωt.-EY DE OHM
±. C inicial = C inicial. Índice de variación
Aitmética mecatil: coteidos 2.1 Aumetos y dismiucioes pocetuales 2.2 Iteeses bacaios 2.3 Tasa aual equivalete ( T.A.E.) 2.4 Amotizació de péstamos 2.5 Pogesioes geométicas 2.6 Aualidades Pocetajes: C fial
II. Electrostática tica en el vacío
II. Elctostá n l vacío 7. Engía a lctostá Gabil Cano Gómz, G 9/ Dpto. Física F plicada III (U. Svilla) Campos Elctomagnéticos ticos Ingnio d Tlcomunicación II. Elctostá n l vacío Gabil Cano G Gómz, 9/.
El sistema formado por [1] y [2] nos permiten determinar la velocidad v del satélite y el radio de la órbita r. ( ) 9,8 10 6,37 10
Solución dl poblma P.1 a) El satélit s muv bajo la influncia d la fuza gavitatoia tst qu s cntal y po tanto l momnto angula s consva. Como l momnto angula 14 1 s fijo L = p = 1, 45 1 k (kg m s ), sntido
INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ. CINEMÁTICA DEL MOVIMIENTO EN EL PLANO: dos dimensiones, horizontal y vertical.
MCOSPB CIENCIS NTULES FÍSIC -- 10 -- 013. N.S.Q INSTITUCIÓN EDUCTIV ESCUEL NOML SUPEIO DE QUIBDÓ CINEMÁTIC DEL MOVIMIENTO EN EL PLNO: dos dimesioes, hoizotal y vetical. O sea: Esfea: cayedo de ua mesa
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro
1. ESPACIOS VECTORIALES
Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades
CAMPO GRAVITATORIO FCA 10 ANDALUCÍA
CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe
2.1 ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN CON COEFICIENTES CONSTANTES.
. ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN CON COEFICIENTES CONSTANTES. Una uaión difnial d sgundo odn s d la foma: p( q( g( Si g ( s llama E ua ió n ho m o g é n a aso ontaio; s di, si g ( s llama E
RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.
RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una
Tema 5 Modos de convergencias de sucesiones de variables aleatorias
Tema 5 Modos de covegecias de sucesioes de vaiables aleatoias Itoducció Cuado se cosidea sucesioes y seies de vaiables aleatoias, es deci, sucesioes y seies de fucioes medibles, su covegecia puede se cosideada
Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm
Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la
Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos
Política Fiscal Goiros d coalició o d itrss oráficos disrsos Goiros d coalició o d itrss oráficos disrsos Escario olítico dod l oiro stá comusto or dos artidos coalició:. Partidos ti rfrcias distitas sor
20: MEDIDA DEL CAMPO MAGNÉTICO CREADO POR CONDUCTORES
áctica : MEDIDA DEL CAMO MAGNÉTICO CREADO OR CONDUCTORES OJETIVO Obseva la elació existete ete coietes elécticas y campos magéticos. Medi y aaliza el campo magético ceado e el exteio de distitos coductoes
A B. Figura 1. Representación de los puntos en el espacio
1. Pao catesiao E puto es u eemeto básico e geometía co e cua se oga idica ua posició e e espacio y costui eemetos geométicos como a ecta y e pao. Paa pode tabaja co os putos se utiiza a eta mayúscua paa
INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO
NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.
CONCEPTOS IMPORTANTES
Objtivo Estuio tospctivo xploatoio Analiza si la Caja Costaicns l Sguo Social (CCSS) pi po mcao n la compa micamntos ao qu s nfnta a una situación monopolio bilatal. Analiza si la CCSS pi po mcao ao qu
Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 6/7 Energía electrostática
Tm : Pincipios d l lctostátic, Antonio Gon nzálz Fná ándz Antonio Gonzálz Fnándz Dptmnto d Físic Aplicd III nivsidd d Svill Pt 6/7 Engí lctostátic Engí, tbjo y clo: l pim pincipio i i d l tmodinámic i
11. TRANSFORMADOR IDEAL
. TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la
I.AURIOL - E.OLIVERA ) convexity for the set of equilibrium in n-person cyclic game s wit h. en en los cuales la función de pago de
Rvsta d a U ó Matmátca Agta Voum 9 994 I INTRCAMBIABILIDAD DL CNUNT D PUNTS D QUILIBRI N UGS N-PRSNALS C CL ICS IAURIL - LIVRA ) Abstact I ths pap w show th quvac of tchagabt ad covxt fo th st of qubum
Tema 8. Limite de funciones. Continuidad
. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito asítota horizotal... 8.
v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en
ÍSICA II A/B/8.0 Sgundo Cuatimst d 06 última vsión: o C.06) Guía 0: Rpaso d Análisis Matmático. Calcula n coodnadas sféicas la intgal f, ),, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo,
Nombre del estudiante:
UNIVERSIDAD DE OSTA RIA ESUELA DE IENIAS DE LA OPUTAIÓN E INFORÁTIA I-0 ESTRUTURAS DISRETAS PROF. KRYSIA DAVIANA RAÍREZ BENAVIDES II Semeste 06 Fecha: /09/06 SOLUIÓN EXAEN PARIAL I Nombe del estudiate:
CAPÍTULO V MOMENTOS DE INERCIA. El momento de inercia de un área tiene la forma
sistci d Mtils. Cpítul V. CPÍTULO V MOMENTOS DE NEC 5.. Mmts d ici d ás El t d ici d u á ti l fm Mmt d ici spct dl j : Mmt d ici spct dl j : Nt qu l cdd qu v l itgd s l cti l j spct dl qu s clcul l t d
EXAMEN DE SEPTIEMBRE CURSO 2003 2004 INSTRUMENTACIÓN ELECTRÓNICA Soluciones
EXAMEN DE SEPEMBE CUSO 00 004 NSUMENACÓN ELECÓNCA Solucions Psntación: Estimado studiant d la asignatua d ngniía d nstumntación Elctónica E dl cuso 0/04, l amn d sptimb consta d ts pats, una pima pat con
ESTADISTICA UNIDIMENSIONAL
ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate
TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES
TEMA 2 ARITMÉTICA MERCANTIL MATEMÁTICAS CCSSI - 1º Bach. 1 TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES E u aumeto o dismiució pocetual, el úmeo po el que hay que multiplica la
mientras que si la valoración se realiza al final de la operación entonces se denomina valor final y se simboliza por V
Retas Fiacieas. aloació de ua eta 2. ALORACIÓN DE UNA RENTA: ALOR ACTUAL Y ALOR FINAL aloa ua eta e el dieiieto T cosiste e halla la sua del valo iacieo, e dicho dieiieto, de cada uo de los capitales que
FIRMA DEL ENTREVISTADOR FIRMA DEL SUPERVISOR ENCUESTA NACIONAL DE INGRESOS Y GASTOS DE LOS HOGARES 2012 CUESTIONARIO DE HOGARES Y VIVIENDA
QUIÉ POPOCIOÓ LA IFOMACIÓ? OMB.. QUÉ DÍA(S) S CAPTÓ LA IFOMACIÓ? 3 4 5 6 7 OMB.. FIMA DL TVISTADO FIMA DL SUPVISO ISTITUTO ACIOAL D STADÍSTICA Y GOGAFÍA www.inegi.org.mx MÉXICO CUSTA ACIOAL D IGSOS Y GASTOS
CAPITULO 3: FUNCIONES HIDRÁULICAS DEL SUELO: RELACIÓN ENTRE HUMEDAD VS. SUCCIÓN Y CONDUCTIVIDAD VS. SUCCIÓN
Capítulo 3. Fucio Hidáulica dl ulo - 0 CAPITULO 3: FUNCIONES HIDRÁULICAS DEL SUELO: RELACIÓN ENTRE HUMEDAD VS. SUCCIÓN Y CONDUCTIVIDAD VS. SUCCIÓN 3.1 Itoducció El tudio d la zoa vadoa o o atuada impotat
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA
SCULA ÉCNCA SUPROR D NGNROS D LCOMUNCACÓN UNRSDAD POLÉCNCA D ALNCA ANNAS 7-no-3 PROBLMA Una antna conocia po los aioaficionaos como W8JK, consta n su configuación más simpl os ipolos mu póimos longitu