Última modificación: 1 de agosto de

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Última modificación: 1 de agosto de 2010. www.coimbraweb.com"

Transcripción

1 Contenido ECUACIONES DE MAXWELL 1.- Ecuaciones Maxwell. 2.- La contribución de Hertz. 3.- Campo electromagnético. Objetivo.- Al finalizar el tema, el estudiante será capaz de interpretar las ecuaciones de Maxwell y explicar, a partir de ellas, el carácter ondulatorio de los campos electromagnéticos variables en el tiempo. Última modificación: ió 1 de agosto de 2010 Tema 1 de: ANTENAS Y PROPAGACIÓN DE ONDAS Edison Coimbra G. 1

2 1.- Ecuaciones de Maxwell La teoría electromagnética permite investigar cómo varían los campos eléctrico (E) y magnético (H) en el espacio y en el tiempo. Todo se resume en las Ecuaciones de Maxwell, que abarcan las leyes de Gauss, Ampere y Faraday. A partir de estas ecuaciones, se determinan numerosas leyes y teoremas de importancia en Electrostática,, Magnetostática,, Electromagnetismo,, Teoría de Circuitos y Óptica. 2

3 Forma integral y diferencial de las ecuaciones James Clerk Maxwell. U de Cambridge D = εe B = μh J = σe ε: permitividad dieléctrica μ: permeabilidad magnética σ: conductividad 3

4 Ley de Gauss para campos E Establece que el flujo eléctrico (D) a través de una superficie cerrada (S) es proporcional a la carga encerrada (Q). Existen monopolos eléctricos. Ley de Gauss para campos H Establece que en una superficie cerrada (S), el número de líneas de campo de inducción magnética (B) que entran es igual al número de líneas que salen. No existen monopolos magnéticos, sólo dipolos. Aunque ya se han descubierto monopolos magnéticos microscópicos en estructuras glaciares, dando lugar a un flujo denominado magnetricidad. 4

5 Ley de Ampere - Maxwell Establece que la circulación de un campo H a lo largo de una curva cerrada (L) es igual a la corriente total (I total ) que fluye por la superficie limitada por dicha curva. La I total está compuesta por la corriente de conducción (J superficie) más la corriente de desplazamiento (variación del campo D superficie). Ley de Faraday Establece que un campo de inducción magnética (B) cambiante en el tiempo, que atraviesa la superficie (S) encerrada por una espira de longitud L, induce un campo eléctrico (E) alrededor de ella, produciendo un voltaje (fuerza electromotriz V) entre sus terminales. Al cerrar los terminales, una corriente que varia con el tiempo fluye en la espira. 5

6 2.- La contribución de Hertz El análisis de las ecuaciones de Maxwell determina que tanto E como H deben satisfacer una ecuación matemática idéntica a la ecuación de onda o de Helmholtz, que describe la propagación de ondas mecánicas; como la que se propaga en un cable, en un estanque, o el sonido. Esto significa que si en un instante el campo E (o H) ) tiene un valor determinado en un punto del espacio, en otro instante posterior, en otro punto del espacio, tendrá el mismo valor. Por consiguiente, los campos E y H se propagan en el espacio, y como no pueden existir separados, el campo electromagnético es el que realmente se propaga. Heinrich Hertz,, de la Escuela Politécnica de Karlsruhe, Alemania, se interesó en la teoría electromagnética propuesta por Maxwell, la reformuló matemáticamente y logró que las ecuaciones fueran más sencillas, y simétricas. Luego de muchos experimentos sin éxito, en 1887 construyó en laboratorio un dispositivo radiador y otro detector de las ondas electromagnéticas predichas por Maxwell. Ambos dispositivos son los prototipos de las actuales antenas transmisora y receptora, respectivamente 6

7 3.- Campo electromagnético Según Ampere - Maxwell, si un campo E varía con el tiempo, induce un campo H. Según Faraday, si un campo H cambia con el tiempo, induce un campo E. Por tanto, si en el espacio existe, digamos E, tiene que existir H, y viceversa. De esta manera, los fenómenos eléctricos y magnéticos adquieren una simetría perfecta I E E E E E v p c km/s H I H H H H Los dos campos deben existir al mismo tiempo, es decir, debe existir el campo electromagnético. Maxwell encontró que sus ecuaciones predecían el valor de la velocidad con la que se propaga el campo electromagnético: resultó ser igual a la velocidad de la luz. E y H se encuentran en todas partes y son perpendiculares entre si y perpendiculares a la dirección de propagación de la onda, formando una onda plana. Este tipo de onda se denomina TEM (Transversal l Electric Magnetic) ) FIN 7

Ecuaciones de Maxwell y Ondas Electromagnéticas

Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido LEYES DE GAUSS 1.- Ley de Gauss para campos eléctricos. 2.- Capacitancia. 3.- Ley de Gauss para campos magnéticos. éi 4.- Inductancia. Objetivo.- Al finalizar el tema, el estudiante será capaz

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com PROPAGACIÓN EN GUÍA DE ONDAS Contenido 1.- Introducción. 2. - Guía de ondas. 3.- Inyección de potencia. 4.- Modos de propagación. 5.- Impedancia característica. 6.- Radiación en guías de ondas. Objetivo.-

Más detalles

Ecuaciones de Maxwell y Ondas Electromagnéticas

Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Capítulo II. Ecuaciones de los circuitos magnéticos

Capítulo II. Ecuaciones de los circuitos magnéticos Capítulo II. Ecuaciones de los circuitos magnéticos 2.1. Intensidad de Campo magnético Los campos magnéticos son el mecanismo fundamental para convertir energía eléctrica de corriente alterna de un nivel

Más detalles

CAMPOS ELÉCTRICOS Y MAGNÉTICOS EN LA MATERIA

CAMPOS ELÉCTRICOS Y MAGNÉTICOS EN LA MATERIA CAMPOS ELÉCTRICOS Y MAGNÉTICOS EN LA MATERIA Prof O Contreras Al considerar campos dentro de materiales, el campo Eléctrico induce a nivel atómico, Dipolos de Momento Dipolar Eléctrico Si el número de

Más detalles

Facultad de Ciencia, Tecnología y Ambiente

Facultad de Ciencia, Tecnología y Ambiente Facultad de Ciencia, Tecnología y Ambiente Propagación de Ondas en Líneas de Transmisión Managua 26 de Septiembre de 2012 Contenido 1 Introducción 2 TEM 3 Factor de Velocidad 4 4 Velocidad de la Onda 5

Más detalles

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética.

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética. El electromagnetismo es una teoría de campos que estudia y unifica los fenómenos eléctricos

Más detalles

1. V F La fem inducida en un circuito es proporcional al flujo magnético que atraviesa el circuito.

1. V F La fem inducida en un circuito es proporcional al flujo magnético que atraviesa el circuito. Eng. Tèc. Telecom. So i Imatge TEORIA TEST (30 %) 16-gener-2006 PERM: 2 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto;

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

6. Planos de tierra. 6.1 Parámetros del suelo. 0 = 8,854 x 10 12 F m y el valor absoluto = r x 0.

6. Planos de tierra. 6.1 Parámetros del suelo. 0 = 8,854 x 10 12 F m y el valor absoluto = r x 0. 6. Planos de tierra 6.1 Parámetros del suelo En un radiador vertical, tan importante como el propio monopolo, o incluso más, es la tierra o el suelo sobre el que se apoya, ya que es el medio en el que

Más detalles

MAGNETISMO CAMPO MAGNÉTICO

MAGNETISMO CAMPO MAGNÉTICO MAGNETISMO El magnetismo es un fenómeno que manifiestan algunos cuerpos llamados imanes y es conocido desde la antigüedad, por la fuerza experimentada entre dos imanes o entre un imán y un metal. La fuerza

Más detalles

CUESTIONES ELECTROMAGNETISMO Profesor: Juan T. Valverde

CUESTIONES ELECTROMAGNETISMO Profesor: Juan T. Valverde 1.- Cómo son las líneas de fuerza del campo eléctrico producido por un hilo rectilíneo, infinito y uniformemente cargado? (Junio 2000) En cada punto el campo, sería perpendicular al cable pues cada elemento

Más detalles

MAGNETISMO CAMPO MAGNÉTICO

MAGNETISMO CAMPO MAGNÉTICO MAGNETISMO El magnetismo es un fenómeno que manifiestan algunos cuerpos llamados imanes y es conocido desde la antigüedad, por la fuerza experimentada entre dos imanes o entre un imán y un metal. La fuerza

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

Ecuaciones de Maxwell

Ecuaciones de Maxwell Ecuaciones de Maxwell Jana Rodriguez Hertz Cálculo 3 IMERL 2 de junio de 2011 introducción ecuaciones de Maxwell ecuaciones de Maxwell conjunto de ecuaciones en derivadas parciales que describen los fenómenos

Más detalles

Magnetismo. a) Movimiento de una partícula con velocidad perpendicular a un campo magnético uniforme...

Magnetismo. a) Movimiento de una partícula con velocidad perpendicular a un campo magnético uniforme... Magnetismo Índice 1. Introducción... 2. Fuerza magnética sobre una carga en movimiento...... 3. Corriente eléctrica 4. Fuerza magnética sobre un alambre portador de corriente.. 5. Movimiento de una carga

Más detalles

PRIMER MODELO DE EXAMEN PARA LA ASIGNATURA DE FÍSICA II. Elaborado por: Prof. Yuri Posadas Velázquez

PRIMER MODELO DE EXAMEN PARA LA ASIGNATURA DE FÍSICA II. Elaborado por: Prof. Yuri Posadas Velázquez PRIMER MODELO DE EXAMEN PARA LA ASIGNATURA DE FÍSICA II Elaborado por: Prof. Yuri Posadas Velázquez a) Responde correctamente las siguientes preguntas (Valor: 5 puntos): 1. Qué es una onda mecánica? 2.

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

Diseño y Ejecución de una Puesta a Tierra de Baja Resistencia. Qqueshuayllo Cancha, Wilbert Rene.

Diseño y Ejecución de una Puesta a Tierra de Baja Resistencia. Qqueshuayllo Cancha, Wilbert Rene. CAPITULO 1: FUNDAMENTO FISICO DE UNA PUESTA A TIERRA 1.1 Introducción Por puesta a tierra se entiende como la conexión de un conductor eléctrico (electrodo) enterrado en el suelo con la finalidad de dispersar

Más detalles

CAPÍTULO IV Dieléctricos

CAPÍTULO IV Dieléctricos Fundamento teórico CAPÍTULO IV Dieléctricos I.- l dipolo Ia.- Momento dipolar Un sistema formado por dos cargas iguales en módulo y de signo opuesto, +q y q, con vectores posición r + y r respectivamente,

Más detalles

CORRIENTES Y LEYES DE CONSERVACIÓN Y OBTENCIÓN DE LAS ECUACIONES PRINCIPALES DEL ELECTROMAGNETISMO.

CORRIENTES Y LEYES DE CONSERVACIÓN Y OBTENCIÓN DE LAS ECUACIONES PRINCIPALES DEL ELECTROMAGNETISMO. CORRIENTES Y LEYES DE CONSERVACIÓN Y OBTENCIÓN DE LAS ECUACIONES PRINCIPALES DEL ELECTROMAGNETISMO. José Manuel Gómez Vega. (mayo 2.002) IngeMek Ingenieros www.ingemek.es CORRIENTES Y LEYES DE CONSERVACIÓN

Más detalles

Consiste en provocar una corriente eléctrica mediante un campo magnético variable.

Consiste en provocar una corriente eléctrica mediante un campo magnético variable. www.clasesalacarta.com 1 Inducción electromagnética Inducción Electromagnética Consiste en provocar una corriente eléctrica mediante un campo magnético variable. Flujo magnético ( m ) El flujo magnético

Más detalles

Fuente de alimentación de corriente continua (CC) de baja tensión y salidas múltiples Resistores fijos y variables Cables de conexión

Fuente de alimentación de corriente continua (CC) de baja tensión y salidas múltiples Resistores fijos y variables Cables de conexión FISICA GENERAL III 2012 Guía de Trabajo Practico N o 8 Galvanómetro de las tangentes Ley de Faraday - Regla de Lenz R. Comes y R. Bürgesser Objetivos: Verificar, por medio de una brújula, que el campo

Más detalles

ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO Y ÓPTICA TEMARIO

ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO Y ÓPTICA TEMARIO ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO Y ÓPTICA TEMARIO A. ELECTRICIDAD 1. CARGAS ELÉCTRICAS Y LEY DE COULOMB. I Reseña histórica de la electricidad 2. Concepto de carga eléctrica. 3. Tipos de

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 Resuelve los siguientes problemas sobre los temas vistos en clase. En una placa circular de 5cm de radio existe una densidad de flujo magnético de 4 T. Calcula el flujo magnético, en webers y maxwell,

Más detalles

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

MODELO ATÓMICO DE DALTON 1808

MODELO ATÓMICO DE DALTON 1808 ESTRUCTURA ATÓMICA MODELO ATÓMICO DE DALTON 1808 Sienta las bases para la estequiometría de composición y la estequiometría de reacción. 1. Un elemento se compone de partículas extremadamente pequeñas,

Más detalles

Nombre de la asignatura Física Clásica II Departamento Ingenierías Academia Física

Nombre de la asignatura Física Clásica II Departamento Ingenierías Academia Física Nombre de la asignatura Física Clásica II Departamento Ingenierías Academia Física Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I5436 48 48 32 128 9 Nivel Carrera Tipo Prerrequisitos

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA DIRECCIÓN DE ADMISIÓN Y CONTROL DE ESTUDIOS

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD BICENTENARIA DE ARAGUA SECRETARIA DIRECCIÓN DE ADMISIÓN Y CONTROL DE ESTUDIOS FACULTAD: CARRERA: INGENIERIA INGENIERIA ELECTRICA AÑO: 94 UNIDAD CURRICULAR: CODIGO: REQUISITOS: TEORIA ELECTROMAGNETICA ELC-714 MAT-505/ELC-505 UNIDAD DE CREDITOS: 04 DENSIDAD DE HORARIO: 05 HORAS TEORICA:

Más detalles

Campo magnético creado por cargas puntuales móviles.

Campo magnético creado por cargas puntuales móviles. Introducción Volvamos ahora considerar los orígenes del campo magnético B. Las primeras fuentes conocidas del magnetismo fueron los imanes permanentes. Un mes después de que Oersted anunciarse su descubrimiento

Más detalles

FUNDAMENTOS CIENTIFICOS DEL METODO MONCAYO INSTITUTO DE INVESTIGACION MONCAYO ESPAÑA MEXICO - SUECIA

FUNDAMENTOS CIENTIFICOS DEL METODO MONCAYO INSTITUTO DE INVESTIGACION MONCAYO ESPAÑA MEXICO - SUECIA FUNDAMENTOS CIENTIFICOS DEL METODO MONCAYO INSTITUTO DE INVESTIGACION MONCAYO ESPAÑA MEXICO - SUECIA ESPECTOFOTOMETRIA Permite determinar la concentración de un compuesto en una solución. Mide la cantidad

Más detalles

Electromagnetismo y relatividad especial

Electromagnetismo y relatividad especial Tema 8 Electromagnetismo y relatividad especial 8.1 Introducción Al principio del Curso, cuando hablábamos de la visión que se ha tenido a lo largo de la Historia acerca de la naturaleza de la luz, indicábamos

Más detalles

PROPAGACIÓN DE LAS ONDAS ELECTROMAGNÉTICAS - PROBLEMAS SELECCIONADOS

PROPAGACIÓN DE LAS ONDAS ELECTROMAGNÉTICAS - PROBLEMAS SELECCIONADOS PROPAGACIÓN DE LAS ONDAS ELECTROMAGNÉTICAS - PROBLEMAS SELECCIONADOS Problema 1 Calcule la densidad de potencia cuando la potencia irradiada es 1000 W y la distancia a la antena isotrópica es 20km. De

Más detalles

Período Vigente: 2005

Período Vigente: 2005 Tópicos de Física General (0333), Redes Eléctricas I (2107), Cálculo Vectorial (025) PAG.: 1 PROPÓSITO La finalidad de esta asignatura es presentar en una forma clara y directa las leyes generales que

Más detalles

GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: PRIMERO CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: PRIMERO CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FISICA II GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: PRIMERO CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DESCRIPCIÓN DEL CONTENIDO

Más detalles

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos INDICE Prefacio XVII 1. Sistemas de Coordenadas e Integrales 1 1.1. Conceptos generales 1 1.2. Coordenadas de un punto 2 1.3. Los campos escalares y cómo se transforman 4 1.4. Campos vectoriales y cómo

Más detalles

CURSO DE TEMAS SELECTOS DE FÍSICA II INTRODUCCIÓN

CURSO DE TEMAS SELECTOS DE FÍSICA II INTRODUCCIÓN CURSO DE TEMAS SELECTOS DE FÍSICA II INTRODUCCIÓN Joven Bachiller: Como parte de las acciones de mejora para fortalecer el nivel académico de nuestros estudiantes, el Colegio de Bachilleres, pone a disposición,

Más detalles

Bolilla 10: Magnetismo

Bolilla 10: Magnetismo Bolilla 10: Magnetismo 1 Bolilla 10: Magnetismo La fuerza magnética es una de las fuerzas fundamentales de la naturaleza. Si bien algunos efectos magnéticos simples fueron observados y descriptos desde

Más detalles

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral:

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral: P.A.U. MADRID JUNIO 2005 Cuestión 1.- El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) El nivel de

Más detalles

I. Ondas Electromagnéticas

I. Ondas Electromagnéticas I. Ondas Electromagnéticas I.1 Ecuaciones de Maxwell Corriente de Desplazamiento y Ley de Ampere Generalizada: Al pasar al estudio de los campos variables dependientes del tiempo, es necesario considerar

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

Magnetismo. Física Sexta edición. Capítulo 29 29. magnético. Campos La Densidad. de flujo y permeabilidad Campo

Magnetismo. Física Sexta edición. Capítulo 29 29. magnético. Campos La Densidad. de flujo y permeabilidad Campo Magnetismo y campo magnético Capítulo 29 29 Física Sexta edición Paul Paul E. E. Tippens Magnetismo Campos magnéticos La teoría a moderna del magnetismo Densidad de flujo y permeabilidad Campo magnético

Más detalles

TEORIA DE LOS RADIADORES LECTROMAGNETICOS ELEMENTALES

TEORIA DE LOS RADIADORES LECTROMAGNETICOS ELEMENTALES TEORIA DE LOS RADIADORES LECTROMAGNETICOS ELEMENTALES Teoría de antenas Antena es un dispositivo que permite acoplar la energía radio eléctrica de una línea de transmisión al espacio libre o viceversa

Más detalles

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.

Más detalles

Unidad 9. Fuerza magnética y Campo Magnético

Unidad 9. Fuerza magnética y Campo Magnético Unidad 9. Fuerza magnética y Campo Magnético Física 2 Basado en Bauer/Westfall 2011, Resnick 1995 y Ohanian/Markert, 2009 El alambre recto conduce una corriente I grande, y hace que las pequeñas partículas

Más detalles

EJERCICIO 1; OPCION A APARTADO A

EJERCICIO 1; OPCION A APARTADO A Clases de Física y Química en Granada granada.clases.particulares@gmail.com EJERCICIO 1; OPCION A APARTADO A Ley de Lenz.- Cuando varía el flujo magnético que atraviesa una espira o bobina, esta reacciona

Más detalles

Ecuaciones de Maxwell

Ecuaciones de Maxwell Capítulo 14 Ecuaciones de Maxwell 14.1. Corriente de Desplazamiento Habíamos visto anteriormente que si un conductor con corriente posee cierta simetría favorable, el campo magnético se podía obtener fácilmente

Más detalles

Las ecuaciones de Maxwell I

Las ecuaciones de Maxwell I fisgeo3 1 Las ecuaciones de Maxwell I Historia y enunciado J.C. Maxwell publicó en el año 1873 su famoso Tratado de electricidad y magnetismo [Max54] que recogía en forma matemática algunas leyes experimentales

Más detalles

Inducción electromagnética

Inducción electromagnética Fenómeno consistente en provocar o inducir una corriente eléctrica mediante un campo magnético variable. Experiencias de Faraday Una bobina conectada a una batería, otra bobina conectada a un galvanómetro.

Más detalles

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual.

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual. 1.- Carga eléctrica. Propiedades. 2.- Ley de Coulomb. Campo de una carga puntual. 3.- Principio de superposición. 4.- Distribuciones continuas de carga. 5.- Ley de Gauss. Aplicaciones. 6.- Potencial electrostático.

Más detalles

ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO

ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO ORGANIZACIÓN DE LA MATERIA DE ELECTROMAGNETISMO TEMARIO A. ELECTRICIDAD 1. CARGAS ELÉCTRICAS Y LEY DE COULOMB. I Reseña histórica de la electricidad 2. Concepto de carga eléctrica. 3. Tipos de cargas.

Más detalles

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO 1. Una carga eléctrica, q = 3,2.10-19 C,

Más detalles

Ecuaciones de Maxwell

Ecuaciones de Maxwell ANTENAS FUNDAMENTOS DE RADIACIÓN 1 Ecuaciones de Maxwell Ecuaciones diferenciales Los fenómenos electromagnéticos se pueden describir a partir de las cuatro ecuaciones de Maxwell. Ley de Ampère D H= J

Más detalles

Campos Electromagnéticos El Campo Magnético

Campos Electromagnéticos El Campo Magnético Campos Electromagnéticos El Campo Magnético Profesor: Pedro Labraña Departamento de Física, Universidad del Bío-Bío Carrera: Ingeniería Civil en Automatización Créditos: 5 El Campo Magnético El Magnetismo,

Más detalles

Tema 2: Postulados del Electromagnetismo

Tema 2: Postulados del Electromagnetismo Tema 2: Postulados del Electromagnetismo 1 Índice La carga eléctrica Corriente eléctrica Ecuación de continuidad Ecuaciones de Maxwell en el vacío Fuerza de Lorentz Forma integral de las ecuaciones de

Más detalles

Objetivos generales: Objetivos específicos:

Objetivos generales: Objetivos específicos: Carreras: INGENIERÍA MECÁNICA (PLAN 1994). INGENIERÍA INDUSTRIAL - CIVIL - ELÉCTRICA ELECTRÓNICA - METALURGIA - QUÍMICA - TEXTIL - NAVAL (PLANES 1995) - INGENIERÍA EN SISTEMAS DE INFORMACIÓN (PLAN 2008)

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

MATERIA: TELECOMUNICACIONES

MATERIA: TELECOMUNICACIONES MATERIA: TELECOMUNICACIONES Docente: Ing. Félix Pinto Macedo La Paz, Septiembre 2012 1 Ondas electromagnéticas Onda electromagnética(o.e.m.). Es la perturbación simultánea de los campos eléctricos y magnéticos

Más detalles

Las ondas. Comenzando a dar precisiones. Producción de ondas. Prof. Sergio Silvestri

Las ondas. Comenzando a dar precisiones. Producción de ondas. Prof. Sergio Silvestri Las ondas La palabra onda nos remite a un movimiento de vaivén o de ida y vuelta y cuando queremos visualizarlo recurrimos a dos fenómenos que ocurren en el agua. En un caso en agua quieta donde arrojamos

Más detalles

2.1 Las ecuaciones de Maxwell en el espacio libre. Llamaremos «espacio libre» a todo medio que satisfaga las siguientes propiedades

2.1 Las ecuaciones de Maxwell en el espacio libre. Llamaremos «espacio libre» a todo medio que satisfaga las siguientes propiedades Capítulo 2 Leyes básicas de la teoría electromagnética. Ondas electromagnéticas 2.1 Las ecuaciones de Maxwell en el espacio libre 2.1.1 El espacio libre Llamaremos «espacio libre» a todo medio que satisfaga

Más detalles

El electromagnetismo es una característica asociada las partículas cargadas eléctricamente.

El electromagnetismo es una característica asociada las partículas cargadas eléctricamente. El electromagnetismo es una característica asociada las partículas cargadas eléctricamente. La interacción electromagnética se describe en términos de dos campos : El campo eléctrico E y el campo magnético

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: PRIMERO CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: PRIMERO CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FISICA II GRADO: Grado en Ingeniería Electrónica Industrial y Automática CURSO: PRIMERO CUATRIMESTRE: 2º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DESCRIPCIÓN DEL CONTENIDO

Más detalles

Capitulo 2 Impedancia Serie de Sistemas de Transmisión Parte 2

Capitulo 2 Impedancia Serie de Sistemas de Transmisión Parte 2 ELC-3714 Líneas de Transmisión I Capitulo Impedancia Serie de Sistemas de Transmisión Parte Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/lt.htm 1. Definición

Más detalles

GRADO: INGENIERÍA DE SISTEMAS DE COMUNICACIONES CURSO: 1º CUATRIMESTRE: 1º

GRADO: INGENIERÍA DE SISTEMAS DE COMUNICACIONES CURSO: 1º CUATRIMESTRE: 1º SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: FÍSICA GRADO: INGENIERÍA DE SISTEMAS DE COMUNICACIONES CURSO: 1º CUATRIMESTRE: 1º La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

Universidad de Puerto Rico En Humacao Departamento de Física y Electrónica Programa de Bachillerato en Física Aplicada a la Electrónica

Universidad de Puerto Rico En Humacao Departamento de Física y Electrónica Programa de Bachillerato en Física Aplicada a la Electrónica Universidad de Puerto Rico En Humacao Departamento de Física y Electrónica Programa de Bachillerato en Física Aplicada a la Electrónica A. Título: B. Codificación del Curso: FISI 3012 C. Número de horas

Más detalles

CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA

CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA CORRIENTE DE DESPLAZAMIENTO DE MAXWELL. LEY DE AMPÈRE GENERALIZADA Las superficies S1 y S2 están limitadas por la misma trayectoria S. La corriente de conducción en el cable pasa únicamente a través de

Más detalles

Corriente eléctrica. Ley de Ohm.

Corriente eléctrica. Ley de Ohm. Corriente eléctrica. Ley de Ohm. Un conductor en un campo eléctrico: condiciones dinámicas Un conductor en un campo eléctrico: condiciones dinámicas E 0 dentro del conductor. El ciclo continuo de electrones

Más detalles

Pruebas PAU de los ocho últimos años: 2000 hasta 2007. Septiembre 2006 2007

Pruebas PAU de los ocho últimos años: 2000 hasta 2007. Septiembre 2006 2007 Pruebas PAU de los ocho últimos años: 2000 hasta 2007 Septiembre 2006 2007 1. Satélite de órbita conocida. Se pide: fuerza gravitatoria sobre el satélite, período y energía total del satélite. 2. EFE:

Más detalles

Introducción. Flujo magnético.

Introducción. Flujo magnético. Introducción En el tema anterior aprendimos que el paso de una corriente por un conductor crea un campo magnético. A principios de la década de 1830, Michael Faraday en Inglaterra y Joseph Henrry en Norteamérica

Más detalles

PROBLEMAS DE INDUCCIÓN MAGNÉTICA

PROBLEMAS DE INDUCCIÓN MAGNÉTICA PROBLEMAS DE INDUCCIÓN MAGNÉTICA 1.- Una varilla conductora, de 20 cm de longitud se desliza paralelamente a sí misma con una velocidad de 0,4 m/s, sobre un conductor en forma de U y de 8 Ω de resistencia.el

Más detalles

Electricidad y calor. Webpage: 2007 Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage:  2007 Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora 1 Temario B. Electricidad 6. Cargas eléctricas y la Ley de Coulomb. (4horas) 1. Concepto

Más detalles

CRONOGRAMA DE FÍSICA SEMESTRE 3º

CRONOGRAMA DE FÍSICA SEMESTRE 3º REPÚBLICA BOLIVARIANA DE VENEZUELA U.E. ADA BYRON MARACAY CRONOGRAMA DE FÍSICA SEMESTRE 3º OBJETIVOS GENERALES 1. Establecer la diferencia y semejanzas entre las interacciones eléctricas y las gravitaciones,

Más detalles

Guía del docente. - 4º medio:

Guía del docente. - 4º medio: Guía del docente 1. Descripción curricular: - Nivel: 4º medio. - Subsector: Ciencias Físicas. - Unidad temática: Circuito de corriente variable. - Palabras claves: corriente eléctrica, bobinas, brújulas,

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

Adjunto: Lic. Auliel María Inés

Adjunto: Lic. Auliel María Inés Ingeniería de Sonido Física 2 Titular: Ing. Daniel lomar Vldii Valdivia Adjunto: Lic. Auliel María Inés 1 Termodinámica i Temperatura La temperatura de un sistema es una medida de la energía cinética media

Más detalles

ASIGNATURA DE GRADO: ELECTROMAGNETISMO I

ASIGNATURA DE GRADO: ELECTROMAGNETISMO I ASIGNATURA DE GRADO: ELECTROMAGNETISMO I Curso 2016/2017 (Código:61042030) 1.PRESENTACIÓN DE LA ASIGNATURA Código de la Asignatura: 61042030 Ciclo:1º Curso: Segundo Semestre: Primero Tipo: Obligatoria

Más detalles

Departamento de Física y Química. PAU Física. Modelo 2010/2011.

Departamento de Física y Química. PAU Física. Modelo 2010/2011. 1 PAU Física. Modelo 2010/2011. OPCIÓN A Cuestión 1.- Un cuerpo de masa 250 g unido a un muelle realiza un movimiento armónico simple con una recuencia de 5 Hz Si la energía total de este sistema elástico

Más detalles

Inducción electromagnética. M del Carmen Maldonado Susano

Inducción electromagnética. M del Carmen Maldonado Susano Inducción electromagnética M del Carmen Maldonado Susano Cuando las intensidades de corriente son del mismo sentido existen entre ellas fuerzas atractivas; cuando las intensidades de corriente son de sentido

Más detalles

A modo de prólogo La Física como ciencia La Física y la técnica Justificación de la elección de temas...

A modo de prólogo La Física como ciencia La Física y la técnica Justificación de la elección de temas... ÍNDICE A modo de prólogo...11 1. La Física como ciencia...11 2. La Física y la técnica... 12 3. Justificación de la elección de temas... 12 Tema I: Campos escalares y vectoriales... 13 1. Introducción:

Más detalles

4.2. Ecuaciones de onda para los campos y los potenciales

4.2. Ecuaciones de onda para los campos y los potenciales 4.2. Ecuaciones de onda para los campos y los potenciales Veremos en esta sección que los campos y los potenciales cumplen ecuaciones de onda. Parte de las soluciones de estas ecuaciones tienen caracter

Más detalles

Ondas y Electromagnetismo Grupo H

Ondas y Electromagnetismo Grupo H Ondas y Electromagnetismo Grupo H Profesor: Isidro González Caballero e-mail: gonzalezisidro@uniovi.es Tel: 985106252 INICIO Introducción La asignatura Las clases El temario La evaluación Las tutorías

Más detalles

Índice. Introducción Campo magnético Efectos del campo magnético sobre. Fuentes del campo magnético

Índice. Introducción Campo magnético Efectos del campo magnético sobre. Fuentes del campo magnético Campo magnético. Índice Introducción Campo magnético Efectos del campo magnético sobre Carga puntual móvil (Fuerza de Lorentz) Conductor rectilíneo Espira de corriente Fuentes del campo magnético Carga

Más detalles

Modelos atómicos. El valor de la energía de estos niveles de energía está en función de un número n, denominado número cuántico principal 18 J.

Modelos atómicos. El valor de la energía de estos niveles de energía está en función de un número n, denominado número cuántico principal 18 J. MODELO ATÓMICO DE BOHR (1913) El modelo atómico de Rutherfod tuvo poca vigencia, ya que inmediatamente a su publicación, se le puso una objeción que no supo rebatir: según la teoría del electromagnetismo

Más detalles

Proyecto de aula. Física II. Este proyecto está fundamentado en una pregunta problema para todo el curso Cómo funciona un motor eléctrico?

Proyecto de aula. Física II. Este proyecto está fundamentado en una pregunta problema para todo el curso Cómo funciona un motor eléctrico? Reconocimiento: Este proyecto fue diseñado por el doctor, profesor del Instituto de Física de la Universidad de Antioquia, quien autoriza su publicación en el aula virtual del curso de Física II. Proyecto

Más detalles

SYLLABUS DE ELECTRICIDAD Y MAGNETISMO

SYLLABUS DE ELECTRICIDAD Y MAGNETISMO Código: 2000-F-619 Versión: 01 Emisión: 22-07 - 2014 Página 1 de 11 IDENTIFICACIÓN DIVISIÓN/ VUAD: Ingeniería FACULTAD/ DEPARTAMENTO/ INSTITUTO: Departamento de Ciencias Básicas PROGRAMA ACADÉMICO: NOMBRE

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA SYLLABUS PROYECTO CURRICULAR DE INGENIERÍA ELÉCTRICA

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA SYLLABUS PROYECTO CURRICULAR DE INGENIERÍA ELÉCTRICA Nombre del Docente UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA SYLLABUS PROYECTO CURRICULAR DE INGENIERÍA ELÉCTRICA ESPACIO ACADÉMICO (Asignatura): Código: 224 CAMPOS ELECTROMAGNÉTICOS

Más detalles

Bloque IV. Manifestaciones de la estructura interna de la materia.

Bloque IV. Manifestaciones de la estructura interna de la materia. Bloque IV. Manifestaciones de la estructura interna de la materia. Tema 3. Los fenómenos electromagnéticos. Subtema 3.2 Cómo se genera el magnetismo?. Aprendizajes esperados Al final del estudio del subtema,

Más detalles

PROGRAMA DE ESTUDIOS

PROGRAMA DE ESTUDIOS PROPÓSITO DEL MODULO: Interpretar las partículas cargadas que componen el átomo y el comportamiento cuántico de la luz a partir del análisis de estos elementos en la materia y de sus demostraciones analíticas

Más detalles

FICHAS DE PRÁCTICAS 2ºBACHILLER FÍSICA

FICHAS DE PRÁCTICAS 2ºBACHILLER FÍSICA FICHAS DE PRÁCTICAS 2ºBACHILLER FÍSICA UNIDAD DIDÁCTICA : ELECTRICIDAD Y MAGNETISMO 01.- Experimento de Oersted Duración Estimada: 35 min Capacidad Terminal Comprobación de que una corriente eléctrica

Más detalles

Titulación(es) Titulación Centro Curso Periodo Grado de Ingeniería Telemática ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA

Titulación(es) Titulación Centro Curso Periodo Grado de Ingeniería Telemática ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA FICHA IDENTIFICATIVA Datos de la Asignatura Código 34874 Nombre Física II Ciclo Grado Créditos ECTS 6.0 Curso académico 2017-2018 Titulación(es) Titulación Centro Curso Periodo 1403 - Grado de Ingeniería

Más detalles

ECUACIONES DE MAXWELL

ECUACIONES DE MAXWELL ECUACIONES DE MAXWELL Hugo A. FERNÁNDEZ El presente capítulo fue elaborado asumiendo que el lector maneja el análisis vectorial y tiene los conocimientos de electricidad y magnetismo que se adquieren en

Más detalles

I. Ondas Electromagnéticas

I. Ondas Electromagnéticas I. Ondas Electromagnéticas I.1 Ecuaciones de Maxwell Corriente de Desplazamiento y Ley de Ampere Generalizada: Al pasar al estudio de los campos variables dependientes del tiempo, es necesario considerar

Más detalles

CUESTIONARIO 1 DE FISICA 3

CUESTIONARIO 1 DE FISICA 3 CUESTIONARIO 1 DE FISICA 3 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener

Más detalles

CORRIENTE ELECTRICA. Diferencia de Potencial Eléctrico. Conductores y aislantes

CORRIENTE ELECTRICA. Diferencia de Potencial Eléctrico. Conductores y aislantes CORRENTE ELECTRCA Diferencia de Potencial Eléctrico. Un objeto de masa m siempre caerá desde mayor altura hasta menor altura. Donde está a mayor altura el objeto posee mayor energía potencial gravitatoria

Más detalles