Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series."

Transcripción

1 CÁLCULO Igeiería Idustrial. Curso Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió como ua secuecia de úmeros reales, uo por cada úmero atural, (a ; a 2 ; : : : ; a ; : : :) : A cada uo de los úmeros que forma la secuecia se le deomia térmio, así al térmio a k co k 2 N se le llama térmio k-ésimo. El térmio iicial de ua sucesió o tiee por qué ser = sio que puede ser cualquier úmero k 2 N[ f0g. Si se tiee ua fórmula que permite calcular cada térmio e fució de ; que deotamos a, etoces se le deomia a dicha fórmula térmio geeral y se escribe la sucesió como (a ) 2N. Se dice que L 2 R (o L = ) es el límite de la sucesió (a ) 2N, y se deota como lm!+ a = L; si e cualquier etoro de L puede ecotrarse todos los térmios de la sucesió a partir de uo dado. El límite de ua sucesió es úico. E caso de que ua sucesió (a ) 2N tega límite ito L 2 R se dice que es covergete y si su límite o es ito se deomia divergete. Las sucesioes que o tiee límite se llama oscilates. La covergecia o o de ua sucesió es idepediete del térmio iicial tomado. Los límites de sucesioes veri ca las mismas propiedades co respecto a las operacioes algebraicas que los límites de fucioes. Teorema del límite de ua sucesió. Sea f (x) ua fució de modo que existe lm f (x) : Si (a ) x!+ 2N es ua sucesió tal que a = f () a partir de u cierto térmio (esto es, existe 0 2 N tal que a = f () para todo 0 ), etoces tambié existe su límite y lm a = lm f (x) :!+ x!+ Ley del emparedado para sucesioes. Si los térmios geerales de tres sucesioes dadas satisface que a b c a partir de u cierto térmio y ocurre que lm a = lm c = L etoces tambié lm b = L.!+!+!+

2 Sucesió acotada. Se dice que ua sucesió (a ) 2N es acotada superiormete si existe M 2 R tal que a M para todo 2 N. La sucesió (a ) 2N es acotada iferiormete si existe M 2 R tal que a M para todo 2 N: Sucesió moótoa. Ua sucesió (a ) 2N es creciete si a partir de u cierto térmio ocurre que a a + : La sucesió (a ) 2N es decreciete si a partir de u cierto térmio ocurre que a a + : La sucesió (a ) 2N es moótoa si es creciete o decreciete. Covergecia de sucesioes moótoas. Toda sucesió moótoa tiee límite, es decir, o puede ser oscilate. Sea (a ) 2N ua sucesió creciete etoces es covergete si, y sólo si, es acotada superiormete. Sea (a ) 2N ua sucesió decreciete etoces es covergete si, y sólo si, es acotada iferiormete. Serie umérica covergete. Dada (a ) 2N ua sucesió, la sucesió de sumas parciales de (a ) 2N es ua ueva sucesió (S ) 2N que tiee como térmio geeral S = a + + a : La serie umérica geerada por la sucesió (a ) 2N se deota P como a y se de e por a = lm S :!+ P La serie a se deomia covergete cuado la sucesió de sumas parciales es covergete y al resultado de la serie se le llama suma i ita. E cualquier otro caso se dirá que la serie es divergete. Si la sucesió comieza e = k etoces la serie se deota como a deomiádose a su resultado, si fuese =k covergete la serie, suma i ita desde el térmio k-ésimo. P P Operacioes co series covergetes. Si a y b so series covergetes etoces. 2. P P a tambié es covergete y P a = a : P P (a + b ) tambié es covergete y P (a + b ) = P a + b : Serie geométrica. Para u úmero real r 2 R se de e la serie geométrica de razó r como la serie umérica r geerada por la sucesió (r ) 2N : La serie 2

3 geométrica es covergete cuado jrj < y e dicho caso su suma i ita desde el térmio k-ésimo es r = rk r : =k Codició ecesaria de covergecia. Si la serie umérica a es covergete etoces lm a = 0.! Criterios particulares de covergecia para series. Serie de térmios positivos. Se dice que ua serie a es de térmios positivos si los térmios de la sucesió (a ) 2N so positivos a partir de u cierto térmio: Criterio itegral. Sea f (x) ua fució cotiua, positiva y decreciete e el itervalo [k; +) co k 2 N[ f0g. Para la sucesió de térmios positivos (a ) 2N cuyo térmio geeral es a = f () se veri ca que la itegral impropia R + f (x) dx es covergete si, y sólo si, la serie a es covergete. k Serie armóica geeralizada. La serie armóica geeralizada se de e como la serie p dode p 2 R. El caso particular p = se deomia serie armóica. La serie armóica geeralizada coverge cuado p > y diverge cuado p. Criterio de comparació. Sea a ua serie de térmios positivos.. Si existe (b ) 2N tal que a b a partir de u cierto térmio y de forma que b sea covergete etoces a es covergete. 2. Si existe (b ) 2N tal que 0 b a a partir de u cierto térmio y de forma que b sea divergete etoces a es divergete. =k 3

4 Criterio de comparació por paso al límite. Sea a ua serie de térmios positivos.. Si existe ua serie de térmios positivos b tal que etoces a lm = L 6= 0; +!+ b a es covergete si, y sólo si, 2. Si existe ua serie de térmios positivos y b es covergete etoces b es covergete. b tal que a lm = 0!+ b a es covergete. 3. Si existe ua serie de térmios positivos b tal que a lm = +!+ b y b es divergete etoces a es divergete. Serie alterada. Ua serie se dice alterada si sus térmios va alterado el sigo positivo y el sigo egativo o viceversa. La serie! alterada puede escribirse e geeral como ( ) b o bie ( ) b dode b > 0, es decir, es la serie umérica geerada por la sucesió de térmio geeral a = ( ) b : Criterio de Leibitz. Sea ( ) b ua serie alterada de maera que (b ) 2N es ua sucesió decreciete y lm b = 0, etoces!+ covergete. ( ) b es 4

5 5.3. Criterios geerales de covergecia para series. Serie absolutamete covergete. Se dice que ua serie a es absolutamete covergete si la serie de térmios positivos ja j es covergete. Codició su ciete por covergecia absoluta. Si ua serie a es absolutamete covergete etoces Criterio del cociete. Sea a es covergete. a ua serie umérica tal que existe el límite lm a + a = L:!+. Si se veri ca que L < etoces tato covergete. 2. Si se veri ca que L > etoces a es absolutamete covergete y por a es divergete. Criterio de la raíz. Sea a ua serie umércia tal que existe el límite lm!+. Si se veri ca que L < etoces tato covergete. 2. Si se veri ca que L > etoces 5.4. Series de potecias. p ja j = L: a es absolutamete covergete y por a es divergete. Serie de potecias. Ua serie de potecias cetrada e el puto a 2 R es ua familia de series de la forma c (x a) ; 5

6 ua por cada x 2 R; dode (c ) 2N[f0g es ua sucesió idepediete de x. A los térmios de la sucesió (c ) 2N[f0g se les deomia coe cietes de la serie de potecias y al puto a cetro de la serie de potecias. El cojuto de covergecia de ua serie de potecias ( x 2 R : c (x a) es covergete ) : c (x a) es Teorema de Hadamard. Dada ua serie de potecias c (x ua de estas tres posibilidades para su cojuto de covergecia: a) sólo hay. Está formado por u úico puto, su cetro a; dode además coverge absolutamete: 2. Es toda la recta real, dode, además, coverge absolutamete. 3. Tiee forma de itervalo cetrado e su cetro a; de maera que coverge absolutamete e el iterior del itervalo y diverge fuera del itervalo, o pudiédose a mar ada acerca del comportamieto de la serie e los extremos del itervalo. Esto sigi ca que existe u úmero real R > 0 de forma que se veri ca el siguiete diagrama divergete a + R a - R o se tiee iformació a absolutamete covergete Itervalo de covergecia divergete o se tiee iformació Pesado que el caso uo se puede ver como u itervalo de cetro a co R = 0 y el segudo como u itervalo de cetro a co R = +; se puede resumir el resultado diciedo lo siguiete: El cojuto de covergecia de ua serie de potecias es u itervalo I cetrado e a co radio R 2 [0; +] de maera que (a R; a + R) I [a R; a + R] : Además se asegura que la covergecia e (a R; a + R) es absoluta. A I lo llamaremos itervalo de covergecia y a R radio de covergecia de la serie de potecias. 6

7 Fórmula del radio de covergecia. Sea c (x a) ua serie de potecias cetrada e a. Cuado alguo de los siguietes límites exista, su radio de covergecia R puede calcularse como: R = lm c = p jc j :!+ c + lm!+ Fució suma de ua serie de potecias. Ua serie de potecias c (x cetrada e a co itervalo de covergecia I de e ua fució S : I R! R que asiga a cada puto del itervalo de covergecia la suma de la serie umérica obteida, esto es S (x) = c (x a) 8x 2 I: A la fució S (x) se le deomia fució suma. Propiedades de la fució suma. Sea c (x a) ua serie de potecias cetrada e a co radio de covergecia R e itervalo de covergecia I. Su fució suma S (x) tiee las siguietes propiedades:. S (x) es ua fució cotiua e su domiio I. 2. S (x) es ua fució derivable e (a R; a + R) y además S 0 (x) = c (x a) : 3. La primitiva de S (x) e el itervalo (a R; a + R) que se aula e a es Z x a S (t) dt = c + (x a)+ : Es más, puede escribirse e geeral que para todo b y c 2 (a R; a + R) a) Z c S (t) dt = Z c b b c (t a) dt: Las series de potecias c (x a) c y + (x a)+ tiee como radio de covergecia R pero su itervalo de covergecia o tiee por qué ser I. 7

8 5.5. Series de Taylor. Serie de Taylor de ua fució. Sea f (x) ua fució de clase C e u etoro del puto a 2 R. La serie de Taylor de f cetrada e a es la serie de potecias f () (a) (x a) ;! es decir aquélla que tiee como coe cietes c = f () (a). Cuado a = 0 se le! deomia serie de Maclauri de f. Covergecia de la serie de Taylor. Sea f (x) ua fució de clase C e u etoro del puto a 2 R. La fució suma de la serie de Taylor cetrada e a de f o tiee por qué coicidir co f (x) : Si embargo, la úica serie de potecias cetrada e a cuya fució suma puede ser f (x) es la serie de Taylor de f cetrada e a. Fució aalítica. Se dice que ua fució f (x) es aalítica e u puto a 2 R si existe ua serie de potecias cetrada e a de maera que su fució suma sea f (x) para x e u cierto itervalo cetrado e a: Teiedo e cueta que e ese caso debe ser la serie de Taylor de f cetrada e a, cuado la fució f es aalítica e a ocurre que f (x) = f () (a)! (x a) 8x 2 I; dode I es el itervalo de covergecia de la serie de Taylor de f cetrada e a. Series de Maclauri de las fucioes elemetales. Las fucioes elemetales que aparece e la siguiete lista so todas aalíticas e el 0: e x = se x = cos x = x! ; 8x 2 R log ( + x) = ( + x) = ( ) x 2+ (2 + )! ; 8x 2 R ( ) x 2 (2)! ; 8x 2 R ( ) x ; 8x 2 ( ; ] x ; 8x 2 ( ; ) ; 2 R 8

9 Operacioes de fucioes aalíticas. Sea f y g dos fucioes aalíticas e a 2 R; etoces so tambié aalíticas e a las fucioes: f + g; fg; f=g (si g (a) 6= 0) ; f 0 y F (si F 0 = f e u etoro de a). Si g es aalítica e a 2 R y f es aalítica e g (a) etoces f g es aalítica e a: 9

10 Ejercicios de la lecció. Ejercicio. Calcula los siguietes límites de sucesioes.. lm!+ 2. lm!+ 3 p + p : 4. lm 2 + : 5. lm!+ 3. lm!+ (a) co a 2 R. 6. lm!+ : 7. lm 2 log!+!+ 8 [se (2 ) 2 ] : 8. lm!+ se p : 9. lm!+! : a! Ejercicio 2. Estudia la covergecia de las siguietes series uméricas. : co a 2 R ( 2 ) 2 : 4. cos 2 2 : 5. + log 2 : 6. se 2 cos 2 : 7. + X log 2 : 8. + X e : ( ) : ( ) p : + : e Ejercicio 3. Estudia la covergecia de las siguietes series uméricas a +! co a 2 R. 5. X p! 2 : 9. + X 2 log 2 :! : 6. X+ ( )! : 0. X+ + ( ) log : 7. 3! [cos () + se (3)] :. X ( ) ( + ) 2 : : 8.! 2 : 2. X+ 3! (4)! (2)! (3)! : : Ejercicio 4.. Halla el valor de la itegral Z + 2 dx x (log x) p e fució de p 2 R. 2. Usado el apartado aterior determia, segú los valores de p 2 R, la 2 covergecia de la serie (log ) p. 0

11 Ejercicio 5. Estudia la covergecia de la serie e fució del parámetro a 2 R. 2 + a ; a + Ejercicio 6. Se cosidera la serie para cada a 2 R ( ) ( + ) a :. Determia segú los valores de a 2 R cuádo la serie es absolutamete covergete. 2. Ecuetra los valores de a 2 R para los cuales la serie es covergete. Ejercicio 7. Estudiar segú los valores de a 2 R la covergecia de la serie =3 2 ta : a 2 Ejercicio 8. (Septiembre 08-09) Estudiar segú los valores de 2 [0; =2] la covergecia de la serie 2 cos + cos : Ejercicio 9. Determia el itervalo de covergecia de las siguietes series de potecias: ( )! x : 5. (x + 2) : 6. 3 x : 7. x! 8. ( + 2) (2x + 3) : 9. 2 x : 0. 4 ( ) x :. (3x ) 2 : x : ( + ) ( + 2) ( + 3) x : 5 x : x :

12 Ejercicio 0. Para cada ua de las siguietes series de potecias calcula su suma:. ( + 2) (2x + 3) 4 : 3. ( ) x : 2. 2 x : 4. (x ) : (Juio 05-06) Ejercicio. (Juio 04-05) Halla el itervalo de covergecia de la serie y calcula su suma x Ejercicio 2. Halla el itervalo de covergecia de la serie de potecias y calcula su fució su suma x 2+ Ejercicio 3. Cosidera la serie de potecias 2 + x :. Calcula su itervalo de covergecia. 2. Ecuetra su fució suma. 3. Suma la serie umérica =3 2 2 : Ejercicio 4. Cosidera la serie de potecias 2. Calcula su itervalo de covergecia. 2. Ecuetra su fució suma. (x + ) : Ejercicio 5. (Primer Parcial 04-05) Cosidera la serie de potecias ( 2x) : 2

13 . Calcula su itervalo de covergecia. 2. Ecuetra su fució suma. 3. Determia la suma umérica ( ). Ejercicio 6. Cosidera la serie de potecias ( ) (x ) :. Calcula su itervalo de covergecia. 2. Ecuetra su fució suma. Ejercicio 7. (Primer Parcial 05-06) Cosidera la serie de potecias ( + ) ( + 2) x :. Calcula su itervalo de covergecia. 2. Ecuetra su fució suma. 3. Obté el valor de la serie umérica ( + ) ( + 2) : Ejercicio 8. Cosidera la serie de potecias +!. Calcula su itervalo de covergecia. (x + ) : 2. Ecuetra su fució suma. 3. Determia la suma de la serie + 2! : Ejercicio 9. Determia la serie de Maclauri de las siguietes fucioes, razoado e cada caso por qué so aalíticas e el cero.. f (x) = R x e t2 dt: 4. f (x) = arcta x: 0 2. f (x) = R x se t dt: 5. f (x) = arc cos x: 0 t 3. f (x) = 4 x : 6. f (x) = cosh x: 3

14 Ejercicio 20. Suma las series uméricas: ! ( ) 3 (2 + )! ( ) 2+ (2 + )! =3 ( ) =3 ( ) + 2 ( ) 2 6 (2)! Ejercicio 2. (Primer parcial 06-07) Dada la serie de potecias x :. Halla el itervalo de covergecia de la serie. 2. Calcula la fució suma de la serie de potecias. Ejercicio 22. (Juio 06-07) Dada la serie de potecias 2 + x ; 2! ecuetra su itervalo de covergecia y su fució suma. Ejercicio 23. (Septiembre 06-07)Dada la serie de potecias se pide: 4 (2 ) 2 x2 ;. Determiar su itervalo de covergecia. 2. Calcular su fució suma. Ejercicio 24. (Primer Parcial 07-08) Dada la serie de potecias + 2 (2x + ) : 4

15 Halla el itervalo de covergecia I de dicha serie y calcula la suma de la serie para todo x 2 I: Ejercicio 25. (Juio 07-08) Cosidera la serie de potecias. Halla su itervalo de covergecia. 2. Calcula su fució suma S (x) : (2 + ) 2 2 x : 3. Prueba que la ecuació xs (x) = 2 tiee ua úica solució e el itervalo [0; 2] ; y calcula dicha solució de forma aproximada mediate dos iteracioes del método de Newto. 5

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Pág. Grado Ig. Tec. Telecomuicació NOTA: E todos los ejercicios se deberá justificar la respuesta eplicado el procedimieto seguido e la resolució

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. Autoevaluación No. 1 MA2115 Enero 2009

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. Autoevaluación No. 1 MA2115 Enero 2009 Uiversidad Simó Bolıvar. Departameto de Matemáticas puras y aplicadas. Autoevaluació No. MA25 Eero 2009 I. Evaluació Teórica.. Diga la defiició de ua sucesió covergete, la defiició de ua sucesió divergete

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión Defiició y propiedades 5 5. Defiició y propiedades 6 5. Covergecia absoluta e icodicioal 65 5.3 Criterios de covergecia para series de térmios o egativos 66 5.4 Otros criterios 69 5.5 Suma de series 69

Más detalles

Examen de Febrero de 2005 de Cálculo I. Soluciones.

Examen de Febrero de 2005 de Cálculo I. Soluciones. Eame de Febrero de 5 de Cálculo I Solucioes Sea la fució f() = e sh + co domiio R a) Hallar los tres primeros térmios o ulos de su desarrollo de Taylor e = b) Probar que eiste su fució iversa f y calcular

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2,

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2, FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 4. Probar que si la serie es covergete,

Más detalles

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias

Más detalles

CAPÍTULO XIII. SUCESIONES

CAPÍTULO XIII. SUCESIONES CAPÍTULO XIII SUCESIONES NUMÉRICAS SECCIONES A Sucesioes covergetes y límites de oscilació Sucesioes moótoas y acotadas B Sucesioes recurretes C Ejercicios propuestos 59 A SUCESIONES CONVERGENTES Y LÍMITES

Más detalles

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1)

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1) Escuela de Igeieros de Bilbao Departameto Matemática Aplicada SERIES POTENCIALES.- Hallar el campo de covergecia de la serie potecial: ( + ) 3 y Realizado el cambio de variable, + 3 = y, teemos la serie:

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Sesión 8 Series numéricas III

Sesión 8 Series numéricas III Sesió 8 Series uméricas III Defiició Serie de Potecias Si a 0, a, a,, a so úmeros reales y x es ua variable, ua expresió de la forma a x, se llama Serie de Potecias. Lo abreviaremos co SP. Alguos ejemplos

Más detalles

1. (7 puntos)encuentre el área de la región acotada por la curva en el intervalo 0.

1. (7 puntos)encuentre el área de la región acotada por la curva en el intervalo 0. Uiversidad de Puerto Rico. Recito Uiversitario de Mayagüez Departameto de Ciecias Matemáticas Tercer Exame Departametal Mate 3032 4 de abril de 206 Nombre. Secció Número de Estudiate Profesor Número de

Más detalles

CÁLCULO INTEGRAL APUNTES SERIES

CÁLCULO INTEGRAL APUNTES SERIES UN I V E R S I D A D MA Y O R FA C U LT A D DE IN G E N I E R Í A SE G U N D O SE M E S T R E 0 CÁLCULO INTEGRAL AUNTES SERIES CRITERIOS. Criterio del -ésimo térmio para la divergecia Si la serie a coverge,

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Propiedades de las series numéricas (18.03.2015)

Propiedades de las series numéricas (18.03.2015) Propiedades de las series uméricas 8.03.205) ) Si itercalamos e la sucesió {a } N u úmero fiito de térmios de suma b, el carácter de la serie a o varía y, si coverge, su suma aumeta e b. D: Sea b +b 2

Más detalles

ACTIVIDADES NO PRESENCIALES

ACTIVIDADES NO PRESENCIALES E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Grado e Igeiería Mecáica Este documeto cotiee las actividades o preseciales propuestas al termiar la clase del día que se idica. Se sobreetiede

Más detalles

S7: Series numéricas II

S7: Series numéricas II Dada la serie S = k= a k, si la suma es fiita diremos que es ua serie covergete y e caso cotrario ua serie divergete. A la siguiete sucesió de úmeros la llamaremos la sucesió de sus sumas parciales: S

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

4. Con b = ( 1) 1 n. 6. Con c = n = p = 1, 1, ( 1) 1 2, ( 1) 1 3, ( 1) 1 4, ( 1) 1 5, ( 1) , 1 3, 1 2, 1 6 6, 5, 1.

4. Con b = ( 1) 1 n. 6. Con c = n = p = 1, 1, ( 1) 1 2, ( 1) 1 3, ( 1) 1 4, ( 1) 1 5, ( 1) , 1 3, 1 2, 1 6 6, 5, 1. Respuestas Respuestas al desarrollo de la competecia del capítulo E los problemas del al, ecuetra los primeros 6 térmios de la sucesió dada. Verifica tus respuestas co el comado Secuecia[ , ,

Más detalles

AN ALISIS MATEM ATICO B ASICO.

AN ALISIS MATEM ATICO B ASICO. AN ALISIS MATEM ATICO B ASICO. CRITERIOS DE CONVERGENCIA DE SERIES. E geeral, repetimos, o vamos a poder ecotrar la suma de ua serie covergete. Pero si su caracter, es decir si es covergete o o lo es.

Más detalles

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie

Más detalles

El interés fundamental que se persigue en este capítulo es la. representación de las funciones complejas por medio de series de potencias, lo

El interés fundamental que se persigue en este capítulo es la. representación de las funciones complejas por medio de series de potencias, lo Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 3 Series complejas El iterés fudametal que se persigue e este capítulo es la represetació de las fucioes complejas

Más detalles

Cálculo I (Grado en Ingeniería Informática) Examen final, enero de 2014

Cálculo I (Grado en Ingeniería Informática) Examen final, enero de 2014 Cálculo I (Grado e Igeiería Iformática 03-4 Exame fial, eero de 04 PUNTUACIÓN DEL EXAMEN: P. P. P. 3 P. 4 P. 5 P. 6 TOTAL Iicial del primer apellido: NOMBRE: APELLIDOS: D.N.I. O PASAPORTE: FIRMA: Notas

Más detalles

Listado para la Evaluación 2 Cálculo II (527148)

Listado para la Evaluación 2 Cálculo II (527148) Uiversidad de Cocepció Facultad de Ciecias Físicas y Matemáticas Departameto de Matemática Área, Volume y Logitud de arco. Listado para la Evaluació Cálculo II (5748). Calcular el área ecerrada por la

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

TALLER DEL CENTRO DE APRENDIZAJE DE MATEMÁTICAS

TALLER DEL CENTRO DE APRENDIZAJE DE MATEMÁTICAS TALLER DEL CENTRO DE APRENDIZAJE DE MATEMÁTICAS Series Ifiitas de Números y Fucioes Guillermo Romero Melédez Departameto de Actuaría, Física y Matemáticas ü 1. SERIES DE NÚMEROS ü La serie =0 a = a 0 +

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

Series alternadas. n n. Es decir sus términos son alternadamente positivos y negativos. Se analiza su comportamiento utilizando el siguiente teorema:

Series alternadas. n n. Es decir sus términos son alternadamente positivos y negativos. Se analiza su comportamiento utilizando el siguiente teorema: So series de la forma Series alteradas + ( ) a o ( ) a co a > = =. Es decir sus térmios so alteradamete positivos y egativos. Se aaliza su comportamieto utilizado el siguiete teorema: Teorema de Leibiz

Más detalles

Un numero en una sucesión: a n. Ejemplo: Qué termino de la sucesión. a n. Gráficamente:

Un numero en una sucesión: a n. Ejemplo: Qué termino de la sucesión. a n. Gráficamente: CONCEPTOS PREVIOS: Es u cojuto de úmeros que obedece a ua ley de formació. E geeral es ua fució del tipo : f:n R + 4 0 Ejemplo : a 64 3... 3 SUCESION CRECIENTE: a ; a > a SUCESION DECRECIENTE: + ; a+ a

Más detalles

Criterios de convergencia para series.

Criterios de convergencia para series. Criterios de covergecia para series. Para series e geeral, existe ua serie de criterios de covergecia:. Primer criterio de comparació.- Si ( ) y (b ) so dos sucesioes de úmeros reales tales que m N, tal

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA APLICADA. Temas 5 y 6 Sucesiones y Series. Series de Potencias

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA APLICADA. Temas 5 y 6 Sucesiones y Series. Series de Potencias Temas 5 y 6 Sucesioes y Series. Series de Potecias SUCESIONES E los siguietes problemas determie si la sucesió { } ecuetre el límite e caso de ser covergete..- { }.- { } = 5 a.- { } a 5.- { a} = + 9 a

Más detalles

TEMA 4. Series de números reales. Series de Potencias.

TEMA 4. Series de números reales. Series de Potencias. TEMA 4 Series de úmeros reales. Series de Potecias.. Sucesió de úmeros reales Las sucesioes de úmeros reales so ua buea herramieta para describir la evolució de ua magitud discreta, y el ite surge al estudiar

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

S6: Series Numéricas (I)

S6: Series Numéricas (I) S6: Series Numéricas (I) Aprederemos como hacer sumas co u úmero ifiito de térmios. U ejemplo de suma ifiita es: 0 + + + + 4 + 5 + Para sumarla primero sumaremos térmios y después haremos +. Notació: S

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García EJERCICIOS DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Ídice 3. Sucesioes y series. 3.. Sucesioes de úmeros reales..............................

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas TEMA 6 Sucesioes y series uméricas Objetivos: Los objetivos so: () estudiar la covergecia de las sucesioes uméricas, (2) Coocer las series uméricas y sus propiedades; (3) saber aplicar los criterios y

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias.

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias. Sesió 27 Series de potecias Temas Series de potecias. Itervalo y radio de covergecia de ua serie de potecias. Capacidades Coocer y compreder el cocepto de serie de potecias. Determiar el itervalo y el

Más detalles

2.- Pruebe, la convergencia de las siguientes sucesiones: b n. 4.- Investigar la convergencia de la sucesión dada por la formula recursiva :

2.- Pruebe, la convergencia de las siguientes sucesiones: b n. 4.- Investigar la convergencia de la sucesión dada por la formula recursiva : UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE MATEMATICAS APLICADAS MATEMATICAS IV TRIMESTRE Eero- Abril 004 PRACTICA DE SUCESIONES Y SERIES.- Ivestigue si las siguietes sucesioes so o o covergete. Si coverge,

Más detalles

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Series Infinitas

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Series Infinitas Uiversidad Nacioal Autóoma de México Liceciatura e Ecoomía Cálculo Diferecial e Itegral Series Ifiitas El ifiito! Nigua cuestió ha comovido ta profudamete el espíritu del ser humao. David Hilbert Defiició

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre Cálculo II (5) Semestre - TEMA 6 SERIES DE POTENCIAS Semestre - José Luis Quitero Julio Departameto de Matemática Aplicada UCV FIUCV CÁLCULO II (5) José Luis Quitero Las otas presetadas a cotiuació tiee

Más detalles

FACULTAD de INGENIERÍA Análisis Matemático A. TRABAJO PRÁCTICO N 6: Series numéricas - Series de potencias

FACULTAD de INGENIERÍA Análisis Matemático A. TRABAJO PRÁCTICO N 6: Series numéricas - Series de potencias FACULTAD de INGENIERÍA Aálisis Matemático A TRABAJO PRÁCTICO N 6: Series uméricas - Series de potecias a se sabe que su sucesió de sumas parciales {S } está dada por = ) De la serie + N. Calcule el carácter

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

EXAMEN TEMA 1. Sucesiones, series, dos variables

EXAMEN TEMA 1. Sucesiones, series, dos variables GRUPO Ma 4-5) CÁLCULO Facultad de Iformática UPM) 5-Juio - 05 Tiempo: horas º º 3º 4º 5º suma EXAMEN TEMA. Sucesioes, series, dos variables. ptos.) Determiar el valor que ha de teer a R para que se cumpla

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224 Límite y cotiuidad E S Q U E M A D E L A U N I D A D.. Térmio geeral de ua sucesió págia 7.. Progresioes aritméticas y geométricas págia 7. Sucesioes págia 7. Idea ituitiva de límite de ua sucesió págia..

Más detalles

Capítulo 2. Series de números reales. 2.1 Convergencia de una serie de números reales.

Capítulo 2. Series de números reales. 2.1 Convergencia de una serie de números reales. Capítulo 2 Series de úmeros reales Defiició 2.0. Dada ua sucesió a, a 2, a 3,,, de úmeros reales, la sucesió S, S 2, S 3,, S, dode: S = a S 2 = a + a 2 S 3 = a + a 2 + a 3 S = a + a 2 + a 3 + + se dice

Más detalles

Series de funciones en C z n z. f n (z) converge puntualmente en D C, entonces

Series de funciones en C z n z. f n (z) converge puntualmente en D C, entonces Series de fucioes e C. Defiició. Sea f : D C;, ua sucesió de fucioes. Sea S : D C la sucesió defiida por S (z) = f (z). La serie f (z) se dice covergete e z D si la sucesió {S (z)} es k= covergete e z

Más detalles

1.1. SERIES NUMÉRICAS Y FUNCIONALES.

1.1. SERIES NUMÉRICAS Y FUNCIONALES. .. SERIES NUMÉRICAS Y FUNCIONALES. Dado el cojuto de los úmeros reales, ua sucesió de úmeros reales es ua aplicació de la forma: + a : Z verificado que a () = a, (2),, ( ), a = a 2 a = a. Usualmete e lugar

Más detalles

Conjunto de números dispuestos uno a continuación de otro: a 1, a 2, a 3,..., a n. Sucesión inversible o invertible. a n 1 a n.

Conjunto de números dispuestos uno a continuación de otro: a 1, a 2, a 3,..., a n. Sucesión inversible o invertible. a n 1 a n. Sucesioes Tema 8.- Sucesioes y Límites Cojuto de úmeros dispuestos uo a cotiuació de otro: a, a, a 3,..., a Operacioes a =a, a, a 3,..., a b =b, b, b 3,..., b Suma Diferecia (a )+(b )=(a +b )= a +b, a

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

PROPIEDADES DE LAS SUCESIONES. Un tipo importante de sucesiones son las llamadas sucesiones monótonas.

PROPIEDADES DE LAS SUCESIONES. Un tipo importante de sucesiones son las llamadas sucesiones monótonas. ANÁLISIS MATEMÁTICO BÁSICO. PROPIEDADES DE LAS SUCESIONES. U tipo importate de sucesioes so las llamadas sucesioes moótoas. Defiició.. a: Ua sucesió de úmeros reales ( ) = se llama moótoa creciete si +

Más detalles

Cálculo. 1 de septiembre de Cuestiones

Cálculo. 1 de septiembre de Cuestiones Cálculo. de septiembre de 005 Cuestioes. Si ua fució f(x, y) es cotiua e (0, 0), etoces: a) f(0, 0) = 0. b) f(x, y) = 0. (x,y) (0,0) c) f es difereciable e (0,0). d) igua de las ateriores. Si ua fució

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y Series

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y Series SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y Series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez 3 Sucesioes

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen:

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen: CÁLCULO I EXAMEN FINAL 15 de eero de 16 Apellidos: Titulació: Duració del exame: horas 3 Fecha publicació otas: -1-16 Fecha revisió exame: -1-16 Todas las respuestas debe de estar justificadas acompañádolas

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 3: Series de térmios positivos. Criterios de covergecia. Series de térmios positivos Elaborado por los profesores Edgar Cabello y Marcos Gozález La característica fudametal de ua serie cuyos

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

(Use el Criterio de la Integral) (Diga Si es Condicional o. absolutamente convergente)

(Use el Criterio de la Integral) (Diga Si es Condicional o. absolutamente convergente) Primer Parcial Matemáticas IV Series y Sucesioes. Determie si las siguietes series so covergetes (a) + 3 2 + (Use el Criterio de la Itegral) (b) + 3 (Use el Criterio Básico de Comparació) (c) + ( ) 5 5

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 7/09/08 Tema : Series. Itroducció Criterios de Covergecia Sólo podremos calcular la suma de alguas series, e la mayoría os será imposible y os tedremos que coformar co saber si coverge

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

( ) Fundamentos Matemáticos I Curso Nombre y Apellidos. 31 Octubre. Opción A Puntuación: 2+5. Pregunta 1. La serie.

( ) Fundamentos Matemáticos I Curso Nombre y Apellidos. 31 Octubre. Opción A Puntuación: 2+5. Pregunta 1. La serie. Fudametos Matemáticos I Curso 08-09 Octubre Opció A Putuació: 2+5 Preguta La serie = ( ) 5 + Es covergete a 5/ Es oscilate Es divergete Nigua de las ateriores Preguta 2 Se cosidera la serie el valor de

Más detalles

Práctica 8: Series - Convergencia Uniforme - Espacios de Funciones

Práctica 8: Series - Convergencia Uniforme - Espacios de Funciones Cálculo Avazado Segudo Cuatrimestre de 2005 Práctica 8: Series - Covergecia Uiforme - Espacios de Fucioes Ejercicio. i) E cada uo de los casos siguietes, hallar el límite putual de la sucesió (f ) N deida

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series Programa de Acceso Iclusivo, Equidad y Permaecia PAIEP Uiversidad de Satiago de Chile Series Sea {a } N ua sucesió de úmeros reales, etoces a la expresió a + a 2 + a 3 + + a + se le deomia serie ifiita

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

4.- Series. Criterios de convergencia. Series de Taylor y Laurent 4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales

Más detalles

Práctica 3 Sucesiones y series

Práctica 3 Sucesiones y series Práctica 3 Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y Sum que os permitirá, e la

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

Práctica 4 Series de funciones y de potencias

Práctica 4 Series de funciones y de potencias MATEMATICA 4 - Aálisis Matemático III Primer Cuatrimestre de 208 Práctica 4 Series de fucioes y de potecias. (*) Aalizar la covergecia putual y uiforme de las siguietes sucesioes de fucioes e los cojutos

Más detalles