1. Teorema Fundamental del Cálculo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Teorema Fundamental del Cálculo"

Transcripción

1 1. Teorema Fundamental del Cálculo Vamos a considerar dos clases de funciones, definidas como es de otras funciones Funciones es. F (t) = t a f(x)dx donde f : R R, y F (t) = f(x, t)dx A donde f : R n R R l primer tipo de es son las es indefinidas, y tienen para la de Lebesgue un comportamiento similar al teorema fundamental del cálculo demostrado para la de Riemann. l segundo tipo de funciones se llaman es paramétricas, y estudiaremos condiciones para determinar la continuidad y la derivabilidad de F (t). b La notación f(x)dx corresponde a f(x)dx si a b, y como en la de Riemann a [a,b] de funciones de una variable, si a > b se entiende b a f(x)dx = a b f(x)dx

2 es. Teorema (Fundamental del Cálculo). Sea I un intervalo real, y sea f : I R una función integrable Lebesgue en I Sea a I fijo, y definamos la función F (t) = t a f(x)dx para todo t I. ntonces F es continua en I. Además, si f es continua en un punto t 0 I entonces F es derivable en t 0 y F (t 0 ) = f(t 0 ) Demostración: (Saltar al final de la demostración) Sea b I fijo, b > a, y vamos a ver que F es continua en b. Sea {s } una sucesión en I que converja a b, y consideremos las funciones características χ [a,s ](x) Si x [a, b), como s b, existe algún 0 tal que para todo 0 se tiene s > x, y por tanto χ [a,s ](x) = 1 = χ [a,b) (x) Y si x [a, b], también como s b, existe 1 tal que para todo 1 se tiene s < x y por tanto χ [a,s ](x) = 0 = χ [a,b) (x) s decir, χ [a,s ](x) χ [a,b) (x) para todo x I excepto quizá para el punto b Sea entonces f = fχ [a,s ] f son funciones medibles, por ser producto de funciones medibles.

3 Para todo x I, x b, se tiene lim f (x) = f(x)χ [a,b) (x) f (x) f(x) para todo x I y para todo. Funciones es. Como f es integrable por hipótesis, podemos aplicar el teorema de convergencia dominada a la sucesión f, y tenemos fχ [a,b) = lim f = lim fχ [a,s ] es decir I F (b) = lim I fχ [a,s ] = lim F (s ) I por tanto F es continua en b. La segunda parte de la demostración se puede hacer de forma análoga a la del teorema fundamental del cálculo para la de Riemann. Sea t 0 tal que f es continua en t 0. ntonces dado ɛ > 0 existe δ > 0 tal que si t I y t t 0 < δ, entonces f(t) f(t 0 ) < ɛ, o equivalentemente, si t I y t t 0 < δ, se tiene f(t 0 ) ɛ < f(t) < f(t 0 ) + ɛ

4 es. Si t t 0 se tiene entonces (f(t 0 ) ɛ)(t t 0 ) y si t t 0 se tiene (f(t 0 ) ɛ)(t 0 t) t t 0 f(x)dx (f(t 0 ) + ɛ)(t t 0 ) t0 t f(x)dx (f(t 0 ) + ɛ)(t 0 t) n cualquier caso (poniendo b f = a f) a b t t (f(t 0 ) ɛ) 0 f(x)dx (f(t 0 ) + ɛ) t t 0 o equivalentemente t t ɛ 0 f(x)dx f(t 0 ) ɛ t t 0 si t I y 0 < t t 0 < δ t Como f(x)dx = F (t) F (t 0 ), tenemos que si t I y 0 < t t 0 < δ, t 0 F (t) F (t 0 ) f(t 0 ) t t 0 ɛ

5 es. es decir, F (t) es derivable en t 0, y F (t 0 ) = lim t t0 F (t) F (t 0 ) t t 0 = f(t 0 ) (Volver al enunciado)

6 jercicio: Demostrar la primera parte del teorema cuando b a Funciones es. Observación: Si f no es continua en ningún punto, la segunda mitad del teorema no tiene sentido. Sin embargo uno de los teoremas importantes de la teoría de integración es que de hecho F (s) = f(s) en casi todo punto, tanto si f es continua como si no. Pero esto no podemos demostrarlo ahora.

7 2. Funciones es. Vamos a estudiar ahora algunas aplicaciones a las llamadas es paramétricas. Consideramos una familia de funciones dependientes de un parámetro real t I R, del tipo f t (x, y) = sen(t(x 2 + y 2 )) para x R n. sta familia de funciones se puede describir como una función en I f : I R (x, t) f(x, t) = f t (x) de modo que para cada valor de t I tenemos una función de varias variables f(., t) : R x f(x, t) Y también para cada x tenemos una función real de una variable real f(x,.) : I R t f(x, t) Llamamos paramétrica a la función F : I R definida por F (t) = f(x, t)dx

8 cuando esta existe Para este tipo de funciones se pueden demostrar los dos teoremas siguientes, sobre continuidad y derivabilidad. Funciones es.

9 es. Teorema (Continuidad de las es paramétricas). Sea I un intervalo real, R n un conjunto medible Lebesgue, y f : I R verificando: a) Para cada t I, la función f(., t) es medible Lebesgue, y existe una función g : R integrable Lebesgue tal que para todo t I f(x, t) g(x) para casi todo x b) Para casi todo x, la función f(x,.) es continua en I ntonces la función F (t) = f(x, t)dx es continua en I Demostración: (Saltar al final de la demostración) n primer lugar, F está bien definida, ya que la condición (a) nos asegura que para todo t I la función f(., t) : R es integrable. Para probar que F es continua, sea a I fijo, y sea {t } una sucesión de puntos de I que tienda a a. Por la condición (b), existe un subconjunto Z con m(z) = 0, tal que para todo x \ Z las funciones f(x,.) : I R son continuas. ntonces, si x \ Z, se tiene f(x, t ) f(x, a). s decir, la sucesión de funciones {f(., t )} tiende a la función f(., a) en

10 es. cada punto de \ Z. Así pues, tenemos una sucesión de funciones medibles, {f(., t )} N, que converge en casi todo punto de a una función f(., a), y que verifican para todo N que f(x, t ) g(x) para casi todo x, con g una función integrable en. Aplicando el Teorema de Convergencia Dominada, f(x, a)dx = lim f(x, t )dx es decir, F (a) = lim F (t ). Por tanto F es continua en a. (Volver al enunciado)

11 es. Teorema ( ). Sea I un intervalo en R, R n un conjunto medible Lebesgue, y f : I R verificando: a) Para todo t I la función f(., t) es medible en, y existe t 0 I tal que f(., t 0 ) es integrable en b) Para casi todo x la función f(x,.) es de clase C 1 en I c) xiste g : R integrable Lebesgue en tal que para todo t I y para casi todo x se tiene df (x, t) g(x) dt ntonces la función F (t) = f(x, t)dx es de clase C 1 en I, y F (t) = df (x, t)dx dt Demostración: (Saltar al final de la demostración) Primero vamos a ver que F está bien definida, es decir, que las funciones f(., t) son integrables.

12 es. Por (b), existe un conjunto Z 0 con m(z 0 ) = 0, tal que las funciones f(x,.) : I R son de clase C 1 para todo x \ Z 0. Por (c), existe un conjunto Z 1 con m(z 1 ) = 0 y tal que para todo x \ Z 1 se tiene df (x, t) dt g(x) para todo t I donde g es una función integrable. Sea t 0 I tal que f(., t 0 ) es integrable, según se indica en el enunciado. Y sea t I otro punto de I, fijo. Para todo x \ (Z 0 Z 1 ), podemos aplicar el teorema del valor medio a f(x,.) en [t 0, t], de modo que f(x, t) f(x, t 0 ) = df dt (x, µ)(t t 0) para algún µ [t 0, t], luego f(x, t) f(x, t 0 ) + df (x, µ) dt t t 0 f(x, t 0 ) + g(x) t t 0 y la función f(., t 0 ) + g(.) t t 0 ) es integrable en. Por tanto f(., t) es integrable.

13 Veamos ahora que df (., t) son medibles, para cada t I dt Sea t I fijo; sea h 0, y definamos las funciones g (., t) : R Funciones es. g (x, t) = f(x, t + h ) f(x, y) h Las funciones g (., t) son medibles, por ser cociente de funciones medibles, y para todo x \Z 0 se tiene g (x, t) df df (x, t) Por tanto (., t) es medible (ĺımite en casi todo punto de una dt dt sucesión de funciones medibles) Y por último veamos que F es derivable y que se verifica F df (t) = (x, t)ds dt calculando esta. Las funciones g (., t) verifican g (x, t) = f(x, t + h ) f(x, t) h df (x, µ) h dt h g(x)

14 es. para todo x \ (Z 0 Z 1 ) Aplicando el Teorema de Convergencia Dominada, df dt (x, t)dx = lim F (t + h ) F (t) g (x, t)dx = lim h luego efectivamente F es derivable, y además F df (t) = (x, t)dx dt Que F es de clase C 1 se deduce del teorema anterior. (Volver al enunciado)

15 es. jercicios: 1. Se define la función Gamma de uler como Γ(t) = 0 e x x t 1 dx para t > 0. Comprobar que Γ(t) está bien definida, y es una función continua en t (0, ) (Sugerencia: para aplicar el teorema de continuidad, considerar I un intervalo cualquiera [a, b] con a > 0) Comprobar también que para todo t > 0, Γ(t + 1) = tγ(t), de dónde se deduce que para todo n N, Γ(n + 1) = n! Demostrar que Γ es infinitamente diferenciable y que para cada n N Γ (n) (t) = 0 x t 1 (log x) n e x dx 2. n los siguientes casos comprobar que φ está bien definida, y calcular φ (t): a) φ(t) = c) φ(t) = ln(x 2 + t 2 )dx; t 0 b) φ(t) = te tx dx d) φ(t) = π e xt x sen xdx x t 1 dx (t > 1) ln x

16 3. Calcular las es siguientes, derivando con respecto al parámetro: Funciones es. a) 0 1 e tx xe x dx (t > 1) b) π/4 0 ln(1 + t cos 2 x) dx (t 0) cos 2 x

17 es. BIBLIOGRAFIA: Kennan T. Smith, Primer of Modern Analysis. Springer-Verlag (1983) J.A. Facenda - F.J. Freniche, Integración de funciones de varias variables. d. Pirámide (2002)

Espacio de Funciones Medibles

Espacio de Funciones Medibles Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos.

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos. Capítulo 6 Derivadas 61 Introducción En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos Definición 61 Sea I R, I, f :

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida

Más detalles

Convocatoria de Septiembre 9 de Septiembre de Nombre y Apellidos: (6 p.) 1) Se considera la función f : R R definida por

Convocatoria de Septiembre 9 de Septiembre de Nombre y Apellidos: (6 p.) 1) Se considera la función f : R R definida por Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre 9 de Septiembre de 26 Nombre y Apellidos: DNI: (6 p. Se considera la función f : R R definida

Más detalles

El Teorema de la Convergencia Dominada

El Teorema de la Convergencia Dominada Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el

Más detalles

Sucesiones y series de funciones

Sucesiones y series de funciones Sucesiones y series de funciones Renato Álvarez Nodarse Departamento de Análisis Matemático Facultad de Matemáticas. Universidad de Sevilla http://euler.us.es/ renato/ 8 de octubre de 2012 Sucesiones y

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Febrero 27 de Enero de 26 Nombre y Apellidos: DNI: 6.25 p.) ) Se considera la función f : [, ) R definida

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA25 Clase 5: Series de potencias. Operaciones con series de potencias. Series de potencias Elaborado por los profesores Edgar Cabello y Marcos González Cuando estudiamos las series geométricas, demostramos

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

Las funciones sen 1 x, cos 1 x y otros ejemplos relacionados c

Las funciones sen 1 x, cos 1 x y otros ejemplos relacionados c Las funciones sen 1 x, cos 1 x y otros ejemplos relacionados c Juan Carlos Ponce Campuzano j.ponce@uq.edu.au UQ 13 de abril de 2015 1 Contenido 1. Introducción 5 2. Análisis 7 3. Ejemplos 11 3.1. Ejemplos

Más detalles

9. Aplicaciones al cálculo de integrales impropias.

9. Aplicaciones al cálculo de integrales impropias. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 26. 85 9. Aplicaciones al cálculo de integrales impropias. Las aplicaciones de la teoría de Cauchy de funciones analíticas para el cálculo de

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas Tema 4 Aplicaciones de las Derivadas 4.1 Introducción Repasaremos en este Tema algunas de las aplicaciones fundamentales de las derivadas. Muchas de ellas son ya conocidas por tratarse de conceptos explicados

Más detalles

Sucesiones y series de funciones

Sucesiones y series de funciones A Sucesiones y series de funciones Convergencia puntual y convergencia uniforme. Condición de Cauchy y criterio de Weierstrass. Teoremas sobre continuidad, derivabilidad e integrabilidad del límite de

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

1. Teorema de Fubini. Teorema de Fubini.

1. Teorema de Fubini. Teorema de Fubini. 1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán

Más detalles

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Nota Puntos Nota Ex. Nota clase Nota Final Universidad Carlos III de Madrid Departamento de Economía Examen Final de Matemáticas I 16 de Junio de 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: CÁLCULO I (Examen Final) CONVOCATORIA: FEBRERO FECHA: de Enero de 3 Duración del examen: 3 horas Fecha publicación notas: 8--3

Más detalles

todos los puntos de U, y las funciones df : U R m son continuas en x, entonces F es diferenciable en x.

todos los puntos de U, y las funciones df : U R m son continuas en x, entonces F es diferenciable en x. clase C 1 clase C p 1. clase C 1 Consideremos U un abierto de R n, y F : U R m. Si para cada x U existe df (x), podemos definir una función df : U R m df (x) = ( 1 (x),..., m (x)) y tiene sentido estudiar

Más detalles

Derivadas de las funciones trigonométricas

Derivadas de las funciones trigonométricas Tema 8 Derivadas de las funciones trigonométricas Completamos en este tema la derivación de las principales funciones reales de variable real que venimos manejando, estudiando la derivabilidad de las funciones

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Tema 4.3: Desarrollo de Taylor. Equivalencia entre analiticidad y holomorfía. Fórmula de Cauchy para las derivadas

Tema 4.3: Desarrollo de Taylor. Equivalencia entre analiticidad y holomorfía. Fórmula de Cauchy para las derivadas Tema 4.3 Desarrollo de Taylor. Euivalencia entre analiticidad y holomorfía. Fórmula de Cauchy para las derivadas Facultad de Ciencias Experimentales, Curso 008-09 E. de Amo Tal y como ya anunciábamos en

Más detalles

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo Derivadas laterales Se define la derivada por la izquierda de f(x) en el punto x = a : Se define la derivada por la derecha de f(x) en el punto x = a : A ambas derivadas se les llama derivadas laterales.

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2) UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 21 de Enero de 2014 Duración del Examen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 23 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

INTEGRALES. EL PROBLEMA DEL ÁREA II

INTEGRALES. EL PROBLEMA DEL ÁREA II INTEGRALES. EL PROBLEMA DEL ÁREA II En esta relación de ejercicios vamos a practicar el cálculo de integral es definidas. Para realizar el cálculo de la integral definida aplicaremos el Teorema Fundamental

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS SUCESIONES DE FUNCIONES En primer curso estudiamos el concepto de convergencia de una sucesión de números. Decíamos que dada una sucesión de números reales (x n ) n=1 R, ésta

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

5.1. Límite de una Función en un Punto

5.1. Límite de una Función en un Punto Capítulo 5 Continuidad 51 Límite de una Función en un Punto Definición 51 Sean (X, d) y (Y, ρ) espacios métricos, D X, f : D Y una función, a X un punto de acumulación de D y b Y Decimos que b es el límite

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 05 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

Ecuaciones Diferenciales Ordinarias. Método Iterativo Teorema de Picard

Ecuaciones Diferenciales Ordinarias. Método Iterativo Teorema de Picard Apuntes de Ecuaciones Diferenciales Ordinarias II Método Iterativo Teorema de Picard Octavio Miloni 1 Soluciones por Iteración Vamos a resolver ecuaciones diferenciales a partir de un esquema iterativo,

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

Series de potencias y de Fourier

Series de potencias y de Fourier Capítulo 2. Series de potencias y de Fourier En este capítulo estudiaremos dos casos particulares, pero muy importantes, de series de funciones: las series de potencias y las series de Fourier. Ambas series

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Teoría Tema 3 Teoremas de derivabilidad

Teoría Tema 3 Teoremas de derivabilidad página 1/10 Teoría Tema 3 Teoremas de derivabilidad Índice de contenido Teorema de Rolle...2 Teorema del valor medio de Lagrange (o de los incrementos finitos)...4 Teorema de Cauchy...6 Regla de L'Hôpital...8

Más detalles

f n (x), donde N N n=1 f n(x), donde x A R,

f n (x), donde N N n=1 f n(x), donde x A R, ANÁLISIS MATEMÁTICO BÁSICO. SERIES DE FUNCIONES Las series de funciones son un caso particular, especialmente importante, de sucesiones de funciones. Ya hemos estudiamos las series de Taylor. Si consideramos

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de Una serie de potencia es aquella que tiene la forma c

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 26 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

1. Area de una Superficie

1. Area de una Superficie 1. Area de una Superficie Integrales de La idea para calcular el área de una superficie es sub-dividirla en regiones bastante pequeñas como para suponer que son planas, y aproximar el valor del área como

Más detalles

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0.

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre de Septiembre de 008 Nombre y Apellidos: DNI: (6.5 p.) ) Se considera la función f : [0,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 0 de Enero de 015 APELLIDOS: Duración del Examen: horas NOMBRE: DNI: Titulación:

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables F. Alvarez y H. Lugo Universidad Complutense de Madrid 23 Noviembre, 2011 Campo escalar Denominamos campo escalar a una función f : R n R, es decir, una función cuyo dominio

Más detalles

Funciones reales de varias variables.

Funciones reales de varias variables. Tema 4 Funciones reales de varias variables. 4.1. El espacio euclídeo R n. Definición 4.1.1. Se define el producto escalar entre vectores de R n como la aplicación: ( ) : R n R n R : x y = (x 1, x 2,...,

Más detalles

Superficies. Conceptos generales

Superficies. Conceptos generales Repaso Superficies. Conceptos generales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 REPASO: Superficies. Conceptos generales 1. Conceptos generales Definición

Más detalles

EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 2006

EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 2006 EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 6 Problema ( ptos) Considera un experimento aleatorio con espacio muestral Ω. a) Definir una σ-álgebra A sobre Ω. b) Dar

Más detalles

INTEGRALES. EL PROBLEMA DEL ÁREA I

INTEGRALES. EL PROBLEMA DEL ÁREA I INTEGRALES. EL PROBLEMA DEL ÁREA I Ejercicio : En este ejercicio vamos a practicar el cálculo de la integral indefinida haciendo uso de la integral inmediata: (f(x)) n f (x)dx n = (f(x))n+ + K (K constante)

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Parte 4: Teoremas de convergencia.

Parte 4: Teoremas de convergencia. Parte 4: Teoremas de convergencia. Como siempre, si no se dice lo contrario, se supone que (, M, µ) es un espacio de medida y trabajamos con funciones de dominio y recorrido contenido en C o R o R. Empezamos

Más detalles

Cálculo diferencial DERIVACIÓN

Cálculo diferencial DERIVACIÓN DERIVACIÓN Definición de límite Entorno Definición. Se le llama entorno o vecindad de un punto a en R, al intervalo abierto (a - δ, a + δ ) = {a a - δ < x < a + δ }, en donde δ es semiamplitud a radio

Más detalles

Cálculo I. Índice Derivada. Julio C. Carrillo E. * 1. Introducción La derivada Derivadas de orden superior

Cálculo I. Índice Derivada. Julio C. Carrillo E. * 1. Introducción La derivada Derivadas de orden superior 3.1. Derivada Julio C. Carrillo E. * Índice 1. Introducción 1 2. La derivada 3 3. Derivadas de orden superior 18 4. Conclusiones 19 * Profesor Escuela de Matemáticas, UIS. 1. Introducción El término derivabilidad

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Es decir, tenemos una función continua en el intervalo [2, 3] donde signo de f(2) signo de f(3).

Es decir, tenemos una función continua en el intervalo [2, 3] donde signo de f(2) signo de f(3). TEOREMA DE BOLZANO: Probar que la ecuación x 3-4x - 2 = 0 tiene alguna raíz real, aproximando su valor hasta las décimas. Consideramos la función f(x) = x 3-4x - 2 la cual es continua por ser polinómica.

Más detalles

BORRADOR. Series de potencias y de funciones Sucesiones de funciones

BORRADOR. Series de potencias y de funciones Sucesiones de funciones Capítulo 5 Series de potencias y de funciones 5.1. Sucesiones de funciones En los dos últimos capítulos de la asignatura, deseamos estudiar ciertos tipos de series de funciones, es decir, expresiones sumatorias

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas. Curso 0/0. 0 de Junio de 0 Apellidos:... Nombre:... Examen. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas, buscando un contraejemplo

Más detalles

Práctica 8 Series de Fourier

Práctica 8 Series de Fourier MATEMATICA 4 - Análisis Matemático III Primer Cuatrimestre de 8 Práctica 8 Series de Fourier. (**) a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior Tema 6 Ecuaciones diferenciales de orden superior Es frecuente, en numerosos problemas de mecánica o teoría de circuitos eléctricos, que las ecuaciones que rigen los procesos sean de orden mayor que uno.

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

Diferenciales de Orden Superior

Diferenciales de Orden Superior Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN www.fisicanet.com www.fisicaweb.com DERIVADA DE UNA FUNCIÓN fisicanet@interlap.com.ar Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función.

Más detalles