Introducción a la integración numérica
|
|
- Gustavo Rivas Maestre
- hace 6 años
- Vistas:
Transcripción
1 Tem 7 Introducción l integrción numéric Versión: 13 de ril de Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno delimitd por l gráfic de l función, el eje de sciss y ls rects verticles x = y x = ver Figur 7.1). Figur 7.1: Áre encerrd entre l gráfic de l función f, el eje de sciss y ls rects x = y x =. Este concepto mtemático tiene, demás del cálculo de áres, numeross plicciones, de ls que se citn sólo lguns: L longitud del rco de l curv y = fx) comprendido entre los puntos, f)) y, f)) viene dd por L = 1 + f x)) dx 49
2 Introducción l integrción numéric 50 L distnci recorrid por un ojeto que se mueve con velocidd vrile v = vt) desde el instnte t 0 st el instnte T viene dd por: S = T t 0 vt) dt El centro de grvedd, C, del rco de l curv y = fx), comprendido entre los puntos, f)) y, f)) tiene ls coordends L es l longitud de l curv): x C = 1 L x 1 + y dx y C = 1 L x 1 + y dx. Si se conoce un primitiv, F, de l función F, es ien sido que el vlor de l integrl definid se puede clculr medinte l Regl de Brrow: fx) dx = F ) F ). En l myorí de los csos, sin emrgo, no se puede utilizr est fórmul, y que no se conoce dic primitiv. Es posile, por ejemplo, que no se conozc l expresión mtemátic de l función f, sino sólo sus vlores en determindos puntos. Pero tmién y funciones de prienci sencill) pr ls que se puede demostrr que no tienen ningun primitiv que pued escriirse en términos de funciones elementles por ejemplo e x dx ) L integrción numéric es un errmient de ls mtemátics que proporcion fórmuls y técnics pr clculr proximciones de integrles definids. Grcis ell se pueden clculr, unque se de form proximd, vlores de integrles definids que no pueden clculrse nlíticmente y, sore todo, se puede relizr ese cálculo en un ordendor. 7. Fórmuls de cudrtur. Orden Ls fórmuls que proporcionn un proximción del vlor de un integrl definid se conocen con el nomre de fórmuls de cudrtur. En sus versiones más sencills, ests fórmuls proximn el áre jo l curv por el áre, precid, de un prlelogrmo. Esto sólo proporcion un uen proximción si l se del prlelogrmo es pequeñ. Por ello, ls fórmuls verddermente útiles proximn l integrl definid medinte un sum finit de áres de prlelogrmos de se pequeñ. Vénse ls Figurs 7. y 7.3. En generl, ls fórmuls de cudrtur se pueden escriir en l form: I f) = n α k fx k ), 7.) k=1 vrindo uns de otrs en l form de elegir los puntos {x 1 < < x n } en el intervlo [, ] y los coeficientes tmién llmdos pesos) α k, k = 1,..., n.
3 Introducción l integrción numéric 51 Figur 7.: El áre jo l curv se proxim por el áre del rectángulo de se el segmento [, ] y ltur f). Figur 7.3: El áre se proxim medinte un sum finit de áres de rectángulos similres l de l Figur 7., pero de se pequeñ. Pr determinr el grdo de exctitud de un fórmul de cudrtur, es decir el error que se comete l sustituir l integrl definid por l sum finit, Ef) = If) I f) = se suele utilizr el concepto de orden. fx) dx n α k fx k ), Se dice que un fórmul de cudrtur es de orden m o ien que es exct pr polinomios de grdo m) si el error de dic fórmul verific: { Ex k ) = 0, pr k = 0,..., m Ex m+1 7.3) ) 0. lo cul signific que l fórmul en cuestión proporcion el vlor excto de l integrl definid cundo se utiliz con un función f que es un polinomio de grdo menor o igul que m y no proporcion, en generl, el vlor excto pr polinomios de grdo myor que m. 7.3 Fórmuls de cudrtur elementles 1. Ls fórmuls de cudrtur más sencills son ls fórmuls de los rectángulos: k=1 fx) dx I 1 f) = )f), fx) dx I f) = )f). 7.4) En el primer cso se proxim l integrl por el áre del rectángulo de se [, ] y ltur f) y en el segundo por el de ltur f) ver Figurs 7.4 y 7.5). Es ovio que ms son de orden cero, es decir, excts pr polinomios constntes.
4 Introducción l integrción numéric 5 Figur 7.4: Fórmul del rectángulo de ltur f). Figur 7.5: Fórmul del rectángulo de ltur f).. L fórmul del punto medio es similr ls nteriores pero tomndo como ltur del rectángulo el vlor de f en el punto medio del intervlo ver l Figur 7.): Est fórmul es de orden 1: fx) dx I 3 f) = )f + ). 7.5) Ex) = Ex ) = E1) = x dx I 3 x) = x dx I 3 x ) = dx I 3 1) = ) ) = 0 [ ] [ ] 1 + ) ) ) = 0 [ ] [ ] ) 4 ) + ) 0 3. En l fórmul del trpecio se proxim l integrl por el áre del trpecio mostrdo en l Figur 7.7. Est fórmul tmién es de orden 1: Ex) = Ex ) = E1) = fx) dx I 4 f) = [ dx I 4 1) = ) x dx I 3 x) = x dx I 3 x ) = [ ] 1 ) f) + f) ). 7.) [ ] = 0 ] + ) = 0 [ ] [ ] ) ) 0
5 Introducción l integrción numéric 53 c Figur 7.: Fórmul del punto medio c = + )/). Figur 7.7: Fórmul del trpecio. 4. L últim de ls fórmuls elementles que se muestrn quí es l fórmul de Simpson. En ést, se proxim l integrl de f por el áre encerrd jo un rco de práol que coincide con f en tres puntos: los extremos del intervlo [, ] y su punto medio ver l Figur 7.7). fx) dx I 5 f) = f) + 4f + ) ) + f). 7.7) c Figur 7.8: Fórmul de Simpson: áre jo l práol que coincide con f en, y c = +. Rzonndo como ntes, es posile compror, que l fórmul de cudrtur de Simpson es de orden 3, es decir es exct pr polinomios de grdo 3.
6 Introducción l integrción numéric 54 EJEMPLO: Se consider l función fx) = cosx), pr l que se tiene If) = 1 1. Fórmuls de los rectángulos: 0 cosx) dx = 1 sen) = I 1 f) = cos0) = 1, I f) = cos) = 0.411,. Fórmul del punto medio: I 3 f) = cos1) = , 3. Fórmul del trpecio: I 4 f) = 1 cos0) + cos)) = Fórmul de Simpson: I 5 f) = 1 cos0) + 4 cos1) + cos)) = Es posile proponer otrs fórmuls de cudrtur del estilo de ls nteriores, por ejemplo utilizndo el vlor de l función en más puntos, o tmién, eligiendo los puntos de mner óptim pr conseguir que l fórmul de cudrtur socid se del myor orden posile. Pero ese estudio qued fuer del ámito de ests nots. Pr más detlles se pueden consultr, por ejemplo ls referencis [1] y []. 7.4 Fórmuls de cudrtur compuests Cundo el número de puntos ument n grnde), ls fórmuls de cudrtur simples considerds en l sección nterior, en generl no proporcionn proximciones muy files de l integrl. En l práctic, se usn ls fórmuls de cudrtur compuests, cuy ide de se es descomponer l integrl definid en un sum de integrles sore su-intervlos pequeños y plicr ls fórmuls nteriores sore cd uno de ellos: Sen { = x 1 < x < x n = } un conjunto de n puntos en el intervlo [, ]. Por ls propieddes de l integrl se tiene: fx) dx = x x 1 fx)dx + x3 x fx) dx + + xn x fx) dx = xi+1 x i fx) dx 7.8)
7 Introducción l integrción numéric 55 Se utiliz lgun de ls fórmuls elementles se I k ) en cd su-intervlo: fx) dx = xi+1 x i fx) dx I k f; [x i, x i+1 ]). 7.9) Ls fórmuls mostrds en l Sección.3 dn lugr, sí, ls siguientes fórmuls compuests. 1. Fórmuls de los rectángulos compuests: ver ls Figurs 7.9 y 7.10): fx) dx I c 1f) = fx) dx I c f) = I 1 f; [x i, x i+1 ]) = x i+1 x i )fx i ), I f; [x i, x i+1 ]) = x i+1 x i )fx i+1 ). En el cso prticulr en que todos los su-intervlos tienen l mism longitud,, como en l Figur 7.1, ls fórmuls nteriores se simplificn, tomndo l form: I1f) c = x i+1 x i )fx i ) = If) c = x i+1 x i )fx i+1 ) = fx i ) = fx i+1 ) = fx i. fx i+1 ), x 1 x x 3 x n x 1 x n Figur 7.9: Fórmul de los rectángulos compuest I c 1 ). Figur 7.10: Fórmul de los rectángulos compuest I c ). Su-intervlos de igul longitud.. Fórmul del punto medio compuest: ver l Figur 7.11): fx) dx I c 3f) = I 3 f; [x i, x i+1 ]) = x i+1 x i )f x i + x i+1 ),
8 Introducción l integrción numéric 5 que, en el cso en que todos los su-intervlos son de igul longitud se escrie: fx) dx I c 3f) = f x i + x i+1 ) = f x i + x i+1 ). x 1 x n x 1 x n Figur 7.11: Fórmul del punto medio compuest. Figur 7.1: Fórmul de los trpecios compuest. 3. L Fórmul de los trpecios compuest se construye de igul form ver l Figur 7.1): fx) dx I c 4f) = I 4 f; [x i, x i+1 ]) = y, en el cso de su-intervlos de igul longitud, I4f) c = x i+1 x i ) fx i) + fx i+1 ) fx i ) + fx i+1 )) = fx 1 ) + = x i+1 x i ) fx i) + fx i+1 ), 4. Por último, l Fórmul de Simpson compuest se escrie: fx) dx I c 5f) = x i+1 x i ) fx i ) + 4 f i= fx i) + fx i+1 ) fx i ) + fx n ) I 5 f; [x i, x i+1 ]) = xi + x i+1 ) ) + fx i+1 ), que, en el cso de su-intervlos de igul longitud, se trnsform en: I c 5f) = fx i ) + 4 f xi + x i+1 ) ) + fx i+1 ) = ) =
9 Introducción l integrción numéric 57 { fx 1 ) + fx i ) + 4 f i= xi + x i+1 fx i ) + fx n ) + 4 ) ) + fx i+1 ) = ) } xi + x i+1 f. EJEMPLO: Se consider de nuevo l integrl definid del ejemplo nterior, If) = 1 0 cosx) dx = 1 sen) = Utilizndo l fórmul de los puntos medios con 5 su-intervlos de igul longitud es decir, = 1/5 = 0. y {x i } = {0, 0., 0.4, 0., 0.8, 1}), se otiene: I c 3f) = 5 cos x ) i + x i+1 = 0. 5 cosx i + x i+1 ) = 0. cos0.) + cos0.) + cos1) + cos1.4) + cos1.8)) = Utilizndo l fórmul de los trpecios, tmién con 5 su-intervlos de igul longitud se otendrí: I4f) c = 5 cosx i ) + cosx i+1 )) = 0.1 cos0) + [cos0.4) + cos0.8) + cos1.) + cos1.)] + cos)) = Y finlmente, con l fórmul de Simpson compuest con los mismos su-intervlos se otiene I c 5f) = 5 cosx i ) + 4 cos x ) ) i + x i+1 + cosx i+1 ) = 0, 3333 {cos0) + cos0.4) + cos0.8) + cos1.) + cos1.)) + cos) + 4cos0.) + cos0.) + cos1) + cos1.4) + cos1.8))} = 0.454
10 Biliogrfí Versión: 13 de ril de 009 [1] A. Douov, F. Guillén González Un Curso de Cálculo Numérico: Interpolción, Aproximción, Integrción y Resolución de Ecuciones Diferenciles, Secretrido de Pulicciones, Univ. de Sevill, 007. [] J.H. Mtews, K.D. Fink, Métodos Numéricos con MATLAB, Prentice-Hll,
TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS
TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si
E.T.S. Minas: Métodos Matemáticos
E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.
Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.
APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo
METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:
METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8
Fórmulas de cuadratura.
PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid
Grado en Biología Tema 3 Integración. La regla del trapecio.
Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con
1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)
Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv
CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de,
Deprtmento de Mtemátics I.E.S. Vlle del Jerte (Plsenci) CÁLCULO INTEGRAL 2.- INTEGRAL DEFINIDA. Definición: Sen y dos números reles
CÁLCULO NUMÉRICO (0258) Tercer Parcial (20%) Jueves 27/09/12
Universidd Centrl de Venezuel Fcultd de Ingenierí Deprtmento de Mtemátic Aplicd CÁLCULO NUMÉRICO (58 Tercer Prcil (% Jueves 7/9/ Se l fórmul de diferencición numéric f(x f(x + + f(x + f ''(x Usndo series
INTEGRACIÓN NUMÉRICA
INTEGRACIÓN NUMÉRICA El principio de los métodos de integrción numeric, bsdos en ls fórmuls de Newton- Cotes, consiste en justr un un polinomio un conjunto de puntos y luego integrrlo. Al relizr dichs
Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =
Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
1. Función primitiva. Integral de una función.
. Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí
Integración Numérica
Métodos Numéricos: Integrción Numéric Edurdo P. Serrno Versión previ br 1 1. L integrl. Considermos el problem de clculr l integrl: If) = fx) dx donde f es un función continu. El vlor If) puede clculrse,
Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite
INTEGRALES LECCIÓN Índice: El prolem del áre. Ejemplos. Prolems..- El prolem del áre Se f un función continu y no negtiv en [,]. Queremos clculr el áre S de l región del plno limitd por l gráfic de f,
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.
Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción
INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.
INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo
Complementos de Matemáticas, ITT Telemática
Complementos de Mtemátics, ITT Telemátic Tem 3. Deprtmento de Mtemátics, Universidd de Alclá Índice 1 básic 2 Obtención de ls regls de cudrtur 3 Error de cudrtur 4 Regls compuests Introducción Integrl
Tema 11: Integral definida. Aplicaciones al cálculo de áreas
Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd
Integración numérica I
Tems Regl del rectángulo. Regl del trpecio. Cpciddes Conocer y plicr l regl del rectángulo. Conocer y plicr l regl del trpecio. 1.1 Introducción Como y se h visto, pr clculr el vlor excto de un integrl
Tema 10: Integral definida. Aplicaciones al cálculo de áreas
Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd
Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D
INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de
Parte 7. Derivación e integración numérica
Prte 7. Derivción e integrción numéric Gustvo Montero Escuel Técnic Superior de Ingenieros Industriles Universidd de Ls Plms de Grn Cnri Curso 006-007 Los problems de derivción e integrción numéric El
AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA
GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo
b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.
MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por
Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.
Cpítulo Integrción Problem. Se f : [, 6] IR denid por: + +
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx
Cpítulo 3 Integrción Numéric 3.1. Introducción Ls integrles que vmos trtr de resolver numéricmente son de l form f(x)dx donde [, b] es un intervlo finito. Sbemos que l integrl definid (de Riemnn) de un
La integral de Riemann
L integrl de Riemnn Mrí Muñoz Guillermo mri.mg@upct.es U.P.C.T. Mtemátics I (1 o Ingenierí Electrónic Industril y Automátic) M. Muñoz (U.P.C.T.) L integrl de Riemnn Mtemátics I 1 / 33 Sums superior e inferior
Integración numérica: Regla del trapecio Método de Romberg
Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.
Clase No. 18 (Segunda parte): Cuadratura Gaussiana MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 10
Clse No. 18 (Segund prte): MAT 251 Cudrtur Gussin Joquín Peñ (CIMAT) Métodos Numéricos (MAT 251) 15.10.2012 1 / 10 Introducción Se un función f : [, b] R continu. Dd un prtición = x 0 < x 1 < x 2 < < x
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
Integral definida. Áreas MATEMÁTICAS II 1
Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se
C alculo Octubre 2010
Cálculo Octubre 2010 c Dpto. de Mtemátics UDC c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida
Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función
Aplicaciones de la integral definida
MB5_MAAL_Aplicciones Versión: Septiemre Aplicciones de l integrl definid Por: Sndr Elvi Pérez L integrl tiene vris plicciones en diferentes áres del conocimiento. En este curso se nlizrán sus funciones
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
Aplicaciones de la integral
5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle
Integral de Riemann. Introducción a la integración numérica.
Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se
Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017
Universidd de Buenos Aires - Fcultd de Ciencis Excts y Nturles - Depto. de Mtemátic Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cutrimestre 17 Práctic N 8: Integrción Numéric - Métodos Multipso
Integración de funciones de una variable real
Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
Teoría Tema 7 Integral definida. Área encerrada por una curva
Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.
Herramientas digitales de auto-aprendizaje para Matemáticas
Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático
5.5 Integración numérica
88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l
D I F E R E N C I A L
D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil
Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica
Métodos Numéricos: Resumen y ejemplos em 3: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Mrzo 8, versión.4 Contenido. Fórmuls de cudrtur.
MATEMÁTICAS 2º BACH CIENCIAS INTEGRAL DEFINIDA
Profesor: Fernndo Ureñ Portero 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hy infinidd de funciones extríds del mundo rel (científico, económico, físic )pr ls cules tiene especil relevnci clculr el áre jo
MÉTODOS DE INTEGRACIÓN
Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)
UTalca - Versión Preliminar
1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
Aplicaciones de la Integral.
Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)
1 Aproximación de funciones por polinomios.
GEODESIA Y FUNCIONES OTOGONALES Enrique Clero Curso GPS en Geodesi y Crtogrfí Crtgen de Indis Aproximción de funciones por polinomios. Consideremos el conjunto de funciones S = ; x; x ; x 3 ; x ; :::::
LA INTEGRAL DEFINIDA Y SUS APLICACIONES
Integrl Definid y Aplicciones LA INTEGRAL DEFINIDA Y SUS APLICACIONES Autores: Pco Mrtínez (jmrtinezos@uoc.edu), Ptrici Molinàs (pmolins@uoc.edu), Ángel A. Jun (junp@uoc.edu). ESQUEMA DE CONTENIDOS Aplicciones
La Integral Definida
Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm
LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE
1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd
Integración de funciones reales de una variable real. 24 de octubre de 2014
Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl
Aplicaciones de la integral.
Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos
Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid
Jesús Grcí de Jlón de l Fuente IES Rmiro de Meztu Mdrid Diferencil de un función Diferencil de un función Definición L diferencil de un función f es igul su derivd por un incremento rbitrrio de l vrible.
MATEMÁTICAS APLICADAS A LAS CC. SS. II
INTEGRLES MTEMÁTIS PLIDS LS. SS. II lfonso González IES Fernndo de Men Dpto. de Mtemátics IES FERNNDO DE MEN. DPTO. DE MTEMÁTIS I) ONEPTO DE INTEGRL INDEFINID (pág. 0 del liro de texto) Dd f(x)=x nos preguntmos
Aplicaciones de la integral
CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de
Primitiva de una función.
Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)
a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA
UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo
Profesor Francisco R. Villatoro 8 de Marzo de 1999
Octv relción de problems Técnics Numérics Profesor Frncisco R. Villtoro 8 de Mrzo de 1999 Ejercicios de los tems de derivción e integrción numérics. 1. Un regl de integrción gussin o de Guss se define
PRACTICA 7 Integración Numérica
PRACTICA 7 Integrción Numéric Fórmuls de tipo interpoltorio ) Tommos n+ puntos distintos, x i, i = 0,,..., n, del intervlo [,] ) Clculmos el polinomio de interpolción de l función f en los puntos x i 3)
Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso
Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n
UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)
UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como
INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS
INTEGRL DEFINID PLICCIÓN l CÁLCULO de ÁRES MTEMÁTICS II º Bchillerto lfonso González IES Fernndo de Men Dpto. de Mtemátics I) CONCEPTO DE INTEGRL DEFINID (ver págs. 7 y 7 del liro de ed. ny) DEF: dx =
Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso
Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de
UNIDAD 4: INTEGRAL DEFINIDA
UNIDAD 4: INTEGRAL DEFINIDA ÍNDICE DE LA UNIDAD.- INTRODUCCIÓN.....- SUMAS SUPERIORES E INFERIORES....- LA INTEGRAL DEFINIDA.... 4.- PROPIEDADES DE LA INTEGRAL DEFINIDA... 5.- TEOREMA FUNDAMENTAL DEL CÁLCULO
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)
f : [a, b] R, acotada
6. Integrción 6.1 Integrl definid Problem del áre. Ejemplos: 1 3 f(x 0, x [, b] f : [, b] R, cotd Figur 1 P n = { = x 0 < x 1
La integral de Riemann
L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre
IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA
DE LA FÍSICA Índice 1. Símolos del lenguje mtemático 2. Álger 3. Geometrí 4. Trigonometrí 5. Cálculo vectoril 6. Cálculo diferencil 2 1 Símolos del lenguje mtemático = es igul, equivle x 0 incremento de
Integrales de funciones de una variable.
Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y f (x) y el eje OX desde un punto y fx fx hst
CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA
CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem
TEMA 4. Cálculo integral
TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl
Integrales de funciones de una variable.
Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y fx) y el eje OX desde y f x f x un punto hst
CAPÍTULO. La integral. 1.3 Cálculo aproximado del área de una región plana bajo una curva
CAPÍTULO 1 L integrl 1.3 Cálculo proimdo del áre de un región pln jo un curv etommos en est sección el prolem del cálculo de áres, introduciendo lguns simplificciones notciones que nos permitirán resolverlo.
6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2
UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.
La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a
L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,
3.- Matrices y determinantes.
3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot
Aplicaciones del Cálculo diferencial e integral
Aplicciones del Cálculo diferencil e integrl Integrción numéric con Mxim http://euler.us.es/~rento/ Rento Álvrez-Nodrse Universidd de Sevill Rento Álvrez-Nodrse Universidd de Sevill Aplicciones del Cálculo
Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera
.7. Teorem de Green en el Plno. Se un curv cerrd, simple, suve trozos positivmente orientd en el plno, se l región limitd por l curv, e incluendo. Si F ( ) F ( ),, son continus tiene primers derivds prciles
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005
L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es
Laboratorio N 7, Asíntotas de funciones.
Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones
Z ξ. g(t)dt y proceda como sigue:
Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)
1. Fórmulas Básicas de Newton-Cotes
Práctic # 6 MAT-122: Cálculo Diferencil e Integrl II, Dr. Porfirio Suñgu S. 1. Fórmuls Básics de Newton-Cotes Considere f : [, b] R diferencible ls veces que se necesri según cd método. Ddo el número de
INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x
en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este
La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.
CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d
Tema 11: Integrales denidas
Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno
2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual
MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]
Aplicaciones de la integral indefinida
Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos
f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)
Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se