Organización y resumen de datos cuantitativos
|
|
- Martín Martin Villanueva
- hace 6 años
- Vistas:
Transcripción
1 Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS Los sguentes datos son las edades de una muestra aleatora de 50 personas jubladas entrevstadas durante el mes de novembre de 2008 en Mendoza Tablas de frecuencas Una tabla de frecuencas para varables numércas es una tabla que asoca a cada valor de la varable con ) la cantdad de veces que aparece frecuenca absoluta f f ) la proporcón de veces que aparece frecuenca relatva f = r n f ) el porcentaje de aparcón frecuenca relatva porcentual f r % =.100% n Otras frecuencas mportantes para descrbr datos cuanttatvos son las frecuencas absolutas, relatvas y porcentuales acumuladas. La frecuenca acumulada para un valor dado de la varable es la suma de las frecuencas ( absolutas, relatvas o porcentuales) de los valores menores o guales al valor que se está consderando Frecuenca acumulada absoluta : Frecuenca acumulada relatva F F r n Frecuenca relatva porcentual F Fr % =.100% n F
2 Una manera de obtener una mejor dea de la forma de la dstrbucón de los datos sn aumentar el tamaño de la muestra es agrupando los datos en ntervalos de gual tamaño denomnados ntervalos de clase En algunas ocasones, se usa un ntervalo aberto del tpo "menos de..." o "mayores que...", en el caso de que haya pocos casos muy abajo o muy arrba de la gran mayoría de los casos. Construccón de una dstrbucón de frecuencas: 1) Determnar el rango de los datos. El rango es la dferenca entre la máxma y la mínma observacón En el ejemplo de las edades el rango es: R = = 40 2) Determnar la cantdad de ntervalos de clases (k) El número de ntervalos depende de la cantdad de datos y del rango. En general se utlzan entre 5 y 20 clases en funcón de la cantdad de datos. Una regla práctca que vamos a utlzar para determnar el número de ntervalos es: Cantdad de ntervalos de clase = k n Elegmos el número entero menor entre los que está comprendda la raíz. En nuestro ejemplo tenemos 50 datos, k 50 7 Esta cantdad de ntervalos, en realdad depende de las undades en que medmos las varables. En muchas ocasones es más adecuado utlzar múltplos de 5. No convene dejar ntervalos vacíos, o sea con frecuenca cero. R 3) Determnar el ancho o ampltud de los ntervalos de clase (h) h k Elegmos un número un poquto mayor que el cocente para que todos los datos queden en alguna de las clases. 50 En el ejemplo: h = = 5, Los ntervalos serán: [53, 59) ; [59, 65) ; [65, 71) ; [71, 77) ; [77, 83) ; [83, 89) ; [89, 95) S hubéramos decddo tomar menos ntervalos, por ejemplo 6 ntervalos, 50 h > =
3 Los ntervalos serán: [50, 60) ; [60, 70) ; [70,80) ; [80, 90) ; [90, 100) Como la varable es edad es bastante adecuado medrla cada 10 años. Además no queda nngún ntervalo con frecuenca 0 4) Determnar las frecuencas en cada ntervalo EDAD EDADES DE LAS PERSONAS JUBILADAS m f f r f r% F F r F r% [50,60) , ,20 20 [60, 70) , ,56 56 [70, 80) , ,84 84 [80, 90) , ,96 96 [90,100) , Leeremos un ntervalo: Entre 60 y menos de 70 años, se entrevstaron 18 personas, que corresponden al 36% de los entrevstados. De menos de 70 años fueron entrevstadas 28 personas que corresponden a un 56% del total. Observe que cada dato entra en un únca clase. S nos quedan clases con frecuenca 0, se trata de dstrbur los datos en menos cantdad de ntervalos. La cantdad y el ancho de los ntervalos de clase queda, en general, a crtero del nvestgador. Algunos paquetes de sofware tenen estos valores como sugerdos y otros le solctan que usted ngrese los valores. REPRESENTACIÓN GRÁFICA DE DATOS NUMÉRICOS Dagrama de tallos y hojas: S tenemos un conjunto de datos x,..., 1, x2 xn donde cada número está formado al menos por 2 dígtos, el dagrama de tallos y hojas es una buena presentacón vsual nformatva del conjunto de datos y nos permte una manera relatvamente fácl de ordenarlos Los sguentes datos son las edades de una muestra aleatora de 50 personas jubladas entrevstadas durante el mes novembre de Consderaremos como tallos a las decenas y como hojas a las undades:
4 TALLO HOJAS FRECUENCIA f S ordenamos las hojas, los datos nos quedan ordenados de menor a mayor Actvdad con R > edad1<c(71,65,66,61,54,93,60,86,70,70,73,73,55,63,56,62,76,54,82,79,76,68,53,58,80,85, 56,61,61,64,62,90,69,76,79,77,54,64,74,65,65,61,56,63,80,56,71,79,84) > stem(edad1) El dagrama de tallos y hojas tene dos ventajas fundamentales: 1. El dagrama de tallos y hojas es más fácl de construr a mano 2. En cada ntervalote clase proporcona más nformacón que un hstograma debdo a que el tallo y la hoja proporconan el dato. Una manera de grafcar los datos senclla es el Dagrama de puntos. con R Se pde en R > edad1<-c(71,65,66,61,54,93,60,86,70,70,73,73,55,63,56,62,76,54,82,79,76,68,53,58,80,85, 56,61,61,64,62,90,69,76,79,77,54,64,74,65,65,61,56,63,80,56,71,79,84)
5 > strpchart(edad1,method="stack", offset=1, at=0) Edad de los jublados encuestados en Mendoza nov/2008 frecuenca edad HISTOGRAMAS La varable de nterés se representa a lo largo del eje horzontal. El eje vertcal representa el número, proporcón o porcentaje de observacones por ntervalo de clase. Los hstogramas son gráfcas de barras vertcales, en los cuales se construyen las barras rectangulares en las fronteras de cada clase. No se pueden utlzar hstogramas para comparar dstntos grupos de datos, porque la superposcón de las barras vertcales dfcultaría la nterpretacón. HISTOGRAMA DE FRECUENCIA ABSOLUTA PORCENTUAL Edad de los jublados encuestados en Mendoza.Nov 2008 Frecuenca absoluta marca de clase
6 Para realzar este gráfco en Excel se sguen los sguentes pasos: Paso 1: En la barra de menú se hace clc en asstente para gráfcos y se seleccona en Tpos de gráfcos - Subtpo de gráfco columna luego abajo se hace clc en sguente. Paso 2: En la parte superor se seleccona Sere abajo en Rótulos de ejes de categorías (x) se selecconan las celdas de la marca de clase. Paso3: Luego en sguente se va a títulos y se escrben los títulos correspondentes. Luego fnalzar Paso4: Hasta ahora el gráfco tene las barras separadas lo cuál es un error ya que el tpo de varable es cuanttatva. Para lograr que las barras se junten hay que pararse en las barras hacer doble clc aparece formato en sere de datos - Opcones ancho de rango -0 Paso 5: Observando el gráfco hay otro error que larga Excel por defecto y es la ampltud en el eje x de los ntervalos, este no debe tomarse como eje de abcsas ya que entre el cero absoluto y la prmera marca de clase hay una dstanca mayor al resto de los ntervalos. Para soluconar esto se anexan dos ntervalos uno antes del prmer ntervalo y otro después del últmo con frecuenca 0. Entonces se hace una doble ralla entre el 0 del eje y el 45 para mostrar que la dstanca es dferente.
7 Actvdad con R Paso1: Se cargan los datos > edad1<c(71,65,66,61,54,93,60,86,70,70,73,73,55,63,56,62,76,54,82,79,76,68,53,58,80,85, 56,61,61,64,62,90,69,76,79,77,54,64,74,65,65,61,56,63,80,56,71,79,84) Paso 2: Se pde el H stograma >hst(edad1) S se quere ponerle título y nombrar los ejes >hst(edad1,ylab="frecuenca",man="e dadde los jublados encuestados en Mendoza nov/2008") S se quere dar color se coloca col= green >hst(edad1,ylab="frecuenca",man="e dadde los jublados encuestados en Mendoza nov/2008",col= green ) F te: elaboracón propa.nov 2008 Autores: Llana Marcon / A drana D A melo
8 HISTOGRAMA PORCENTUAL ACUMULADO Edad de las personas jubladas Frecuencas acumuladas Edad POLÍGONOS La varable de nterés se representa a lo largo del eje horzontal. En el eje vertcal se representa el número, proporcón o porcentaje de observacones por ntervalo de clase. La marca de clase, o sea el punto medo del ntervalo de clase, representa los datos de esa clase. En estos puntos se marca la frecuenca (absoluta, relatva o porcentual) y luego se unen con líneas rectas. El polígono es una representacón de la forma de dstrbucón de los datos. En el caso de que no se utlcen las frecuencas acumuladas, y dado que el área debajo de la curva debe corresponder al 100%, es necesaro conectar el prmero y el últmo puntos medos con el eje horzontal. Esto se logra conectando el prmer punto medo con el punto medo de una clase precedente fctca que tenga 0 (o 0%) de observacones y de manera smlar en el últmo punto medo observado, se conecta con una clase sucesva fctca con 0 (o 0%) de observacones. Cuando se construyen polígonos, el eje vertcal debe mostrar el cero real (orgen) a fn de no deformar o representar en forma ncorrecta el carácter de los
9 datos. El eje horzontal no necesta especfcar el punto cero para la varable de nterés. (Se suele ndcar una nterrupcón //) HISTOGRAMA Y POLÍGONO Edad de los jublados encuestados en Mendoza. Nov 2008 frecuenca absoluta marca de clase Paso: Al gráfco del Hstograma se le agrega una sere gual a la anteror van a aparecer dos barras de dstnto color se hace doble clc en ellas y se elge la opcón de cambar el gráfco por el tpo líneas y aparece el polígono de frecuencas. Hstograma y Polígono de frecuenca acumulado El polígono de frecuenca acumulada se llama OJIVA. La ojva no se une con el eje horzontal. HISTOGRAMA ACUMULADO Y OJIVA 150% Edad de los jublados encuestados en Mendoza. Nov % 50% 0%
10 HISTOGRAMA ACUMULADO Y OJIVA MENOR QUE Vamos a hacer algunas lecturas en la ojva menor que : La línea punteada la trazamos desde el 50% hasta que corta a la ojva. Desde allí bajamos y lo leemos de la sguente manera: El 50% de las personas entrevstadas tene 68 años o menos y el otro 50% tene 68 años o más
11 PROBLEMAS SOBRE LA PRESENTACIÓN DE DATOS 1- SUBJETIVIDAD EN LA SELECCIÓN DEL NÚMERO Y TAMAÑO DE LOS INTERVALOS DE CLASES Para conjuntos de datos que no son muy grandes, la seleccón partcular de un número determnado de clases o determnados límtes en relacón a otros, podría presentar una magen totalmente dstnta al lector, ya que se pueden ocasonar desplazamentos en la concentracón de los datos. Afortunadamente, cuando se aumenta el número de datos, estas alteracones afectan cada vez menos la concentracón de datos. 2- COMPARACIONES DE DATOS SOBRE UNA BASE RELATIVA El uso de frecuencas absolutas en los gráfcos comparatvos, en general, sería engañosa. Para estos gráfcos se utlzan las frecuencas relatvas o porcentuales. 3- DISTRIBUCIONES CON INTERVALOS DE CLASE ABIERTAS Las clases abertas presentan dfcultad para formar la gráfca y para calcular las meddas de resumen descrptvas que son útles para analzar los datos Ejemplo: SALARIOS INICIALES ESPERADOS PARA GRADUADOS SALARIO (EN $) N DE GRADUADOS Menos de 300$ 1 [300, 600) 16 [600, 900) 20 [900, 1200) ó más 4 3) FRONTERAS DE CLASE En la bblografía se utlza a veces dstntas maneras de expresar los límtes de clase Por ejemplo el ntervalo [300, 600) se puede hallar como a menos de 600 Lo mportante es que cada dato entre en una sola clase y no haya nnguna duda.
Slide 1. Slide 2 Organización y Resumen de Datos. Slide 3. Universidad Diego Portales. Tablas de Frecuencia. Estadística I
Slde 1 Unversdad Dego Portales Estadístca I Seccón II: Dstrbucones de Frecuenca y Representacón Gráfca Sgla: EST2500 Nombre Asgnatura: Estadístca I Slde 2 Organzacón y Resumen de Datos Como recordará,
Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.
Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco
Tema 1: Estadística Descriptiva Unidimensional
Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde
ESTADÍSTICA (GRUPO 12)
ESTADÍSTICA (GRUPO 2) CAPÍTULO II.-ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA.- DISTRIBUCIONES DE FRECUENCIAS DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA . DISTRIBUCIÓN
TEMA 1.- CONCEPTOS BÁSICOS
TEMA 1.- CONCEPTOS BÁSICOS 1.1.- Cuestones tpo test 1.- En las encuestas personales puede codfcarse, por ejemplo, con un cero las que son contestadas por una mujer y con un uno las que lo son por un varón.
ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor
el blog de mate de ada: ESTADÍSTICA pág. 1 ESTADÍSTICA La estadístca es la cenca que permte acer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que aorra tempo y dnero. Poblacón
Descripción de una variable
Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad
INTRODUCCIÓN. Técnicas estadísticas
Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad
4º DE ESO MATEMÁTICAS-B CURSO UNIDAD 14: ESTADÍSTICA
UNIDAD 14: ESTADÍSTICA INTRODUCCIÓN La presenca de la Estadístca es habtual en multtud de contextos de la vda real: encuestas electorales, sondeos de opnón, etc. La mportanca de la Estadístca en la socedad
LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)
LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN
Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.
ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas
UNIDAD 1: Tablas de frecuencias
UIDAD : Tablas de recuencas Cuando sobre una poblacón hemos realzado una encuesta o cualquer regstro para conocer los valores que toman las varables, nos encontramos ante una gran cantdad de datos que
Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema
Tema :Descrpcón de una varable Tema :Descrpcón de una varable. El método estadístco. Descrpcón de conjuntos de datos Dstrbucones de frecuencas. Representacón gráfca Dagrama de barras Hstograma. Meddas
Tema 6. Estadística descriptiva bivariable con variables numéricas
Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables
Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:
UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.
LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)
LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN
ESTADÍSTICA. Definiciones
ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una
Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia
MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd
GUÍA DE APOYO AL APRENDIZAJE N 2
GUÍA E APOYO AL APREIZAJE Meddas de Tendenca Central ó de Resumen Las meddas de resumen son valores de la varable que permten resumr la normacón que hay en una tabla undamentalmente estas meddas se usan
Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos
Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos
Medidas de Variabilidad
Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces
Estadística Unidimensional: SOLUCIONES
4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas
Ejercicios y Talleres. puedes enviarlos a
Ejerccos y Talleres puedes envarlos a klasesdematematcasymas@gmal.com www.klasesdematematcasymas.com Hallar: 1. Altura Mayor: 1,93. Altura Menor: 1, 3. Rango: 1,93-1, 0,7 4. Formar ntervalos: m Rango 5.
7ª SESIÓN: Medidas de concentración
Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr
Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.
UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas
LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas
Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:
Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón
ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS
IES ÍTACA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS HOJA 18: ESTADÍSTICA 1. El número de hermanos de los alumnos de una clase es el sguente: 1 3 1 1 1 1 1 1 1 1 3 1 3 5 a)
GUÍA DE APOYO AL APRENDIZAJE N 1
GUÍA DE APOYO AL APRENDIZAJE N 1 1.- Dencones de conceptos báscos. Estadístca: la estadístca es un conjunto de métodos y procedmentos que srven para recolectar, organzar y presentar los datos obtendos,
CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información
IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.
Introducción a la Física. Medidas y Errores
Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 Págna 0 PRACTICA Meda y desvacón típca 1 Las edades de los estudantes de un curso de nformátca son: 17 17 18 19 18 0 0 17 18 18 19 19 1 0 1 19 18 18 19 1 0 18 17 17 1 0 0 19 0 18 a) Haz una tabla
4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.
4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
Prueba de Evaluación Continua
Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas
Medidas de centralización
1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos
Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1
Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar
EJERCICIOS RESUELTOS TEMA 2
EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;
ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística
ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es
-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:
-.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez
Problema La sguente tabla epresa la estatura en cm. de soldados: Talla 5 56 60 6 68 6 80 8 88 Soldados 6 86 50 8 95 860 85 6 9 a) Haz un hstograma que represente la estatura en metros de los soldados.
SEMANA 13. CLASE 14. MARTES 20/09/16
SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.
EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3.
EJERCICIOS: Tema 3 Los ejerccos señalados con.r se consderan de conocmentos prevos necesaros para la comprensón del tema 3. Ejercco 1.R Dos bblotecas con el msmo fondo bblográfco especalzado ofrecen las
MEDIDAS DESCRIPTIVAS
Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento
Trabajo y Energía Cinética
Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..
APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES
APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral
8 MECANICA Y FLUIDOS: Calorimetría
8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS
ESTADÍSTICA (GRUPO 12)
ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.
1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...
TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas
5ª Parte: Estadística y Probabilidad
ª Parte: Estadístca y Probabldad. Las notas de los alumnos de una clase son:,,,, 6, 7,,,,,,,, 7,,,, 6,, Haz una tabla de frecuencas. Solucón Varable Frecuencas absolutas Frecuencas relatvas estadístca
MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.
TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,
Gráficos Estadísticos
Gráficos Estadísticos Una vez realizada la recolección de datos, principalmente cuando superan un número de 20 observaciones, es recomendable examinarlos en forma resumida mediante tablas y gráficas adecuadas.
14 EJERCICIOS RESUELTOS ESTADÍSTICA
1 EJERCICIOS RESUELTOS ESTADÍSTICA Pág. 1 Meda y desvacón típca 1 El número de faltas de ortografía que cometeron un grupo de estudantes en un dctado fue: 0 1 0 1 0 0 1 1 5 1 5 0 1 0 0 0 0 1 1 0 0 0 5
Relaciones entre las tablas
Relacones entre las tablas Relacones entre las tablas Access 2013 Establecer una relacón entre dos tablas Los dstntos tpos de relacones entre tablas Establecer una relacón entre las tablas de la base de
SEGUNDA PARTE RENTAS FINANCIERAS
SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de
Estadística Descriptiva y Analisis de Datos con la Hoja de Cálculo Excel. Números Índices
Estadístca Descrptva y Analss de Datos con la Hoja de Cálculo Excel úmeros Índces úmeros Índces El número índce es un recurso estadístco para medr dferencas entre grupos de datos. Un número índce se puede
CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso
CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que
1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.
º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN
Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de
ESTADÍSTICA DESCRIPTIVA
Estadístca descrptva. ESTADÍSTICA DESCRIPTIVA POBLACIÓN Y MUESTRA. VARIABLES ESTADÍSTICAS DISTRIBUCIÓN DE FRECUENCIAS DE UNA MUESTRA AGRUPACIÓN DE DATOS REPRESENTACIONES GRÁFICAS DE LAS MUESTRAS PRINCIPALES
PyE_ EF1_TIPO1_
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE
2 Dos tipos de parámetros estadísticos
Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,
CLAVE - Laboratorio 1: Introducción
CLAVE - Laboratoro 1: Introduccón ( x )( x ) x ( xy) x y a b a b a a a ( x ) / ( x ) x ( x ) x a b a b a b ab n! n( n 1)( n 2) 1 0! 1 x x x 1 0 1 (1) Smplfque y evalúe las sguentes expresones: a. 10 2
Variables Aleatorias
Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.
Estadísticos muéstrales
Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ C. DE LA ESCUELA PREPARATORIA PROBLEMARIO DE ESTADÍSTICA MÓDULO I. REPRESENTACIÓN DE DATOS MÓDULO II. MEDIDAS DE TENDENCIA CENTRAL ELABORADO
Variables Aleatorias
Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.
INGENIERO EN COMPUTACION TEMA 1.2: PRESENTACIÓN GRÁFICA DE DATOS
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA 1.2: PRESENTACIÓN GRÁFICA DE DATOS ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: Agosto de 2016
LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS
Unversdad Católca Los Ángeles de Cbote LECTURA 0: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS TEMA : DISTRIBUCION DE FRECUENCIAS: DEFINICIÓN Y CLASIFICACIÓN
4) Ahora elaboremos la tabla de distribución de frecuencias: TABLA DE DISTRIBUCIÓN DE FRECUENCIAS DE LOS PESOS DE LOS ESTUDIANTES MERU CALIDAD.
APELLIDOS Y NOMBRES:... EJERCICIO: Se han regstrado dferentes pesos de los alumnos del segundo grado de una Insttucón Educatva en klogramos. 40 41 42 50 40 48 41 43 39 40 47 46 49 49 50 39 50 48 42 45
Clase 25. Macroeconomía, Sexta Parte
Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos
Medidas de Tendencia Central y de Variabilidad
Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.
Agrupa los datos en intervalos de amplitud 8. Elabora una tabla similar a la anterior !!!""#""!!!
Undad 15 REPASO DE ESTADÍSTICA! 11 Resuelve tú ( Pág "#$ ) sdo: Las puntuacones de una prueba de ntelgenca aplcada a los 75 alumnos anterores han 87 105 88 103 114 15 108 107 118 114 19 100 106 113 105
Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis
Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ
a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?
EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600
TEMA 6: TRATAMIENTO DE DATOS. OPERACIONES CON CAL.
TEMA 6: TRATAMIENTO DE DATOS. OPERACIONES CON CAL. 1. LAS FÓRMULAS DE OPENOFFICE CALC. 2. REFERENCIAS ABSOLUTAS, RELATIVAS Y MIXTAS. 3. PEGADO ESPECIAL. 4. FUNCIONES EN OPENOFFICE CALC. 5. ANÁLISIS ESTADÍSTICO
Estadística Descriptiva
Estadístca Descrptva ÍDICE ESTADÍSTICA DESCRIPTIVA. Poblacón y Muestra 4. Varables estadístcas 4 3. Frecuencas 5 4. Dstrbucones 7 5. Representacón gráfca 5. De caracteres cuanttatvos 5.. De varables estadístcas
3 - VARIABLES ALEATORIAS
arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr
Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.
Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento
Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística
Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar
Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico
Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología
Media es la suma de todas las observaciones dividida por el tamaño de la muestra.
Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,
Tema 1: Análisis de datos unidimensionales
Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones
Figura 1
5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto
COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN
COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan
INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES)
ACTIVIDADES DE AUTOEVALUACIÓ DE LA UIDAD ESTADÍSTICA. (SOLUCIOES) 1. D, en cada caso, cuál es la varable que se quere estudar y especfca de qué tpo es: Tempo dedcado a las tareas doméstcas por parte de
SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.
Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón
Modelos lineales Regresión simple y múl3ple
Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una
9Soluciones a los ejercicios y problemas
38 S a todos los datos de una dstrbucón le sumamos un msmo número, qué le ocurre a la meda? Y a la desvacón típca? Y s multplcamos todos los datos por un msmo número? Llamamos a al valor sumado a cada
Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva
Descrpcón de datos: Estadístca descrptva undmensonal Estadístca descrptva Objetvos: Ordenar, clasfcar, resumr grandes conjuntos de datos de modo que puedan ser fáclmente nterpretables Defncones báscas: