Solución. - Verticales: En los puntos excluidos del dominio donde el límite quede de la forma k. 3( ) = Asíntota vertical. = + x 2.
|
|
- Julián López Sosa
- hace 5 años
- Vistas:
Transcripción
1 Estudiar sus asíntotas y ramas ininitas valorando la posición de la unción respecto de ellas.. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D[ ( ) ] R { } 6 : Se estudian los límites laterales en Horizontales: y L: ( ) : L ± ± ( ) : No tiene asíntotas horizontales. - Oblicuas: y m n m ( ) ± ± ± ± ± ± ( ( ) ) n m ± ± ± ± ± ± Asíntota oblicua: y 8 ( ( ) ( m n) ) ( 8) ± ± ± 6 6 La unción se aproima a la asíntota por debajo. 6 6 La unción se aproima a la asíntota por encima. ( ) 8 ( 8) ( ) 6 ± Otra orma:
2 . ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D [ ( ) ] R {, } : Se estudian los límites laterales en. ( ) ( ) ( ) ( ) ( ) ( ) : 6 Se estudian los límites laterales en. 6 ( ) ( ) ( ) ( ) Horizontales: y L: L ( ) ± ± Asíntota horizontal y. ± ± ( ± ) ± Posición relativa: ± ( ( ) L) debajo. encima. ± ± : La unción se aproima a la asíntota por : La unción se aproima a la asíntota por ± ± - Oblicuas: Por tener asíntotas horizontales hacia ±, no tiene oblicua.. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D [ ( ) ] R { } :
3 Se estudian los límites laterales en. - Horizontales: y L: ( ) ( ± ) L ± ± ± ± La unción no tiene asíntotas horizontales - Oblicuas: y m n ( ) ± ± m ± ± ± ± ± ± La unción no tiene asíntota oblicua. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D [ ( ) ] R { } : Se estudian los límites laterales en. - Horizontales: y L: L ± ± La unción no tiene asíntotas horizontales ± ± ± ± - Oblicuas: y m n m ± ± ± n ( ) m ± ± ( ) ( ± ) ± ± ( ) ± ±
4 Asíntota oblicua: y ± ( ( ) ( m n) ) encima. debajo. ± ± La unción se aproima a la asíntota por La unción se aproima a la asíntota por ± Otra orma:. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D [ ( ) ] R { } : Se estudian los límites laterales en. - Horizontales: y L: ± ± ± L ± ± ± ± La unción no tiene asíntotas horizontales - Oblicuas: y m n m ± ( ) ± ± ± ( ) ( ± ) ± ± ( ( ) ) n m ± ± ± ± ± ± ± Asíntota oblicua: y ( )
5 ( ( ) ( m n) ) ( ) ± ± ± 8 8 La unción se aproima a la asíntota por debajo. 8 8 La unción se aproima a la asíntota por encima. ( ) ( ) 8 ± Otra orma: 6. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma [ ( ) ] R D La unción no tiene asíntotas verticales. - Horizontales: y L: L ( ) ± ± ± Asíntota horizontal y. ( ± ) ( ± ) ( ( ) ) ( ) L ± ± ± ± : La unción se aproima a la asíntota por encima. ( ) ( ) : La unción se aproima a la asíntota por encima. - Oblicuas: Por tener asíntotas horizontales hacia ±, no tiene oblicua.
6 7. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma [ ( ) ] R { } ( ) ( ) D ± : 8 Se estudian los límites laterales en. ( ) 8 8 ( ) ( ) ( ) ( ) ( ) ( ) 8 8 ( ) ( ) ( ) ( ) ( ) : 8 Se estudian los límites laterales en. 8 8 ( ) ( ) ( ) ( ) 8 8 ( ) ( ) ( ) ( ) - Horizontales: y L: L ( ) ± ± ± Asíntota horizontal y. ± ( ± ) ( ( ) L) ± ± ± ± ± : La unción se aproima a la asíntota por debajo. : La unción se aproima a la asíntota por encima. - Oblicuas: Por tener asíntotas horizontales hacia ±, no tiene oblicua. 6
7 8. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D [ ( ) ] R { } : Se estudian los límites laterales en. - Horizontales: y L: L ( ) ( ) ( ) ( ) ± ± ± ± ( ) ± ± ± ± La unción no tiene asíntotas horizontales - Oblicuas: y m n m ± ± ± ( ) ( ± ) ± ± ( ) ( ) ± ( ) ( ( ) ) n m ± ± ± ± ± ( ) ± Asíntota oblicua: y ( ( ) ( )) m n ± ± ( ) ± ( ) ( ) ± ( ) ± ( ) ( ) ( ) La unción se aproima a la asíntota por encima. La unción se aproima a la ( ) ( ) asíntota por debajo. Otra orma: 7
8 9. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D : [ ( ) ] R {, } ( ) ( ) ( ) Se estudian los límites laterales en. ( ) ( ) ( ) ( ) ( ) ( ) : Factorizar ( ) En, la unción presenta una discontinuidad evitable. No hay asíntota vertical. - Horizontales: y L: L ± ± ± Asíntota horizontal y. ± ± ( ) ( ( ) L) ± ± ± ± ± : La unción se aproima a la asíntota por encima. : La unción se aproima a la asíntota por debajo. - Oblicuas: Por tener asíntotas horizontales hacia ±, no tiene oblicua. 8
9 . ( ) ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma [ ( ) ] R D La unción no tiene asíntotas verticales. - Horizontales: y L: L ± ± ± Asíntota horizontal y. ( ) ± ( ± ) ( ± ) ( ( ) ) ( ) L ± ± ± ± : La unción se aproima a la asíntota por debajo. ( ) ( ) aproima a la asíntota por debajo. : La unción se - Oblicuas: Por tener asíntotas horizontales hacia ±, no tiene oblicua.. ( ) ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma : D [ ( ) ] R { } ( ) ( ) Se estudian los límites laterales en. ( ) ( ) ( ) ( ) ( ) ( ) - Horizontales: y L: L ± ( ) ± ± Asíntota horizontal y. ± ± ( ± ) ( ± ) 9
10 ( ( ) L) ± ± : La unción se aproima a la asíntota por debajo. : La unción se aproima a la asíntota por encima. ( ) ± ± ± - Oblicuas: Por tener asíntotas horizontales hacia ±, no tiene oblicua.. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma [ ( ) ] R D La unción no tiene asíntotas verticales. - Horizontales: y L: L ( ) ( ) Hacia la unción no tiene asíntota horizontal. L Conjugado Hacia la unción tiene asíntota horizontal y. - Oblicuas. y m n: Por tener asíntotas horizontales hacia, la unción no tiene oblicua. Por no tener asíntota horizontal hacia hay que estudiar la posibilidad de que tenga asíntota oblicua. m ( ) El problema de este límite está en la epresión, cuando tiende a queda, siendo ambos ininitos de igual grado y de distinto signo, por lo tanto
11 m Otra orma de resolver el límite es dividir por ( ) en vez dividir por. ( ) m ( ) ( ) ( ) ( ) Conjugado m n ( ) ( ) Asíntota oblicua hacia y ( ) ( ) ( ) ( ) Conjugado n m ( ) ( ) La unción se aproima a la asíntota por encima.
12 . ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma : [ ( ) ] R { } ( ) ( ) D ± Se estudian los límites laterales en. ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) : Se estudian los límites laterales en. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) - Horizontales: y L: ( ) ( ± ) ± L ± ± ± ± ( ± ) La unción no tiene asíntotas horizontales - Oblicuas: y m n ( ) m ± ± ± ± n ( ± ) ( ( ) m) ( ) ± ± ± ± ± Asíntota oblicua y ± ( ± ) m ± ( ( ) ( m n) ) ( ) ± ± ± ±
13 ( ) : La unción se aproima a la asíntota por encima. : La unción se aproima a la asíntota por debajo.. ( ) e - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma [ ( ) ] R D La unción no tiene asíntotas verticales. - Horizontales: y L: L ± ( ) ± e Asíntota horizontal hacia y. e e e e >> e e ( ( ) L) asíntota por encima. e > > : La unción se aproima a la - Oblicuas: y m n. Por tener asíntotas horizontales hacia, la unción no tiene oblicua. Por no tener asíntota horizontal hacia hay que estudiar la posibilidad de que tenga asíntota oblicua hacia. ( ) m e e e La unción no tiene oblicua hacia.
14 . ( ) e - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma [ ( ) ] R D La unción no tiene asíntotas verticales. - Horizontales: y L: L Asíntota horizontal y. e ± e ( ± ) e ± ± ± unción se aproima a la asíntota por encima. ( ( ) ) ( ± ) L e e e e - Oblicuas: Por tener asíntotas horizontales hacia ±, no tiene oblicua. e : La
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Ejercicio nº.- Estudia y representa la siguiente unción: ( ) + 6 Ejercicio nº.- Dibuja la gráica de la unción: ( + ) ( ) Ejercicio nº.- Dada la unción: y sen sen, [0, ] a) Halla
Procedimiento para determinar las asíntotas verticales de una función
DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición
Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados:
Tema. Límites y continuidad. HOJA ASÍNTOTAS º Bachillerato de CCSS Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados: ) f ( ) 4 f ( ) es una función polinómica
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como
Asíntotas en una función.
Asíntotas en una unción. Las asíntotas son rectas a las cuales la unción se va aproimando indeinidamente, cuando por lo menos una de las variables ( o y) tienden al ininito. Deinición: Si un punto, y )
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo
REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS
REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo
lím f(x) lím f(x) lím f(x) lím f(x) lím f(x)
. La siguiente gráfica corresponde a la función f(). Halla el valor de los siguientes ites: 0 - y 9 8 7 6 5-9 -8-7 -6-5 - - - - - 5 6 7 8 9 - - - -5-6 -7-8 -9. La siguiente gráfica corresponde a la función
Límites y continuidad
Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
x + x 2 +1 = 1 1 = 0 = lím
UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado
LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN. Límite de una función en un punto
LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN Límite de una función en un punto xc Se lee: El límite cuando x tiende a c de f(x) es l Notas: - Que x se aproxima a c significa que toma valores muy
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Estudios J.Concha ( fundado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Javier Concha y Ramiro Froilán Tema 8 Límites de funciones, continuidad
CÁLCULO DIFERENCIAL 9. UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS
CÁLCULO DIFERENCIAL 9 UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS SOLUCIONES DE LA COLECCIÓN DE PROBLEMAS - CAPÍTULO 3 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD
EJERCICIOS DE LÍMITES DE FUNCIONES
EJERCICIOS DE LÍMITES DE FUNCIONES Ejercicio nº.- A partir de la gráica de (), calcula: c) d) e) 5 Ejercicio nº.- La guiente gráica corresponde a la unción (). Sobre ella, calcula los límites: c) d) e)
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
Límites y continuidad
Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces
Problemas de Asíntotas de funciones
www.vaasoftware.com/gp 1) Determinar las asíntotas verticales de la siguiente función y estudiar la posición de la 1 + 5 ) Determinar las asíntotas verticales de la siguiente función y estudiar la posición
Representación de funciones
Representación de unciones Ejercicio nº.- Representa una unciónpolinómica, de la que sabemosque : lim ; lim Suderivadaes en Corta a los ejesen, en,.,,,,,,. Ejercicio nº.- Dibuja la gráica de la unción,
y con la semiamplitud δ =1. 2.
LÍMITE DE UNA FUNCIÓN UNIDAD II II. ENTORNOS Se denomina entorno de un punto a en, al intervalo abierto ( δ a δ ) semiamplitud del intervalo. a, donde δ es la El entorno de a, en notación de conjuntos
1.5 Límites infinitos
SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos
y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1
Funciones Límites y continuidad Curso 06/7 Ejercicio puntos 0 Dadas las unciones = e, g = y h ( ) log ( ) =, se pide: Encuentra el dominio de la unción ( g h) Encuentra la unción y esboza su gráica, apoyándote
TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS
TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas
Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:
Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0
FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN
FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),
REPRESENTACIÓN GRÁFICA DE FUNCIONES
REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje
SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:
Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua
Continuidad, límites y asíntotas. Funciones
9 Continuidad, ites y asíntotas Funciones Introducción El estudio de la continuidad de una función se inicia desde el análisis de la gráfica de la función. Este análisis, intuitivo y fácil, pero insuficiente
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto
LÍMITE DE UNA FUNCIÓN EN UN PUNTO
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos
TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD
TEMA.-Límites de funciones y continuidad.- Matemáticas I. SUCESIONES DE NÚMEROS REALES TEMA.-LÍMITES DE FUNCIONES Y CONTINUIDAD Una sucesión de números reales es un conjunto de números (a, a, a 3,...,
LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS
LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () =,5; f (,9) =,95; f (,99) =,995 Calcula f (,999); f (,9999); f (,99999); A la vista
APUNTES. Obtención del dominio de las funciones:
Materia: Tema: Curso: APUNTES Obtención del dominio de las funciones: - Si f(x) es una constante, la función no presentará problema alguno, el dominio será todos los puntos pertenecientes al conjunto de
TEMA 11 REPRESENTACIÓN DE FUNCIONES
Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar:
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
LÍMITES Y CONTINUIDAD
LÍMITES Y CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Dada una función f(), diremos que el ite de f() cuando tiende a a es el número real L y lo escribiremos f() = L, si al tomar cada vez valores más
tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))
Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio
f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5
IES Padre Poveda (Guadi) UNIDAD : LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos
CARACTERÍSTICAS DE UNA FUNCIÓN
. DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.
1.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO.
º Bachillerato Matemáticas I Tema 8:Límites y continuidad.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. En ocasiones interesa saber hacia qué valor se aproima una función cuando la variable
f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5
IES Padre Poveda (Guadi) UNIDAD LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos a
4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones:
4. CONTINUIDAD DE UNA FUNCIÓN. 4.. Noción intuitiva de continuidad de una unción en un punto. La mayor parte de las unciones que manejamos a nivel elemental, presentan en sus gráicas una propiedad característica
REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES
REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES Cuadro resumen de las INDETERMINACIONES. Tipo I. k f () a Método: calcular los límites laterales. Ejemplo: 6 0 0 Tipo II. f () a Caso. f() es un
Procedimiento para determinar las asíntotas verticales de una función
DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición
Procedimiento para determinar las asíntotas verticales de una función
DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición
I.- Límite de una función
I.- Límite de una función a) En un punto En la mayoría de las funciones que vas a encontrarte, el límite, cuando tiende a un número real c, coincide con el valor numérico f(c), siempre que c pertenezca
Límites. Continuidad.
Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Límite finito cuando x tiende a infinito (1) Límite finito cuando x tiende a infinito (2) Se dice que el límite de la función f(x) cuando
1. f(x) = x3 1 x 2. 2. f(x) = x2 9 x 2 4. 3. f(x) = x 3 x + 2. x 3 (x 1) 2. 4. f(x) = 5. f(x) = x + 5 x 2 9. 6. f(x) = x2 3 x 2. x 2 3 x 2. 7.
. f() =. f() = 9. f() =. f() = ( ). f() = 9 6. f() = 7. f() =. f() = 9. f() = p. f() =. f() =. f() = ( ). f() = 9. f() = ( ) . f() = Función racional con asíntota oblícua. Einamos los puntos que anulan
2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.
Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota
Límites y continuidad. k) lim. m) lim. p) lim. r) lim. s) lim
Límites y continuidad. Calcula, si eisten, los siguientes límites: a) b) 5 9 c) ln 0 d) e) 5 f) g) π h) 4 ² 4 +4 0 e sen sen +6 i) sen j) π +cos k) l) + si + si > m) 0 sen si 0 cos si >0 n) o) p) q) 5
1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:
Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos la función: f Su gráfica: si < si > Si toma valores próimos a, distintos de y menores que ej.: 9, 99, 999,,
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x
Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '
FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0
FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones
Denominadores: un denominador nunca se puede hacer cero. Ejemplo: 𝑓 𝑥 =
1. Continuidad de funciones. Una función es continua en 𝑥 = 𝑎, si se cumple: Existe 𝑓(𝑎). lim!! 𝑓 𝑥 = lim!!! 𝑓(𝑥) = lim!!! 𝑓 𝑥 𝒇 𝒂 = 𝐥𝐢𝐦𝒙 𝒂 𝒇 𝒙 Las funciones definidas por expresiones analíticas elementales
UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento
Teoría Tema 9 Representación gráfica de funciones
página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
Tema 10: Funciones racionales y potenciales. Asíntotas.
1 Tema 10: Funciones racionales y potenciales. Asíntotas. 1. Funciones racionales. Una función racional es de la forma =p()/q(), donde p() y q() son polinomios, con q()0. El dominio de una función racional
TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD
MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores
ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN
ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN La gráfica de una función elemental puede presentar ninguna una o varias asíntotas verticales y además puede presentar a lo sumo una asíntota horizontal o una asíntota
EXAMEN DE FUNCIONES ELEMENTALES
EXAMEN DE FUNCIONES ELEMENTALES Se recomienda: a) Antes de hacer algo, leer todo el eamen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta.
SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257
TEMA. LÍMITES Y CONTINUIDAD SOLUCIONES DE LAS ACTIVIDADES Págs. 9 a 7 Página 9 Página. a) f() 0. a) f() 0, 0,0 0,00 0,000 f(),,9,99,999,9,99,999,9999 f() 00 0.000 0 6 0 8 b) f() 0 0, 0,0 0,00 0,000 f(),,0,00,000
EXAMEN DE LÍMITES Y CONTINUIDAD
EXAMEN DE LÍMITES Y CONTINUIDAD Se recomienda: a) Antes de hacer algo, leer todo el eamen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta.
Tema 1. Cálculo diferencial
Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten
LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS
LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);
Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0
Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función
. Si grado p x grado q x lim f x = k con lo que la función f x tiene una asíntota horizontal.
Límites y continuidad de funciones. Curso 4/5 Ejercicio. Determina las asíntotas de la función f ( ) y analiza la posición de la gráfica con respecto a ellas. f ( ) 3 8 p ( ) q( ) R Una función cuya epresión
el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.
Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.
Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)
APUNTES DE FUNCIONES PARA 4º ESO
APUNTES DE FUNCIONES PARA 4º ESO - DEFINICIÓN: Una función es una relación entre dos magnitudes, X e Y, de forma que a cada valor de la magnitud X corresponde un único valor y de la magnitud Y. : variable
Matemática - FAZ 2015. Función exponencial
Función eponencial La función eponencial surge naturalmente cuando se estudian diversos fenómenos relacionados con el crecimiento decrecimiento de poblaciones humanas, con colonia de bacterias, con sustancias
1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.
6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento
Límites, continuidad y asíntotas
BLOQUE II Análisis 6. Límites, continuidad y asíntotas 7. Cálculo de derivadas. Aplicaciones de las derivadas 9. Análisis de funciones y representación de curvas 0. Integral indefinida y definida 6 Límites,
Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í
Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A
EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A
Ejercicio 1. (2,5 puntos) EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Dada la función f (x)= 3 x 2 +3 x a) (1,25 puntos) Indicar el dominio de definición de la función f y hallar
TEMA 6 : LÍMITES DE FUNCIONES. CONTINUIDAD
TEMA 6 : DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejercicio: Observa la gráfica siguiente: a) Estudia el dominio, el recorrido y la continuidad de f(). b) Indica si eisten los límites
Límite de una función
Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Teoría Tema 8 Ejemplos y más ejemplos de límites
página 1/10 Teoría Tema 8 Ejemplos y más ejemplos de límites Índice de contenido Practicar y practicar...2 página 2/10 Practicar y practicar Como existen infinitas funciones distintas... existen infinitos
En este capítulo veremos como estudiar la continuidad de distintas funciones = + 5
En este capítulo veremos como estudiar la continuidad de distintas funciones Ejemplo 1 + 5 Como la función es un polinomio, es continua en R (todos los números reales. Nota: Cualquier polinomio sea del
(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos
(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen
CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más
1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO: CÁLCULO DIFERENCIAL Una función f(x) tiene por límite L en el número real x = c, si para toda sucesión de valores x n c del dominio que tenga por límite c, la sucesión
CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,
RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan
FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y
. DEFINICIÓN FUNCIONES Una unción real de variable real es una relación entre dos variables numéricas e y de orma que a cada valor de la variable le corresponde un único valor del la variable y. La variable
EJERCICIOS DE REPASO SOBRE LÍMITES Y CONTINUIDAD I
EJERCICIOS DE REPASO SOBRE LÍMITES Y CONTINUIDAD I Ejercicio 1: En este ejercicio vamos a recordar como se resuelven las indeterminaciones más importantes. En cada indeterminación se describen los primeros
Tipos de Funciones. 40 Ejercicios para practicar con soluciones. 1 Representa en los mismos ejes las siguientes funciones: 1 x
Tipos de Funciones. 40 Ejercicios para practicar con soluciones Representa en los mismos ejes las siguientes funciones: a) y = ; b) y = ; c) y = y= y= y= Representa las siguientes funciones: a) y = b)
Estudio de las funciones RACIONALES
Estudio de las funciones RACIONALES 2 o BACH_MAT_CCSS_II Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos..... Funciones racionales. Página 1 RESUMEN DE OBJETIVOS 1. Cálculo de las raíces, los
ANÁLISIS MATEMÁTICO I TEMA III : CONTINUIDAD Hoja: 1
ANÁLISIS MATEMÁTICO I TEMA III : CONTINUIDAD Hoja: 1 A) i) Estudiar la continuidad, en R, de las siguientes funciones. En caso de eistir puntos de discontinuidad, clasificarlos. Redefinirlas si es posible.
"""##$##""" !!!""#""!!!
Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 11 AUTTOEEVALLUACI IÓN 1 Eplica qué significan los símbolos 0 y -. 0 ( tiende a 0) significa que tomamos valores ( 0) cuya distancia a 0, dada por, se hace
Representación gráfica de funciones. Un ejemplo resuelto. Para comprobar si tiene asíntotas oblicuas, calculamos el límite cuando x tiende a -
Representación gráica de unciones. Un ejemplo resuelto Consideremos la unción deinida por la epresión + =. Dominio Debemos ecluir del dominio los valores de que anulan el denominador. Así, el dominio Dom
Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?
LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor
FUNCIONES RACIONALES. HIPÉRBOLAS
www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD
TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.